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Reconstruction of optical inhomogeneities improves
fluorescence diffuse optical tomography

Nicolas Ducros, Teresa Correia, Andrea Bassi, Gianluca Valentini, Simon Arridge, Cosimo D’Andrea,

Abstract—We propose a new reconstruction algorithm for
fluorescence diffuse optical tomography, which is designed for
highly heterogeneous objects, such as biological tissues. It is
a two-step algorithm that exploits continuous-wave measure-
ments acquired at both excitation and fluorescence wavelengths.
First, an optical heterogeneity map, which depends on both
absorption and diffusion coefficients, is obtained from excitation
measurements. Second, the fluorescence distribution is recon-
structed considering the recovered optical heterogeneity map.
The algorithm includes dimensionality reduction techniques,
namely measurement compression and structured illumination,
which significantly reduce acquisition and reconstruction times.
The algorithm has been tested on experimental data acquired
from tissue-mimicking phantoms considering sparsity priors.
We demonstrate the feasibility and effectiveness of this new
approach that allows the fluorescence reconstruction quality to
be significantly improved with respect to that provided by the
standard normalized Born method.

Index Terms—fluorescence imaging, optical tomography, image
reconstruction, heterogeneous objects

I. INTRODUCTION

FLUORESCENCE diffuse optical tomography (FDOT),
also known as fluorescence molecular tomography

(FMT), is an optical technique that allows the 3D reconstruc-
tion of the distribution of exogenous fluorescent markers. It
has been mainly adopted for in vivo preclinical imaging in
small animals [1]–[3]. FDOT consists in illuminating a sample
with light patterns (e.g. points or more complex shapes) and
detecting the fluorescence light exiting the sample [4], [5].
Multiple illumination-detection combinations are generally
considered for different angles of view of the sample, which
improves the spatial resolution of the reconstruction [6]–[8].

As discussed in [9], tomographic reconstruction of the
fluorescent marker distribution generally consists in i) solving
the forward problem that describes light propagation through
the sample and ii) solving the inverse problem given a for-
ward model. The inverse problem is very ill-posed and thus
fluorescence reconstruction highly depends on the accuracy of
the forward model itself [10].
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The diffusion approximation is generally adopted to solve
the forward problem. This partial differential equation, which
may be solved by means of the finite element method [11],
[12] or the boundary element method [13], [14], requires
the knowledge of several optical parameters, principally the
absorption coefficient µa and reduced scattering coefficient
µ′s at each optical wavelength being measured, as well as
the refractive index of the medium, insofar as it affects the
determination of correct boundary conditions. One of the
major difficulties of FDOT is to estimate the distribution of
these optical parameters, which is even more critical when
highly heterogeneous objects such as biological samples (e.g.
mouse) are considered.

One practical solution has been to assume the sample to
be optically homogeneous and consider the ratio between
measurements at fluorescence and excitation wavelength. The
so-called normalized Born (nBorn) method was originally
proposed by Ntziachritos et. al. [15] to correct for exper-
imental factors such as detector gains and coupling losses.
Interestingly, it also proved efficient to minimize the fluores-
cence reconstruction artifacts that appear in the presence of
optical inhomogeneities [16]. Although the nBorn approach is
effective in the case of absorbing inhomogeneities, it presents
severe limitations when scattering inhomogeneities are present
[17], [18].

In the last years, FDOT research has focused on multi-
modality approaches such as X-ray computed tomography-
FDOT (CT-FDOT) [19]–[21], X-ray phase-contrast CT-FDOT
[22], magnetic resonance imaging-FDOT (MRI) [23], [24],
single photon emission computed tomography-CT-FDOT [25],
or positron emission tomography-FDOT [26]. Traditionally,
the volume obtained from the concurrent modality, e.g. CT
or MRI, is segmented into different anatomical segments, e.g.
organs or tissue types. Segments can be used to constrain
the solution of the FDOT problems [19]–[22], [27], [28]. As
recently demonstrated, knowledge of anatomical segments can
improve the reconstruction quality by improving the accuracy
of the forward model [17], [29]. This is done by assigning
a couple of optical properties to each of the segments [22],
[23], [25]. However, choosing the right optical parameters for
each segment is very challenging. Despite many studies, the
optical properties of the tissues have not yet been fully estab-
lished, due to inter-subject variability and measurements being
predominantly performed using ex vivo tissues. Moreover,
anatomical information provided by a non-optical concurrent
imaging modality is only partially correlated with the optical
parameters.

