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Introduction

Gibbs point processes are a natural class of models for point patterns exhibiting interactions between the points. Fields of applications for point processes are image processing, analysis of the structure of tissues in medical sciences, forestry (see [START_REF] Matérn | Spatial Variation: Stochastic Models and their Applications to Some Problems in Forest Surveys and Other Sampling Investigations. 2nd[END_REF]), ecology (see [START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]), spatial epidemiology (see [START_REF] Lawson | Statistical Methods in Spatial Epidemiology[END_REF]) and astrophysics (see [START_REF] Neyman | Statistical Approach to Problems of Cosmology[END_REF]). Non-parametric estimation has been largely ignored by researchers.

One exception is the suggestion to use the non-parametric estimation of the pair correlation function and its approximate relation to the pair potential through the Percus-Yevic equation (see [START_REF] Diggle | A nonparametric estimator for pairwise-interaction point processes[END_REF]). The approximation is a result of a cluster expansion method, and it is accurate only for sparse data. Pairwise interaction point processes densities are intractable as the normalizing constant is unknown and/or extremely complicated to approximate. However, we can resort to estimates of parameters using the conditional intensity. In this present paper, we assume that the pairwise interaction point process is stationary and isotropic , so that its Papangelou conditional intensity involves two terms: a Poisson intensity parameter and a pair potential function (or pairwise interaction function). This paper follows a previous one, that was interested in the estimator of the Poisson parameter in the Papangelou conditional intensity. In this present paper, we propose a new non-parametric estimation of the potential function in the Papangelou conditional intensity. We establish consistency and strong consistency for the resulting estimator.

Our paper is organized as follows. Section 2 introduces basic definitions and notations. In Section 3, we briefly present some models satisfying the assumptions needed to prove our asymptotic results. In Section 4, we present our main results. Consistency of the non-parametric estimator for the potential function in the Papangelou conditional intensity is proved in Section 4.1, it is based on the knowledge of the Papangelou conditional intensity and the iterated Georgii-Nguyen-Zessin formula. Using Orlicz spaces we can obtain a strong consistency of the non-parametric estimator in Section 4.2. The proofs are given in Section 5.

Basic notations

Throughout the paper we adopt the following notations. Let B d be the Borel σalgebra (generated by open sets) in R d (the d-dimensional space) and B d O ⊆ B d denote the class of bounded Borel sets. We define a spatial point process X on R d as a locally finite random subset of R d , i.e. the number of points

N(W ) = n(X W ) of the restriction of X to W is a finite random variable whenever W ⊂ R d is a bounded region. N l f = {x ⊆ R d ; n(x W ) = n(x ∩W ) < ∞, ∀ W ∈ B d 0 }
is the space of locally finite configurations of points in R d and will be denoted by x. We equip N l f with σ -algebra

N l f = σ {{x ∈ N l f : n(x W ) = m}, m ∈ N 0 ,W ∈ B d 0 }. That is N l f is the smallest sigma algebra generated by {x ∈ N l f : n(x W ) = m}. The volume of a bounded Borel set W of R d is denoted by |W | and o denotes the origin of R d , i.e. o = (0, . . . , 0) ∈ R d . For any finite subset Γ of Z d , we denote |Γ| the number of elements in Γ. || • || denotes Euclidean distance on R d . σ d = 2π d/2 Γ(d/2)
is the measure of the unit ball in R d . Further, ∑ = ξ 1 ,...,ξ n means that the summation goes over the n-tuples of mutually distinct points ξ 1 , . . . , ξ n . Let S d-1 be the unit ball in R d .

For any Gibbs point processes in a bounded window, the Papangelou conditional intensity at a location u given the configuration x is related to the probability density f by λ (u, x) = f (x ∪ {u}/ f (x) (for u / ∈ x), the ratio of the probability densities for the configuration x with and without the point u added. The Papangelou conditional intensity can be interpreted as follows: for any u ∈ R d and x ∈ N l f , λ (u, x)du corresponds to the conditional probability of observing a point in a ball of volume du around u given the rest of the point process is x.

Gibbs point processes in R d can be defined and characterized through the Papangelou conditional intensity (see [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]) which is a function λ : R d × N l f → R + . The Georgii-Nguyen-Zessin (GNZ) formula (see [START_REF] Papangelou | The Armenian Connection: Reminiscences from a time of interactions[END_REF], [START_REF] Zessin | Der Papangelou prozess[END_REF], [START_REF] Georgii | Canonical and grand canonical Gibbs states for continuum systems[END_REF], [START_REF] Nguyen | Integral and differential characterizations Gibbs processes[END_REF]) states that for any non-negative measurable function

h on R d × N l f E ∑ u∈X h(u, X \ u) = E R d h(u, X)λ (u, X)du. (1) 
Using induction we obtain the iterated GNZ-formula: for non-negative func-

tions h : (R d ) n × N l f -→ R E = ∑ u 1 ,...,u n ∈X h(u 1 , . . . , u n , X \ {u 1 , . . . , u n }) = . . . E h(u 1 , . . . , u n , X)λ (u 1 , . . . , u n , X)du 1 . . . du n (2)
where λ (u 1 , . . . , u n , x) is Papangelou conditional intensity and is defined (not uniquely) by λ (u 1 , . . . ,

u n , x) = λ (u 1 , x)λ (u 2 , x∪{u 1 }) . . . λ (u n , x∪{u 1 , . . . , u n-1 }).