Therefore, it is highly desirable to recover the optical
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inhomogeneity maps from optical measurements, which can
be done by performing a diffuse optical tomography (DOT)
reconstruction at the excitation wavelength. Since continuous
wave (CW) measurements at a single wavelength cannot
resolve both absorption and scattering coefficients [30], time-
resolved/frequency domain or multispectral measurements are
required to reconstruct the two inhomogeneity maps. Unfortu-
nately, these two approaches show various drawbacks, such as
the complexity of the experimental set-up, a lower signal-to-
noise ratio, and huge data sets that are difficult to be managed
by the inversion algorithms. In practice, FDOT measurements
are often performed in CW mode, especially in the case of a
multi-modality instrumentation for which technical constraints
push towards the use of simple experimental systems

The authors recently proposed the idea to reconstruct a
single optical inhomogeneity map from CW DOT measure-
ments and then to solve the FDOT problem [31]. Capitalizing
on this work, we propose a new reconstruction method for
FDOT, namely the inhomogeneous nBorn (i-nBorn) method,
that generalizes the n-Born method. This new method is based
on the joint solution of two inverse problems, which are both
ill-posed and require the use of regularization schemes to
recover an acceptable solution.
In this contribution, we describe an image reconstruction
algorithm for the i-nBorn method. It consists of two main
steps. The first step implements a projected Gauss-Newton
algorithm, which can accommodate different types of penalty
terms, to reconstruct the sample inhomogeneities. The second
step, which includes the inhomogeneity map recovered at the
first step in the forward model, consists in the fluorescence
image reconstruction using anisotropic diffusion (AD) regu-
larization. The algorithm we propose easily integrates the use
of structured light illumination and measurement compression,
which are dimension reduction approaches that greatly reduce
the acquisition and reconstruction times. Structured light is
based on the illumination of the object by a small num-
ber of light patterns. Patterns can be chosen among natural
basis such as Fourier or wavelet [32], using singular value
decomposition [29], [33] or applying the compressed sensing
paradigm [34]. Measurement compression can be considered
as a preprocessing step in which the measured images are
(wavelet) compressed and the most significant basis function
are retained to build the a forward operator with reduced
dimensionality.

The paper is organized as follows. In Section II, we intro-
duce the i-nBorn approach that is designed for fluorescence
reconstruction in the presence of optical inhomogeneities. In
Section III, we present an overview of our reconstruction
method, which is based on the resolution of two inverse prob-
lems. First, we introduce dimensionality reduction through
measurement compression. Then, we formalize the two inverse
problems and explain how we solve them. Next, we describe
how to build the forward problems. Finally, we provide a
detailed description of our algorithm. In Section IV, we discuss
the phantom experiments and the figures of merit of the
reconstructions. We present our results in Section V, discuss
them in Section VI, and conclude in Section VII.

II. FLUORESCENCE DIFFUSE OPTICAL TOMOGRAPHY IN
THE PRESENCE OF INHOMOGENEITIES

We consider an object domain Ω with absorption coefficient
µa(r), r ∈ Ω, and reduced scattering coefficient µ′s(r), r ∈ Ω,
that has embedded within it a fluorescent dye. Let h(r), r ∈ Ω,
be the fluorescence yield, which is related to the concentration
of the fluorescent dye, then the FDOT image reconstruction
problem consists in solving the following inverse problem

Γf = Afh, (1)

where Γf is the fluorescence signal measured at the emission
wavelength λf and Af is the forward operator. The forward
operator Af strongly depends on the optical properties of
the object, which are unknown. The forward operator can be
built from estimated optical properties, but the resulting model
error can dramatically degrade the reconstruction quality. A
practical way of alleviating this problem has been to normalize
data, which leads to the normalized FDOT problem

Γn = Anh, with Γn =
Γf

Γx
, (2)

where Γx is the signal measured at the excitation wavelength
λx. Unfortunately, this approach does not compensate for
the effect of unknown optical inhomogeneities, especially
scattering [17], [18]. One possibility is to address the full DOT-
FDOT problem for which µa, µ′s and h are all recovered and
refractive index is assumed known. It consists in jointly (either
sequentially or simultaneously) solving a pair of inverse prob-
lems. When the optical properties of the object are assumed
to be the same at λx and λf we have

Γx = F (µa, µ
′
s) and (3a)

Γn = An(µa, µ
′
s)h. (3b)

where F is the (non-linear) excitation forward model. The pair
of maps (µa, µ

′
s) may be recovered from the DOT problem of

Eq. (3a) and then used to build An in the FDOT problem of
Eq. (3b). However, when CW measurements are considered,
the DOT problem has no unique solution [30]. Different pairs
of maps (µa, µ

′
s) may satisfy Eq. (3a), hence the resulting An

is subject to model error.
In a previous work [31], we suggested an approach that

allows DOT-FDOT reconstruction to be performed from CW
data. The key idea is to recast the forward problem from a
solution to a diffusion equation into a solution of the equivalent
Helmholtz equation (

∇2 + η
)

Ψ = s (4)

where η is a scalar optical property with units of reciprocal
squared length, defined as η = ∇2(κ

1
2 )/κ

1
2 + µa/κ, κ =

1
3 (µ′s + µa)−1 is the diffusion coefficient inside Ω and Ψ and
s are the transformed fluence and source terms. The system
of equations (3a)–(3b) may now be rewritten as

Γx = G(η), (5a)
Γn = B(η)Υ, (5b)

where Υ is a modified fluorescence yield that is given by

Υ =
h

κ
. (6)
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The strategy to recover h is the following. First, the nonlin-
ear problem of Eq. (5a) is solved and an optical map η, which
depends on the optical inhomogeneities of the medium, is
obtained. Second, the η map is used to build the forward model
B and the linear problem of Eq. (5b) is solved, providing the
Υ map. Finally, the unknown fluorescence yield is given by

h = κ̂Υ, (7)

where κ̂ is chosen, in practice, as an estimate for κ. In this
manuscript, we assume κ is slowly varying. Hence, we have
the following approximation:

κ̂ ' µ̂a

η
, (8)

where µ̂a is an estimate for the absorption coefficient, chosen
as a constant.

III. RECONSTRUCTION OVERVIEW

A. Data Acquisition and Compression

The object Ω is illuminated at I view angles. At each angle,
a set of J source patterns is projected onto the object. Such
an acquisition results in a set of IJ excitation images and IJ
fluorescence images. Let mx

i,j and mf
i,j be the excitation and

fluorescence images, respectively, measured at the ith view
after illumination with the jth source pattern. In the following
sections, we use a vector representation for the images, i.e.
mx

i,j ∈ RP and mf
i,j ∈ RP , where P is the number of pixels.

The normalized fluorescence image is defined by

mn
i,j =

mf
i,j

mx
i,j

, (9)

where the division is component-wise (pixel-wise). Each of the
IJ excitation images, as well as each of the IJ normalized
fluorescence images, are compressed by applying a wavelet
transform D and retaining their K most relevant wavelet
components. The data for each forward problem then consists
of the IJK retained components stacked into a vector with
components

Γi,j,k = 〈di,j,k,mi,j〉 , (10)

where df
i,j,k ∈ RP is the wavelet vector associated with the

kth component of the image acquired from the jth illumination
pattern at the ith angle.

B. Inverse problems

We consider the reconstruction of the unknown quantities
η ∈ RN and h ∈ RN , where N is the number of voxels,
from the measured data Γx ∈ RIJK and Γn ∈ RIJK given
the discrete forward models G and B. The unknown quantities
are obtained minimizing the cost functions

Ldot(η) =
1

2
‖Γx − G(η)‖2 + αRdot(η) and (11a)

Lfdot(Υ) =
1

2
‖Γn −BΥ‖2 + βRfdot(Υ), (11b)

where α (resp. β) is a regularization parameter that sets the
trade-off between the data fidelity 1

2‖Γ
x − G(η)‖2 (resp.

1
2‖Γ

n −BΥ‖2) and the penalty function Rdot (resp. Rfdot).

Penalty functions have long been confined to `2-norm
regularization that promotes the smoothness of the solution
[19]–[22], [35]. More recently, penalty functions based on
`1-norm have received a lot of attention, since they promote
sparse solutions [26], [36]–[39]. The DOT problem has also
been formulated as a joint sparse recovery problem with a `0-
norm penalty, which assumes that optical heterogeneities have
a small support [40].
In the following we present our minimization framework for
both Ldot and Lfdot. Remind that η is required to build B,
hence, Eq. (11a) has to be solved before Eq. (11b).

1) Solution of the DOT problem: The DOT cost function
given at Eq. (11a) is minimized using a Gauss-Newton algo-
rithm with a box constrain of the form ηmin ≤ η ≤ ηmax.
The Gauss-Newton method is a traditional tool for non linear
minimization, which iteratively solves minη L(η) starting
with an initial guess η0 and building new estimates η`+1 =
η` + τ `∆η`, where ∆η` is the Gauss-Newton step and τ ` is
the step length.