Examples of Papangelou conditional intensity

Examples of Papangelou conditional intensities are presented in [START_REF] Baddeley | Residual analysis for spatial point processes[END_REF], [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF], [START_REF] Møller | Modern statistics for spatial point processes[END_REF]. The following presents some examples. Let u ∈ R d , x ∈ N l f and R > 0.

1. A special case of pairwise interaction is the Strauss process. It has Papangelou conditional intensity

λ (u, x) = β Φ n [0,R] (u,x\u)
where

β > 0, 0 ≤ Φ ≤ 1 and n [0,R] (u, x) = ∑ v∈x 11( v -u ≤ R)
is the number of pairs in x with distance not greater than R.

2. Piecewise Strauss point process.

λ (u, x) = β p ∏ j=1 Φ n [R j-1 ,R j ] (u,x\u) j where β > 0, 0 ≤ Φ j ≤ 1, n [R j-1 ,R j ] (u, x) = ∑ v∈x 11( v -u ∈ [R j-1 , R j ]) and R 0 = 0 < R 1 < . . . < R p = R < ∞.
3. Triplets point process.

λ (u, x) = β Φ s [0,R] (x∪u)-s [0,R] (x\u)
where β > 0, 0 ≤ Φ ≤ 1 and s [0,R] (x) is the number of unordered triplets that are closer than R.

4. Lennard-Jones model.

λ (u, x) = β ∏ v∈x\u Φ( v -u
with log Φ(r) = θ 6 r -6θ 12 r -12 11 (0,R] (r), for r = ||v -u||, where θ > 0 and β > 0 are parameters.

Main results

The Papangelou conditional intensity (see [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]) for a pairwise interaction point process is defined by

λ (u, x) = γ 0 (u) exp -∑ v∈x\u γ 0 ({u, v}) .
If γ 0 (u) = β is a constant and γ 0 ({u, v}) = γ(||u -v||) is invariant under translations and rotations, then a pairwise interaction point process is said to be stationary and isotropic or homogeneous. For convenience, throughout in this paper, we consider a stationary and isotropic pairwise interaction point process. Then its Papangelou conditional intensity at a location u is given by

λ (u, x) = β exp -∑ v∈x\u γ(||v -u||) , ∀u ∈ R d , x ∈ N l f ( 3 
)
where β is the so-called Poisson intensity parameter and γ is the so-called the pair potential and is assumed a non-negative function; a name that originates in statistical physics: it measures the potential energy caused by the interaction among pairs of points (u, v) as a function of their distance ||v -u||. The pairwise interaction between points may also be described in terms of the pair potential function γ into the interaction function Φ = exp(-γ) which has the following interpretation.

For Φ > 1, λ (u, x) is increasing in x (the attractive case). For Φ < 1, λ (u, x) is decreasing in x (the repulsive case). It can be computed for the case Φ = 1 which corresponds to the homogeneous Poisson point process with intensity β . Usually a finite range of interaction R, is assumed such that

γ(||v -u||) = 0 whenever ||v -u|| > R.
In other words, λ (u, x) depends on x only through x ∩ B(u, R), i.e.

λ (u, x) = λ (u, x ∩ B(u, R)), (4) 
where B(u, R) is the closed ball in R d with centered at u and radius R > 0. In this present paper, we propose a new non-parametric estimation of the pair potential γ (or more precisely for the pairwise interaction function Φ = exp(-γ)) in the Papangelou conditional intensity for a stationary and isotropic pairwise interaction point process. We establish the consistency and the strong consistency for the resulting estimator. Suppose that a single realization x of a point process X is observed in a bounded window W n ∈ B d 0 where (W n ) n≥1 is a sequence of cubes growing up to R d . Throughout in this paper, h is a non-negative measurable function defined for all

u ∈ R d , x ∈ N l f by h(u, x) = 11 inf v∈x ||v -u|| > R = 11 (d(u, x) > R) , (5) 
note that for r ∈ (0, R],

F(o, rv) = E[ h(o, X) h(rv, X)] = P(d(o, X) > R, d(rv, X) > R)
and

J(r) = S d-1 F(o, rv)dv.
To estimate the function β 2 J(r)Φ(r), we suggest an edge-corrected kernel-type estimator R n (r) defined for r ∈ (0, R] by

R n (r) = 1 b n |W n 2R |σ d = ∑ u,v∈X ||v-u||≤R 11 W n 2R (u) ||v -u|| d-1 h(u, X\{u, v}) h(v, X\{u, v})K 1 ||v -u|| -r b n . (6) 
will denote Minkowski substraction, with the convention that

W n 2R = W n B(u, 2R) = {u ∈ W n : ||u -v|| ≤ 2R for all v ∈ W n }
denotes the 2R-interior of the cubes W n , with Lebesgue measure |W n 2R | > 0. K 1 is an univariate kernel function associated with a positive sequence (b n ) n≥1 of bandwidths satisfying the following:

Condition K(1, α) : The sequence of bandwidths b n > 0 for n ≥ 1, is chosen such that lim n→∞ b n = 0 and lim n→∞ b n |W n 2R | = ∞.
The kernel function K 1 : R -→ R is non-negative and bounded with bounded support, such that:

R K 1 (ρ)dρ = 1, R ρ j K 1 (ρ)dρ = 0, j = 0, 1, ..., α -1, for α ≥ 2.
To estimate the function β J(r), we suggest an empirical estimator J n (r) defined for r ∈ (0, R] by

J n (r) = 1 |W n 2R | ∑ u∈X 11 W n 2R (u) h(u, X \ {u})h (u, X \ {u}), (7) 
where h (u, x) = S d-1 h(rv + u, x)dv. Using the spatial ergodic theorem of [START_REF] Nguyen | Ergodic theorems for Spatial Process[END_REF], the estimator (7) turns out to be unbiased and strongly consistent. The natural estimator of the Poisson intensity β is

β n = ∑ u∈X 11 Λ n,R (u) h(u, X \ {u}) Λ n,R h(u, X)du . (8) 
In [START_REF] Coeurjolly | Poisson intensity parameter estimation for stationary Gibbs point processes of finite interaction range[END_REF], we introduced a semi-parametric estimator (8) of the parameter β and studied its strong consistency, asymptotic normality and simulation study. Finally, the desired estimator for the interaction function Φ(r) = exp(-γ(r)) is defined by the ratio

Φ n (r) = R n (r) β n J n (r) , for r ∈ (0, R]. (9) 
The strong consistency of the estimators ( 7) and ( 8) implies the following:

Proposition 1.
Let γ be a pairwise interaction potential defined in (3) satisfying condition (4). Let K 1 kernel function satisfying Condition K(1, α) and the function J(r)exp(-γ(r)) has bounded and continuous partial derivatives of order α for all α ≥ 1 in (rδ , r + δ ) for some δ > 0. Then as n → ∞

Φ n (r)-→ exp(-γ(r)) in probability P (resp.P-a.s.) iff R n (r)-→β 2 J(r) exp(-γ(r)) in probability P (resp.P-a.s.).

The convergence in probability (consistency) of the kernel-type estimator R n (r) (defined in (6)) will be discussed in Section 4.1. Conditions ensuring uniform Pa.s. convergence (strong uniform consistency) of the kernel-type estimator R n (r) will be discussed in Section 4.2.

Consistency of the kernel-type estimator

In this section we discuss the consistency of R n (r). For this it follows the interesting to determine the asymptotic behavior of E R n (r) and Var R n (r).

Asymptotic representation of the mean and the variance of the kerneltype estimator

In this section we derive asymptotic representations for the mean and the variance of the kernel-type estimator R n (r). We will use the Landau notation

f (n) = O(h(n)) as n → ∞ for error terms f (n) satisfying lim sup n→∞ f (n) h(n) < ∞. Theorem 1.
Let γ be a pairwise interaction potential defined in (3) satisfying condition (4). Let K 1 kernel function satisfying Condition K(1, 1). Then we have

lim n→∞ E R n (r) = β 2 J(r) exp(-γ(r)),
in every point of continuity r ∈ (0, R] of J × exp(-γ).

If Condition K(1, α) is satisfied and the function exp(-γ(r))J(r) has bounded and continuous partial derivatives of order α in (rδ , r + δ ) for some δ > 0 and for α ≥ 1. Then we have

E R n (r) = β 2 J(r) exp(-γ(r)) + O(b α n ) as n → ∞.
Theorem 2. Let γ be a pairwise interaction potential defined in (3) satisfying condition (4).

Let K 1 kernel function satisfying Condition K(1, α) for all α ≥ 1 such that R K 2 1 (ρ)dρ < ∞ . Then, we have, lim n→∞ b n |W n 2R | Var( R n (r)) = 2β 2 σ d r d-1 J(r) exp(-γ(r)) R K 2 1 (ρ)dρ,
in every point of continuity r ∈ (0, R] of J × exp(-γ).

Rates of strong uniform consistency of the kernel-type estimator

Before realizing the strong consistency for R n (r) (defined in ( 6)) we introduce some necessary definitions and notations. A Young function ψ is a real convex nondecreasing function defined on R + which satisfies lim t→∞ ψ(t) = +∞ and ψ(0) = 0. We define the Orlicz space L ψ as the space of real random variables Z defined on the probability space (Ω, F , P) such that E[ψ(|Z|/c)] < +∞ for some c > 0. The Orlicz space L ψ equipped with the so-called Luxemburg norm . ψ defined for any real random variable Z by

Z ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }
is a Banach space. For more about Young functions and Orlicz spaces one can refer to [START_REF] Krasnosel'skii | Convex Functions and Orlicz Spaces[END_REF]. Let θ > 0. We denote by ψ θ the Young function defined for any x ∈ R + by

ψ θ (x) = exp((x+ξ θ ) θ )-exp(ξ θ θ ) where ξ θ = ((1-θ )/θ ) 1/θ 11{0 < θ < 1}.
On the lattice Z d we define the lexicographic order as follows: if i = (i 1 , . . . , i d ) and j = ( j 1 , . . . , j d ) are distinct elements of Z d , the notation i < lex j means that either i 1 < j 1 or for some p in {2, 3, . . . , d}, i p < j p and i q = j q for 1 ≤ q < p. Let the sets {V k i ; i ∈ Z d , k ∈ N * } be defined as follows:

V 1 i = { j ∈ Z d ; j < lex i},
and for k ≥ 2

V k i = V 1 i ∩ { j ∈ Z d ; |i -j| ≥ k} where |i -j| = max 1≤l≤d |i l -j l |.
By a real random field we mean any family (ε i ) i∈Z d of real-valued random variables and for any subset

Γ of Z d define F Γ = σ (ε i ; i ∈ Γ) and set E |k| (ε i ) = E(ε i |F V |k| i ), k ∈ V 1 i . Denote θ (q) = 2q/(2 -q) for 0 < q < 2.
Next we list a set of conditions which are needed to obtain (rates of) strong uniform consistency over some compact set [r 1 , r 2 ] in (0, R] of the estimator R n (r) to the function β 2 J(r)Φ(r). The following assumption is imposed:

Condition L p : The kernel function K satisfies a Lipschitz condition, i.e. there exists a constant η > 0 such that

K 1 (ρ) -K 1 (ρ ) ≤ η|ρ -ρ | for all ρ, ρ ∈ [r 1 , r 2 ].
Now, we split up the window W n 2R into cubes such as W n 2R = ∪ i∈Γ n Λ i , following [START_REF] Preston | Random fields[END_REF], [START_REF] Klein | Dobrushin uniqueness techniques and the decay of correlation in continuum statistical mechanics[END_REF], [START_REF] Jensen | On asymptotic normality of pseudo likelihood estimates of pairwise interaction processes[END_REF] we will describe a point process in R d as lattice process by means of this decomposition Λ i = {ξ ∈ R d ; q(i j - 1 2 ) ≤ ξ j ≤ q(i j + 1 2 ), j = 1, . . . , d} for a fixed number q > 0, i = (i 1 , . . . , i d ), where the process is observed in 

W n 2R = ∪ i∈ Γ n Λ i , where Γ n = {i ∈ Γ n ; |i -j| ≤ 1, for all j ∈ Γ n },
R n (r) = 1 b n |W n 2R |σ d ∑ i∈Γ n R i (r),
where

R i (r) = = ∑ u,v∈X ||v-u||≤R 11 Λ i (u) ||v -u|| d-1 h(u, X \ {u, v}) h(v, X \ {u, v})K 1 ||v -u|| -r b n . Note for all k ∈ Γ n , Rk = R k (r) -E R k (r) and S n = ∑ k∈Γ n Rk (r).
Strong uniform consistency for R n (r) is obtained via assumptions of belonging to Orlicz spaces induced by exponential Young functions for stationary real random fields which allows us to derive the Kahane-Khintchine inequalities by [START_REF] El Machkouri | Kahane-Khintchine inequalities and functional central limit theorem for stationary real random fields[END_REF].

Proposition 2. We assume that Conditions K(1, α) and L p are fulfilled. Furthermore, we also assume that J(r) exp(-γ(r)) has bounded and continuous partial derivatives of order α in [r 1δ , r 2 + δ ] for some δ > 0.

If there exists 0 < q < 2 such that R0 ∈ L ψ θ (q) and ∑

k∈V 1 0 Rk E |k| ( R0 ) 2 ψ θ (q) < ∞. (10) 
Then

sup r 1 ≤r≤r 2 R n (r)-β 2 J(r) exp(-γ(r)) = O a.s. (log n) 1/q b n n d/2 +O(b α n ) as n → ∞.
Our results also carry through the most important particular case of Orlicz spaces random fields, for p-integrable (2 < p < +∞) real random fields. Proposition 3. We assume that Conditions K(1, α) and L p are fulfilled. Furthermore, we also assume that J(r) exp(-γ(r)) has bounded and continuous partial derivatives of order α in [r 1δ , r 2 + δ ] for some δ > 0.

If there exists p > 2 such that R0 ∈ L p and

∑ k∈V 1 0 Rk E |k| ( R0 ) p 2 < ∞. (11) 
Assume that b n = n -q 2 (log n) q 1 for some q 1 , q 2 > 0. Let a, b ≥ 0 be fixed and if a(p + 1)d 2 /2q 2 > 1 and b(p + 1)

+ q 1 > 1. Then sup r 1 ≤r≤r 2 R n (r)-β 2 J(r) exp(-γ(r)) = O a.s. n a (log n) b b n n d/2 +O(b α n ) as n → ∞.

Proofs

Proof of Theorem 1. Using the notation

L(u 1 , . . . , u s , X) = h(u 1 , X) . . . h(u s , X), ( 12 
)
where h is given by [START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF].

F(u 1 , . . . , u s ) = E[ h(u 1 , X) . . . h(u s , X)], J(||u 1 ||, . . . , ||u s ||) = 11(||u 1 || ≤ R, . . . , ||u s || ≤ R).
The calculation of the expectation and the variance of R n (r) is based on the iterated Georgii-Nguyen-Zessin (GNZ) formula (2), i.e. applying the preceding formula (2) for s = 2 and with

h(u, v, X) = 11 W n 2R (u) ||v -u|| d-1 J(||v -u||) L(u, v, X)K 1 ||v -u|| -r b n , we derive E R n (r) = 1 b n |W n 2R |σ d E R 2d 11 W n 2R (u) ||v -u|| d-1 J(||v -u||) L(u, v, X)K 1 ||v -u|| -r b n λ (u, v, X)dudv.
We remember the second order Papangelou conditional intensity by:

λ (u, v, x) = λ (u, x)λ (v, x ∪ {u}) for any u, v ∈ R d and x ∈ N l f .
Using the finite range property (4) for each function λ (u, x) and λ (v, x ∪ {u}), we have

λ (u, X) = λ (u, X ∩ B(u, R)) = β when d(u, X) > R and λ (v, X ∪ {u}) = λ (v, (X ∩ B(v, R)) ∪ {u}) = β Φ(||v -u||) when d(v, X) > R.
Consequently, by the stationarity of X and from the definition of L given by ( 5), we get

E R n (r) = β 2 b n |W n 2R |σ d E R 2d 11 W n 2R (u) ||v -u|| d-1 J(||v -u||) L(u, v, X)K 1 ||v -u|| -r b n Φ(||v -u||)dudv = β 2 b n σ d R d J(||s||) ||s|| d-1 E[ L(o, s, X)]K 1 ||s|| -r b n Φ(||s||)ds.
Recall a property of the integration theory (see [START_REF] Briane | Théorie de l'Intégration[END_REF] or [START_REF] Rudin | Real and Complex Analysis[END_REF]). Let S d-1 be the unit ball in R d , i.e. S d-1 = {u ∈ R d : ||u|| = 1}, then for any Borel function

f : R d -→ R + , R d f (||u||)du = ∞ 0 S d-1 f (rz)r d-1 σ d drdz.
By combining the above result, we get so:

E R n (r) = β 2 σ d ∞ -r/b n S d-1 J(b n ρ + r) F(o, (b n ρ + r)v)K 1 (ρ)Φ(b n ρ + r)σ d dρdv.
With bounded support on the kernel function and by dominated convergence theorem, we get as n → ∞, E R n (r) -→ β 2 J(r) exp(-γ(r)). Now, we are going to prove the second part of Theorem 1. We have a product of two functions F(o, (b n ρ + r)v)Φ(b n ρ + r) and we approximate each one of them with a Taylor formula up to a certain α. For any point ρ in R, there exists θ ∈ (0, 1), such that by Taylor-Lagrange formula, we get

Φ(b n ρ + r) = Φ(r) + α-1 ∑ k=1 Φ (k) (r) k! (b n ρ) k + Φ (α) (r + b n ρθ ) α! b α n and F(o, (b n ρ + r)v) = F(o, rv) + α-1 ∑ k=1 F (k) (o, rv) k! (b n ρ) k + F (α) (o, (r + b n ρθ )v) α! b α n .
So we multiply two such functions, their product equals the product of their α th Taylor polynomials plus terms involving powers of r higher than α. In other words, to compute the α th Taylor polynomial of a product of two functions, find the product of their Taylor polynomials, ignoring powers of r higher than α. So we denote this product by T n (rv, r), then we have as n → ∞

F(o, (b n ρ + r)v)Φ(b n ρ + r) = F(o, rv)Φ(r) + α-1 ∑ k=1 T n (rv, r)(b n ρ) k + O(b α n ). It follows that, E R n (r) = β 2 J(r)Φ(r) + β 2 S d-1 α-1 ∑ k=1 T n (rv, r)b k n dv R ρ k K 1 (ρ)dρ + O(b α n ) as n → ∞.
Together with Condition K(1, α) implies the second assertion of Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 makes use of the following corollary.

Corollary 1. Consider any Gibbs point process X in R d with Papangelou conditional intensity λ . For any non-negative, measurable and symmetric function f :

R d × R d × N l f -→ R, we have Var = ∑ u,v∈X f (u, v, X\{u, v}) = 2 E R 2d f 2 (u, v, X)λ (u, v, X)dudv + 4 E R 3d f (u, v, X) f (v, w, X)λ (u, v, w, X)dudvdw + E R 4d f (u, v, X) f (w, y, X)λ (u, v, w, y, X)dudvdwdy - R 4d E[ f (u, v, X)λ (u, v, X)] E[ f (w, y, X)λ (w, y, X)]dudvdwdy.
Proof. Consider the decomposition (see [START_REF] Jolivet | Upper bounds of the speed of convergence of moment density estimators for stationary point processes[END_REF] and [START_REF] Heinrich | Asymptotic Gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes[END_REF])

= ∑ u,v∈X f (u, v, X\{u, v}) 2 = 2 = ∑ u,v∈X f 2 (u, v, X\{u, v}) + 4 = ∑ u,v,w∈X f (u, v, X\{u, v, w}) f (v, w, X\{u, v, w}) + = ∑ u,v,w,y∈X f (u, v, X\{u, v, w, y}) f (w, y, X\{u, v, w, y}). (13) 
Applying the preceding (GNZ) formula (2) combining with (13), we obtain

Var = ∑ u,v∈X f (u, v, X\{u, v}) = E = ∑ u,v∈X f (u, v, X\{u, v}) 2 -E = ∑ u,v∈X f (u, v, X\{u, v}) 2 = 2 E R 2d f 2 (u, v, X)λ (u, v, X)dudv + 4 E R 3d f (u, v, X) f (v, w, X)λ (u, v, w, X)dudvdw + E R 4d f (u, v, X) f (w, y, X)λ (u, v, w, y, X)dudvdwdy - R 4d E[ f (u, v, X)λ (u, v, X)] E[ f (w, y, X)λ (w, y, X)]dudvdwdy.
We obtain the desired result.