(J`>J` + αC`)∆η` = −g`, (12)

where J` is the Jacobian matrix of G about η` and C` is
the Hessian matrix of Rdot about η`. The vector g`, which
denotes the gradient of L at η`, is given by

g` = −J`>(Γn − G`) + α∇R`
dot, (13)

where G` = G(η`) is the forward estimate and ∇R`
dot is the

gradient of Rdot at η`.
Assuming the optical heterogeneity map to be piecewise
constant, we choose Rdot(η) = TV(η), where TV is the
total variation semi-norm. To insure the global convergence
of the algorithm, a line search along the direction ∆η` is
performed, the best step length being retained. Following
[41], the box constrain has been implemented determining, at
each iteration, a set of fixed variables that are not updated.
In the following, we denote η̂ the solution obtained after
convergence of the iterative process.

2) Solution of the FDOT problem: The FDOT cost function
Eq. (11b) is minimized considering the split operator method
introduced in [42], considering a regularization penalty of the
form

Rfdot(Υ) =

∫
Ω

p(|∇h|) dΩ, (14)

where p is an edge-preserving potential function. The mini-
mizer of Eq. (11b) is the solution of

B>(BΥ− Γn) = −βD(Υ)Υ, (15)

where the right-hand side term is the nonlinear anisotropic

diffusion with D(Υ) = −∇·
[
exp

[
−
(
|∇Υ|
T

)2
]
∇
]

, where

the parameter T is the threshold [42]–[44]. The solution is
obtained using the two-step iterative method described in [42].

C. Forward problems

In this section, we discuss the calculation of the Jacobian
matrix J`, forward estimate G`, and weight matrix B required
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in Eq. (12), Eq. (13), and Eq. (15), respectively. All the three
quantities require an appropriate model for the propagation of
light within the object Ω.

Assuming κ is known on the boundary ∂Ω, we have
the following discrete formulation for Eq. (4) using a finite
element method (FEM) implementation [11]:

H(η)Ψ = s (16)

where H(η) ∈ RN×N is the Helmholtz operator that only
depends on η, Ψ ∈ RN×1 is the pseudo photon density
vector (which is related to the measured data as detailed
in appendix A), and s ∈ RN×1 is the source vector. The
propagation operator has been computed using the Matlab
TOAST package [45].

The forward estimate G` is of size IJK×1. The (i, j, k)th
entry of G` is denoted G`i,j,k ∈ R. By definition, it can be
computed as

G`i,j,k =
〈
dx
i,j,k,ψ

`
i,j

〉
(17)

where ψ`
i,j is obtained solving Eq. (16) with s = si,j at

iteration `.
The Jacobian matrix J` is of size IJK×N . The (i, j, k)th

row of J` is denoted j`i,j,k ∈ RN . It may be shown that [9]

j`i,j,k = ψ`
i,j ◦ψ`

i,j,k, (18)

where ψ`
i,j,k is the adjoint solution of Eq. (16) for s = dx

i,j,k

at iteration `. The symbol ◦ denotes the Hadamard product.
The weight matrix B is of size IJK × N . The (i, j, k)th

row of B is denoted bi,j,k ∈ RN . As shown in appendix A,
it can be computed as

bi,j,k = ψi,j ◦ψi,j,k, (19)

where ψi,j is the solution of Eq. (16) with s = si,j at the final
iteration of step 1 while ψi,j,k is the adjoint solution of Eq.
(16) with s = dn

i,j,k/ψi,j (element-wise division).

IV. MATERIAL AND METHODS

A. Experimental set-up

In the following paragraph a brief description of the exper-
imental set-up is reported. A more detailed description can be
found in [32], [46]. The light emitted by a diode laser (wave-
length of 630 nm, power ≈10 mW) is spatially modulated
by means of a digital micromirror device (DMD) (Discovery
1100 - ALP1, Vialux), which creates different patterns that are
projected onto the sample surface through an objective lens.
The sample is placed on a motorized rotational stage in order
to acquire multiple views. In particular, measurements have
been carried out on biological tissue mimicking phantoms. The
light exiting the sample surface is collected by an objective
lens (f = 50 mm, f#= 2.8, Nikon Co.) and projected on a
low noise 16-bit cooled (-40 ◦C) CCD camera (Versarray 512,
Princeton Instruments). In order to discriminate fluorescence
from excitation light, a high-pass filter (RG-695, Schott) in
conjunction with an interference filter (XF 3076, Omega) have
been inserted in front of the objective lens.