Applying Corollary 1 to this function

f (u, v, X) = 11 W n 2R (u) ||v -u|| d-1 J(||v -u||) L(u, v, X)K 1 ||v -u|| -r b n , it is easily seen that Var R n (r) = A 1 + A 2 + A 3 -A 4 ,
where

A 1 = 2 b 2 n |W n 2R | 2 σ 2 d E R 2d 11 W n 2R (u) ||v -u|| 2(d-1) J(||v -u||) L(u, v, X)K 2 1 ||v -u|| -r b n λ (u, v, X)dudv, A 2 = 4 b 2 n |W n 2R | 2 σ 2 d E R 3d 11 W n 2R (u)11 W n 2R (v) ||v -u|| d-1 ||v -w|| d-1 J(||v -u||, ||v -w||) L(u, v, w, X) K 1 ||v -u|| -r b n K 1 ||v -w|| -r b n λ (u, v, w, X)dudvdw, A 3 = 1 b 2 n |W n 2R | 2 σ 2 d E R 4d 11 W n 2R (u)11 W n 2R (w) ||v -u|| d-1 ||w -y|| d-1 J(||v -u||, ||w -y||) L(u, v, w, y, X) × K 1 ||v -u|| -r b n K 1 ||w -y|| -r b n λ (u, v, w, y, X)dudvdwdy,
and

A 4 = 1 b 2 n |W n 2R | 2 σ 2 d E R d 11 W n 2R (u) ||v -u|| d-1 J(||v -u||) L(u, v, X)K 1 ||v -u|| -r b n λ (u, v, X)dudv 2 .
The asymptotic behavior of the leading term A 1 is obtained by applying the second order Papangelou conditional intensity given by:

λ (u, v, x) = λ (u, x)λ (v, x ∪ {u}) for any u, v ∈ R d and x ∈ N l f .
Using the finite range property (4) for each function λ (u, x) and λ (v, x ∪ {u}) and by stationarity of X, it results

A 1 = 2β 2 b 2 n |W n 2R | 2 σ 2 d R 2d 11 W n 2R (u) ||v -u|| 2(d-1) J(||v -u||) E[ L(o, v -u, X)]K 2 1 ||v -u|| -r b n Φ(||v -u||)dudv = 2β 2 b n |W n 2R |σ 2 d ∞ -r/b n S d-1 J(b n ρ + r) (b n ρ + r) d-1 F(o, (b n ρ + r)w)K 2 1 (ρ)Φ(b n ρ + r)dρdσ (w).
Dominated convergence theorem and assumption of K 1 imply for r ∈ (0, R]

lim n→∞ b n |W n 2R |A 1 = 2β 2 σ d r d-1 J(r)Φ(r) R K 2 1 (ρ)dρ.
We will now show that all other integrals to Var( R n (r)) converge to zero. For the asymptotic behavior of the second term A 2 , we remember the third order Papangelou conditional intensity by λ (u, v, w, x) = λ (u, x)λ (v, x ∪ {u})λ (w, x ∪ {u, v}) for any u, v, w ∈ R d and x ∈ N l f . Since X is a point process to interact in pairs, the interaction terms due to triplets or higher order are equal to one, i.e. the potential γ(y) = 0 when n(y) ≥ 3, for / 0 = y ⊆ x. Using the finite range property (4) for each function λ (u, x), λ (v, x ∪ {u}) and λ (w, x ∪ {u, v}) and after an elementary calculation, we have

λ (u, v, w, / 0) = β 3 Φ(||v -u||)Φ(||w -v||) if ||u -w|| < R β 3 Φ(||v -u||)
otherwise.

Which ensures that λ (u, v, w, / 0) is a function that depends only variables ||v -u||, ||w -v||, denoted by Φ 1 (||v -u||, ||w -v||).

According to the stationarity of X, it follows that

A 2 = 4 b 2 n |W n 2R | 2 σ 2 d E R 3d 11 W n 2R (u)11 W n 2R (v) ||v -u|| d-1 ||v -w|| d-1 J(||v -u||, ||v -w||) L(u, v, w, X) × Φ 1 (||v -u||, ||w -v||)K 1 ||v -u|| -r b n K 1 ||v -w|| -r b n dudvdw = 4 |W n 2R |σ 2 d ∞ -r/b n ∞ -r/b n S d-1 S d-1 |W n 2R ∩ (W n 2R -(b n ρ + r)z)| |W n 2R | × F(o, (b n ρ + r)z, (b n ρ + r)z )Φ 1 (b n ρ + r, b n ρ + r)K 1 (ρ)K 1 (ρ )dρdρ dσ d (z)dσ d (z ).
The asymptotic behavior of the leading term A 2 is obtained by applying the dominated convergence theorem. When multiplied by b n |W n 2R |, we get lim n→∞ b n |W n 2R |A 2 = 0.

Next we introduce the finite range property (4) and reasoning analogous with the foregoing on λ (u, v, w, y, / 0), which ensures that λ (u, v, w, y, / 0) is a function that depends only variables ||v -u||, ||y -w||, ||w -u||, ||w -v||), denoted by Φ 2 (||v -u||, ||y -w||, ||w -u||, ||w -v||). We find that By dominated convergence theorem, we get lim n→∞ b n |W n 2R |A 3 = 0. For asymptotic behavior of the leading term A 4 , it then suffices to repeat the arguments developed previously to conclude the following result.

A 3 = 1 b 2 n |W n 2R | 2 σ 2 d E R 4 11 W n 2R (u)11 W n 2R (w) ||v -u|| d-1 ||w -y|| d-1 J(||v -u||, ||w -y||) L(u, v, w, y, X) × K 1 ||v -u|| -r b n K 1 ||w -y|| -r b n λ (u, v, w, y, X)dudvdwdy = 1 |W n 2R |σ 2 d R d ∞ -r/b n ∞ -r/b n S d-1 S d-1 |W n 2R ∩ (W n 2R -w)| |W n 2R | K 1 (ρ)K 1 (ρ ) × Φ 2 (b n ρ +
A 4 = β 4 b 2 n |W n 2R | 2 σ 2 d R 4d 11 W n 2R (u)11 W n 2R (w) J(||v -u||, ||w -y||) ||v -u|| d-1 ||w -y|| d-1 E[ L(u, v, X)] E[ L(w, y, X)] × Φ(||v -u||)Φ(||y -w||)K 1 ||v -u|| -r b n K 1 ||w -y|| -r b n dudvdwdy = β 4 b 2 n |W n 2R |σ 2 d R 3d |W n 2R ∩ (W n 2R -w)| |W n 2R |||v -u|| d-1 ||w -y|| d-1 J(||v||, ||w -y||) E[ L(o, v, X)] E[ L(w, y, X)] × Φ(||v||)Φ(||y -w||)K 1 ||v|| -r b n K 1 ||w -y|| -r b n dvdwdy = β 4 |W n 2R |σ 2 d R d ∞ -r/b n ∞ -r/b n S d-1 S d-1 |W n 2R ∩ (W n 2R -w)| |W n 2R | J(b n ρ + r, b n ρ + r)K 1 (ρ)K 1 (ρ ) × F(o, (b n ρ + r)z ) F(o, (b n ρ + r)z)Φ(b n ρ + r)Φ(b n ρ + r)dwdρdρ dσ d (z)dσ d (z ).
Then by dominated convergence theorem, we get lim n→∞ b n |W n 2R |A 4 = 0. Therefore, we have finished the proof of Theorem 2.

Proof of Proposition 2 and Proposition 3. The compact set

[r 1 , r 2 ] is covered by the intervals C i = [s i-1 , s i ],
where s i = r 1 + i(r 2r 1 )/N, i = 1, . . . , N. Choosing N as the largest integer satisfying N ≤ c/l n and l n = r n b 2 n . We apply a triangle inequality decomposition allows for sup

s i-1 ≤r≤s i R n (r) -E R n (r)| ≤ sup s i-1 ≤r,ρ≤s i R n (r) -R n (ρ) + sup s i-1 ≤r,ρ≤s i E R n (r) -E R n (ρ) + sup s i-1 ≤ρ≤s i R n (ρ) -E R n (ρ) .
By Lipschitz condition (Condition L p), we derive that there exists constant η > 0 such that n sufficiently large sup

s i-1 ≤r,ρ≤s i R n (r) -R n (ρ) ≤ 1 b 2 n η|r -ρ| 1 
σ d |W n 2R | = ∑ u,v∈X ||v-u||≤R 11 W n 2R (u) ||v -u|| d-1 h(u, X \ {u, v}) h(v, X \ {u, v}). ≤ ηr n 1 σ d |W n 2R | = ∑ u,v∈X ||v-u||≤R 11 W n 2R (u) ||v -u|| d-1 h(u, X \ {u, v}) h(v, X \ {u, v}).
Follows from the last inequalities and the Nguyen and Zessin ergodic theorem [START_REF] Nguyen | Ergodic theorems for Spatial Process[END_REF], we get sup

s i-1 ≤r,ρ≤s i R n (r) -R n (ρ) = O a.s. (r n ) as n → ∞.
As well, we obtain sup

s i-1 ≤r,ρ≤s i E R n (r) -E R n (ρ) = O a.s. (r n ) as n → ∞.
We now concentrating on the stochastic part.