Fig. 1. Top view of the epoxy resin phantoms used in the experiments.
Phantom 1 is depicted on the left and phantom 2 on the right. Both phantoms
are cylinders of diameter 20 mm and height 80 mm. Red full line (—) indicates
absorbing inclusions, green dashed line (– –) fluorescence inclusions, and
orange dotted line (· · · ) scattering inclusions. The diameter and length of
inclusions 1 to 5 are reported in table I. The paths P1 and P2 are used to
plot profiles in figure 6.

inclusion 1 2 3 4 5

∅ (mm) 4 2 2 2 2
L (mm) 30 21 21 30 21

TABLE I
DIAMETER (∅) AND LENGTH L OF THE HOLES DRILLED INTO THE

PHANTOMS.

The phantom is an epoxy resin cylinder of diameter 20
mm and height 80 mm. Appropriate concentrations of toner
powder and Ti02 particles have been added to the resin so
as to simulate the absorption and scattering parameters of
biological tissues. The optical properties of the phantom have
been measured by means of a time-resolved diffused optical
spectroscopy system [47]. The following values have been
obtained: µa = 0.02 mm−1 and µ′s = 1.35 mm−1. In order
to simulate inclusions, cylindrical holes have been drilled into
the phantom at different positions (see figure 1). The diameter
and length of the inclusions are reported in table I. Each of the
inclusions can be independently filled with a liquid solution
whose optical properties differ from the background. In the
case of absorbing/scattering inclusions, the solution is made
of ink and intralipid R© and by changing their concentrations it
is possible to modify the absorption and scattering coefficients,
respectively. Fluorescent inclusions have been obtained filling
the holes with a fluorescent dye (Nile Blue dye concentration
of 30 µM). In particular, two phantoms of increasing com-
plexity have been prepared, as shown in figure 1. In the first
phantom, two absorbing cylindrical inclusions (labels 1 and 3
according to figure 1) and two fluorescent inclusions (labels
2 and 4) have been inserted. In the second phantom, two
absorbing inclusions (labels 3 and 4), one scattering inclusion
(label 1), and two fluorescent inclusions (labels 2 and 5) have
been inserted.

Measurements at both excitation and fluorescence wave-
lengths have been carried out in transmission every 18̊ ,
resulting in I = 20 views. For simplicity, only J = 1 uniform
source pattern has been considered at each view angle.
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B. Practicalities
The mesh used to solve the Helmholtz-like equation consists

of 42886 tetrahedral elements connected by 7468 vertices and
is displayed in figure 2a. It was obtained considering the
DMD-CCD-based method proposed in [32], which can handle
any sample with convex shape without requiring any extra
device. Uniform illumination patterns wider that the sample
are projected and shadows are recorded rotating the sample
with a fine step angle of 1̊ . The resulting stack of images is
filtered backprojected, which results in a 3D volume that is
thresholded to get a binary volume indicating the volume in
the scene occupied by the sample. Then, the iso2mesh mesh
generator was employed [48]. The regular reconstruction grid
consists of N = 30 × 29 × 59 voxels of size (0.75 mm)3.
Rectangular illumination and detection areas are determined
from a subset of the shadow images primarily measured for
determining the shape of the phantom. At each measurement
angle (step angle of 20̊ ), the largest rectangle included within
the object is retained as the detection area for this particular
angle. In order to avoid camera saturation, margins of at least 2
mm are taken from the border of the object.The corresponding
illumination area is chosen on the opposite side of the object
(see figure 2b). Both illumination area (34 mm × 17 mm)
starts at 2 mm from the top border of the phantom.

The excitation and fluorescence images recorded at each of
the I = 20 view angles are of size 256 × 256 (illustrations
are provided in figure 2c and 2d). All images are cropped to
the detection area and resampled to get rectangular images
of P = 128 × 64 pixels. Each of the 20 excitation and 20
fluorescence images are wavelet transformed considering a
Daubechies 4 wavelet basis, thanks to the wavelab software
[49]. For each measured image, K = 64 detection patterns are
retained among the most significant wavelet basis functions.

C. Performance metrics
The reconstruction quality has been assessed by means of

three main objective performance metrics. First, the Pearson
correlation has been considered as a global metric that indi-
cates how well two volumes are linearly correlated. Given the
ground-truth htrue and reconstructed fluorescence distribution
hrec, the Pearson correlation ρ is defined by

ρ =
cov (hrec, htrue)

σ(hrec)σ(htrue)
, (20)

where cov is the covariance and σ the standard deviation. A
large ρ indicates a high correlation between the images.