Lemma 1. Assume that either (10) holds for some 0 < q < 2 such that R0 ∈ L ψ θ (q) and r n = (log n)

1/q /b n ( √ n) d . Then sup s i-1 ≤ρ≤s i R n (ρ) -E R n (ρ) = O a.s. (r n ) as n → ∞.
Proof. We consider the exponential Young function define for any t ∈ R + by ψ q (t) = exp((t + ξ q ) q )exp(ξ q q ) where ξ q = ((1q)/q) 1/q 11{0 < q < 1}. Let ε > 0 and r ∈ [r 1 , r 2 ] be fixed

P | R n (r) -E R n (r)| > εr n = P |S n | > εr n b n n d ≤ exp - ε r n b n n d ||S n || ψ θ (q) + ξ q q E exp |S n | ||S n || ψ θ (q) + ξ q q .
Therefore, we assume that there exists a real 0 < q < 2, such that R0 ∈ L ψ θ (q) and using Kahane-Khintchine inequalities (cf. [START_REF] El Machkouri | Kahane-Khintchine inequalities and functional central limit theorem for stationary real random fields[END_REF], Theorem 1), we have

P | R n (r) -E R n (r)| > εr n = P |S n | > εr n b n n d ≤ (1 + e ξ q q ) exp - ε r n b n n d M(∑ i∈Γ n b i,q ( R)) 1/2 + ξ q q denote b i,q ( R) = R0 2 ψ θ (q) + ∑ k∈V 1 0 Rk E |k| ( R0 ) 2 ψ θ (q)
. We derive that if condition (10) holds, then there exists constant C > 0 and so if r n = (log n) 1/q /b n ( √ n) d sup r 1 ≤r≤r 2 P(| R n (r) -E R n (r)| > εr n ) ≤ (1 + e ξ q q ) exp -ε q log n C q .

Choosing ε sufficiently large, therefore, it follows with Borel-Cantelli's lemma

P(lim sup n→∞ sup s i-1 ≤ρ≤s i R n (ρ) -E R n (ρ) > εr n ) = 0.
Now, we will accomplish the proof of Proposition 3.

Lemma 2. Assume (11) holds for some p > 2 such that R0 ∈ L p and b n = n -q 2 (log n) q 1 for some constants q 1 , q 2 > 0. .

The last inequality follows from a Marcinkiewicz-Zygmund type inequality by [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF], where

c i ( R) = Ri 2 p + ∑ k∈V 1 i Rk E |k-i| ( Ri ) p 2 .
Under assumption [START_REF] Jolivet | Upper bounds of the speed of convergence of moment density estimators for stationary point processes[END_REF] and with the stationarity of X, we derive that there exists C > 0 such that P sup 

s i-1 ≤ρ≤s i R n (ρ) -E R n (ρ) > εr n ≤ N sup

≤

κε -p n a(p+1)-d/2-q 2 (log n) b(p+1)+q 1 .

For a(p + 1)d/2q 2 > 1 and b(p + 1) + q 1 > 1, we get for any ε > 0

∑ n≥1 P sup s i-1 ≤ρ≤s i R n (ρ) -E R n (ρ) > εr n < ∞.
Considering these arguments the proofs of Proposition 2 and Proposition 3 are completed, it results from a direct application of the theorem of Borel-Cantelli and by Theorem 1: sup

r 1 ≤r≤r 2 | E R n (r) -R(r)| = O(b α n ) as n → ∞.

  and the norm is | j| = max{| j 1 |, . . . , | j d |} and assume that Γ n increases towards Z d and we split up R n (r) as follows:

  r, b n ρ + r, ||w||, ||(b n ρ + r)z -w||)dwdρdρ dσ d (z)dσ d (z ), where Φ 2 (b n ρ + r, b n ρ + r, ||w||, ||(b n ρ + r)z -w||) = J(b n ρ +r, b n ρ +r) F(o, (b n ρ +r)z, (b n ρ +r)z )Φ 2 (b n ρ +r, b n ρ +r, ||w||, ||(b n ρ +r)z-w||).

  Let a, b ≥ 0 be fixed and denoter n = n a (log n) b /b n ( √ n) d . If a(p + 1)d/2q 2 > 1 and b(p + 1) + q 1 > 1, then sup s i-1 ≤ρ≤s i R n (ρ) -E R n (ρ) = O a.s (r n ) as n → ∞.Proof. Let p > 2 be fixed, such that R0 ∈ L p and for any ε > 0,P(| R n (r) -E R n (r)| > εr n ) = P |S n | > εr n b n n d ≤ ε -p E |S n |

r 1 ≤r≤r 2 P

 2 (| R n (r) -E R n (r)| > εr n ) .As N ≤ c/l n and l n = r n b 2 n , then forr n = n a (log n) b /b n ( √ n) d, it results for n sufficiently large, P sups i-1 ≤ρ≤s i R n (ρ) -E R n (ρ) > εr n ≤ κε -p n a(p+1)-d/2 (log n) b(p+1) b n
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Proof of Proposition 1. We consider the mean square error of R n (r),

The estimator R n (r) is asymptotically unbiased by Theorem 1 and so we have

and by Theorem 2, we have

Hence, R n (r) is consistent in the quadratic mean and hence consistent estimate of β 2 J(r) exp(-γ(r)). J n (r) and β n are strongly consistent estimates of β J(r) and β , thus the consistency (convergence in probability) of the estimator Φ n (t) of exp(-γ(r)). Then one gets with the same arguments as before and by Proposition 2 or Proposition 3, we conclude the strong consistency of the estimator Φ n (r) of the function exp(-γ(r)).