Second, the contrast-to-noise ratio (CNR) has been consid-
ered. It is defined by

Croi,back =
µroi − µback

(wroiσ2
roi + wbackσ2

back)1/2
, (21)

where µroi (µback) and σroi (σback) are the average and
standard deviation of hrec in the region-of-interest Ωroi (back-
ground Ωback) and wfluo (wback) is the ratio of the volume
occupied by the two fluorescent inclusions (the rest of the
volume).
We define the global CNR C by choosing

Ωroi = ΩA ∪ ΩB and Ωback = Ω \ Ωroi, (22)

(a) (b)

(c) (d)

Fig. 2. a) Mesh of the object b) Detection and illumination areas for the first
view angle c) image at excitation wavelength d) image at fluoresce wavelength.
The rectangles in (c) and (d) indicate the detection area.

where ΩA (resp. ΩB) is the support of the the first (resp.
second) fluorescent inclusion. The larger the CNR, the better.

Last, the relative quantification factor Q is introduced as
a measure of the quantitativeness of the reconstruction. We
define

Q = min

(
CA
CB
,
CB
CA

)
, (23)

where CA (resp. CB) is the CNR of inclusion A (resp. B),
which is obtained choosing Ωroi = ΩA (resp. Ωroi = ΩB) and
Ωback = Ω \ (ΩA ∪ΩB). The closer the relative quantification
is to 1, the better.

D. Choice of the regularization parameters

The reconstruction quality dramatically depends on the
choice of the regularization parameters α and β given in
Eq. (11a) and Eq. (11b), respectively. While the best α has
been chosen from visual inspection, β has been chosen by
optimizing an objective performance metric, which enables fair
comparisons of the reconstructions. The retained performance
metric is the global CNR.

V. RESULTS AND DISCUSSION

The reconstruction of the fluorescence distribution h was
performed for the two tissue-mimicking phantoms considering
the nBorn method and our proposed approach, setting µ̂a =
0.02 mm−1 and µ̂′s = 1.35 mm−1.
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TABLE II
PERFORMANCE METRICS OF THE FLUORESCENCE RECONSTRUCTIONS

CONSIDERING SPARSITY PRIORS, I.E., Rdot(η) = TV(η) AND Rfdot(Υ)
GIVEN IN EQ. (14)

Phantom method ρ C Q

– perfect 1 ∞ 1
1 nBorn 0.305 2.28 0.85
1 proposed 0.416 3.25 0.72
2 nBorn 0.197 1.96 0.17
2 proposed 0.274 2.79 0.79

TABLE III
PERFORMANCE METRICS OF THE FLUORESCENCE RECONSTRUCTIONS

CONSIDERING REGULARITY PRIORS, I.E., Rdot(η) = ‖∆η‖22 AND
Rfdot(Υ) = ‖η‖22

Phantom method ρ C Q

– perfect 1 ∞ 1
1 nBorn 0.343 2.58 0.96
1 proposed 0.424 3.31 0.95
2 nBorn 0.211 2.11 0.37
2 proposed 0.235 2.36 0.87

Slices of the heterogeneity maps reconstructed in both
phantoms are shown in figure 3. Three-dimensional rendering
of the fluorescence reconstructions obtained in phantom 1 and
phantom 2 are reported at figure 4 and 5, respectively. To show
the universality of our approach, not only the sparsity priors
defined in sections III-B1 and III-B2 were considered, but also
more classical regularity priors of the form Rdot(η) = ‖∆η‖22
and Rfdot(Υ) = ‖η‖22 [19]–[22], [35]. For both phantom
reconstructions, the fluorescence profiles obtained along paths
P1 and P2 (refer to figure 1 to localize the paths) are depicted
in figure 6 considering sparsity priors as well as regularity
priors. Finally, the performance metrics introduced in section
IV-C were used to evaluate both phantoms reconstructions
considering the standard nBorn approach and our proposed
approach. The metrics are reported in table II for recon-
structions performed with sparsity priors and in table III for
reconstructions performed with regularity priors.

In the reconstructed fluorescence volume obtained from
phantom 1, we observe a clear advantage of the proposed
approach with respect to the standard nBorn method as can
be observed visually in the 3D rendering of figure 4 and
in the profiles of the top row of figure 6. In particular, the
nBorn reconstruction is enable to resolved separately the two
inclusions as our proposed approach does. This is quantita-
tively confirmed with the increase of the global CNR of the
reconstructed volume C and its correlation with the ground
truth ρ (see table II and table III). Specifically, we observe a
36 % increase (resp. 23 %) of ρ and a 42 % increase (resp. 28
%) of C for the sparsity (resp. smooth) priors. Improvements
are obtained for both prior types, which suggests the i-nBorn
method outperforms the standard nBorn method regardless the
penalty functional chosen for regularization. A small decrease
of 15 % (resp. 1 %) of the relative quantification Q is observed
in phantom 1 with sparsity (resp. smooth) priors.

In the second phantom, similar results are obtained. As

(a) (b)

(c) (d)

Fig. 3. Optical inhomogeneity maps. a) ground truth in phantom 1, b)
reconstruction in phantom 1, c) ground truth in phantom 2, b) reconstruction
in phantom 2.

shown in figure 5 and in the bottom row of figure 6, the two
fluorescent inclusions cannot be separated considering nBorn-
based reconstruction while they can be well discriminated and
localized by means of the proposed method. Specifically, we
observe a 39 % increase (resp. 11 %) of ρ and a 42 %
increase (resp. 12 %) of C for the sparsity (resp. smooth)
priors. The advantage of the proposed method is even more ev-
ident due to the higher complexity of the absorbing/scattering
inhomogeneities distribution. Beyond the higher number of
inhomogeneities and their variability –both absorbing and
scattering inclusions are present, the distance between the two
fluorescent inclusions is smaller in phantom 2 than in phantom
1 (see figure 1). For this phantom, we observe a dramatic
increase of the relative quantification Q, which is increased
by a factor of 3.7 for sparsity priors and by a factor of 1.37
for smooth priors.

Finally, we remark that the relative quantification is much
better in phantom 1 than in phantom 2 when the standard
nBorn method is considered while the proposed i-nBorn
algorithm tends to provide similar quantification capabilities
whatever the complexity of the phantom and the priors used
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(a) (b) (c)

Fig. 4. Fluorescence reconstructions in phantom 1. a) ground truth, b) standard nBorn reconstruction, c) reconstruction obtained with the proposed i-nBorn
algorithm.

(a) (b) (c)

Fig. 5. Fluorescence reconstructions in phantom 2. a) ground truth, b) standard nBorn reconstruction, c) reconstruction obtained with the proposed i-nBorn
algorithm.
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Fig. 6. Reconstructed fluorescence profiles considering the nBorn approach
(green line marked with B) and our method (red line marked with ×). The
phantom profiles are provided for comparison (blue solid line marked with
◦). Left column, profiles are plotted along path P1. Right column, path P2

is considered. Top row, the sparsity priors Rdot(η) = TV(η) and Rfdot

given in Eq. (14) are considered. Bottom row, the smooth priors Rdot(η) =
‖∆η‖22 and Rfdot(Υ) = ‖η‖22 are chosen. For each of the four cases, the
reconstructed fluorescence distributions have been normalized to a unit marker
quantity such that

∫
h(r) dΩ = 1 µmol.

in the reconstruction algorithm.

VI. DISCUSSION

Our approach represents a simple and effective way to
experimentally capture the optical inhomogeneities needed to
accurately model light propagation within biological tissues.
We demonstrated that an optical inhomogeneity map can be
recovered from CW measurements in tissue mimicking phan-
toms. Even without discriminating absorbing from scattering
inclusions, the proposed method proved efficient to improve
the quality of the fluorescence reconstructions. In particular,
an increase of the CNR and correlation of the reconstruction
with the ground truth is observed in all our measurements.
The dramatic loss of quantification capabilities, which has
already been reported elsewhere for the nBorn approach in
the presence of complex phantoms [17], can be alleviated
considering our approach. This could be a fundamental step
towards applications such as follow-up studies in oncology.

Theses results demonstrate the importance to incorporate
the optical inhomogeneities into the forward model involved
in FDOT reconstructions. They confirm that the nBorn method
only partially compensate the fluorescence reconstruction er-
rors due to the presence of optical heterogeneities, especially

in the presence of scattering inclusions [17]. The advantage of
the proposed i-nBorn algorithm is particularly evident in the
case of phantom 2 that contains both absorbing and scattering
inhomogeneities as well as close fluorescent inclusions. It is
worth noting that also in the simpler phantom 1, the nBorn
method is outperformed by our approach. We anticipate that
the advantage of the proposed approach over the standard
nBorn method would be even stronger if an anatomical prior
obtained by a concurrent anatomical modality is available.

The i-nBorn method can be understood as a generalisation
of the standard nBorn method. Indeed, the i-nBorn method
is equivalent to the nBorn method for homogeneous samples.
The nBorn method provides a preliminary fluorescence recon-
struction that can be improved by reconstructing the optical
inhomogeneities of the sample. It is worth reminding that the
two advantages offered by the nBorn normalization, namely
independence to experimental gains and optical inhomogeneity
compensation, are preserved by the i-nBorn method.

Finally, it is worth mentioning that the possibility to local-
ize absorbing and/or scattering inclusions by means of CW
measurements, even without discriminating between them, is
of great interest for different applications based on optical
contrast, e.g. optical oxymetry [50] and mammography [51].
In particular, the proposed method can be exploited to localize
anomalous inhomogeneities and then more complex (e.g. time-
resolved) measurements schemes can be used to discriminate
between absorbing and scattering inclusions and quantify the
two optical parameters.

VII. CONCLUSION

In this paper, we demonstrated the feasibility and advantage
of a novel FDOT reconstruction algorithm, which is designed
for highly heterogeneous samples. By reconstructing an optical
inhomogeneity map from CW measurements, it is possible
to improve the florescence reconstruction quality. We believe
that the so-called i-nBorn method together with the proposed
algorithm can be of particular interest in combination with
non-optical techniques, such as MRI and CT. In such a
multimodal scheme, the non-optical modality would provide
high resolution a priori about the localization of the optical
inhomogeneities, while DOT measurements could provide
an in situ optical characterization of the inhomogeneities.
The combination of both types of optical information could
be a fundamental step towards improved 3D resolution and
quantification of fluorescence markers in vivo.

APPENDIX A
PROOF OF THE WEIGHT MATRIX FORMULA

The pseudo photon density ψ obeys the following coupled
equations [31]:

Hψx = s in Ω (24a)

Hψf = ψxΥ in Ω. (24b)

where H is the Helmholtz operator with Robin boundary
conditions on ∂Ω. The optical properties are assumed to be
the same at both excitation and fluorescence wavelengths.
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Let Σ be the portion of object surface viewed by the camera.
Measurements are obtained from the photon density by means
of the R(Ω)→ R(Σ) measurement operator M. We have

m =Mψ. (25)

Any compressed measurement Γn is the projection of the
uncompressed measurement mn onto some detection pattern
d. We have:

Γn = 〈mn, d〉Σ (26)

where 〈·, ·〉Σ denotes the L2-inner product, i.e. 〈f, g〉Σ =∫
Σ
f(x)g(x) dx. By definition of mn, we have

m =

〈
mf

mx
, d

〉
Σ

(27)

Using Eq. (25), we have

m =

〈
Mψf

Mψx
, d

〉
Σ

(28)

=

〈
Mψf ,

d

Mψx

〉
Σ

. (29)

Introducing the Green’s operator of the Helmholtz Eqs. (24)
leads to

m =

〈
MGf [ψxΥ],

d

Mψx

〉
Σ

. (30)

By definition of the adjoint operator Gf∗, we have:

=

〈
ψxΥ,Gf∗M∗

[
d

Mψx

]〉
Ω

(31)

Isolating Υ that is the quantity of interest, we obtain

m =

〈
ψxGf∗M∗

[
d

Mψx

]
,Υ

〉
Ω

(32)

The operator Gf being self adjoint, we obtain

m =

〈
ψxGfM∗

[
d

Mψx

]
,Υ

〉
Ω

(33)

In practice, a measurement may be modelled as

Mψ = f(r)ψ(r), ∀r ∈ Σ (34)

where f ∈ R(Σ) depends on the optical properties, the
geometry of acquisition and some gain factors. By defi-
nition of the adjoint operator that satisfies 〈Mψ,m〉Σ =
〈ψ,M∗m〉Ω , ∀ψ ∈ R(Ω), m ∈ R(Σ), we have

M∗m =

{
f(r)m(r), ∀r ∈ Σ

0 ∀r ∈ Ω \ Σ
(35)

Inserting Eq. (34) and Eq. (35) into Eq. (33) leads to :

m =

〈
ψxGf

[
d|Ω
ψx

]
,Υ

〉
Ω

(36)

where d|Ω = d for r ∈ Σ and 0 for r ∈ Ω \ Σ. Discretizing
the previous equation completes the proof.
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