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Abstract

A method is proposed for estimating the potential function of a
non-parametric estimator for stationary and isotropic pairwise inter-
action point process. The relation between a pair potential and the
corresponding Papangelou conditional intensity is considered. Consis-
tency and strong consistency of non-parametric estimate are proved in
case of finite-range interaction potential.
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1 Introduction
Gibbs point processes are a natural class of models for point patterns exhibit-
ing interactions between the points. By far the most widely applied form in
practical analysis is that of pairwise interaction, where the scale and strength
of interaction between two points are determined by a so-called pair potential
function. For a stationary and isotropic process the pair potential is a func-
tion of the distance between the two points. Fields of applications for point
processes are image processing, analysis of the structure of tissues in medical
sciences, forestry (Matérn [18]), ecology (Diggle [7]), spatial epidemiology
(Lawson [16])and astrophysics (Neyman and Scott [21]).

Pairwise interaction point process densities are intractable as the nor-
malizing constant is unknown and/or extremely complicated to approximate.
However, we can resort to estimates of parameters using the conditional in-
tensity. In this paper, we suggest a new non-parametric estimate of the
pair potential function for stationary and isotropic pairwise interaction point
process specified by a Papangelou conditional intensity on increasing regions
single realization is observed. In this cas a point process is defined as a ran-
dom locally-finite counting measure on the d-dimensional Euclidean space
Rd . Consistency and strong consistency of the resulting estimator are es-
tablished.

To our knowledge only one attempt to solve the problem of non-parametric
estimation of the pair correlation function and its approximate relation to
the pair potential through the Percus Yevick equation (Diggle et al. [8]).
The approximation is a result of a cluster expansion method, and it is ac-
curate only for sparse data. Many attempts have been tried to estimate the
potential function from point pattern data in a parametric framework ; maxi-
mization of likelihood approximations (Ogata and Tanemura [23], Ogata and
Tanemura [24], Penttinen [26]), pseudolikelihood maximization (Besag et al.
[2], Jensen and Møller [13]) and also some ad hoc methods (Strauss [29], Rip-
ley [27], Hanisch and Stoyan [11], Diggle and Gratton [9], Fiksel [10], Takacs
[30], Billiot and Goulard [3]).

Our paper is organized as follows. Section 2 introduces basic notation
and definitions. In Section 3, we briefly present some models satisfying the
assumptions needed to prove our asymptotic results. In Section 4, we present
our main results. Consistency of non-parametric estimator is proved in Sec-
tion 5, it is based on the knowledge of Papangelou conditional intensity and
the iterated Georgii-Nguyen-Zessin formula. Using Orlicz spaces we can ob-
tain a strong consistency of non-parametric estimator in Section 6.
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2 Basic notation and definitions
Throughout the paper we adopt the following notation. We denote the space
of locally finite point configurations in Rd by Nlf . The volume of a bounded
Borel set W of Rd is denoted by |W | and o denotes the origin. For all finite
subset Γ of Zd, we denote |Γ| the number of elements in Γ. || · || denotes
Euclidean distance on Rd. σd = 2πd/2

Γ(d/2)
is the measure of the unit sphere in

Rd. Let Sd−1 be the unit sphere in Rd.
Papangelou conditional intensity (Møller and Waagepetersen [19]) of pair-

wise interaction point process has the form

λ(u,x) = γ0(u) exp

(
−
∑
v∈x\u

γ0({u, v})
)
.

If γ0(u) = β is a constant and γ0({u, v}) = γ(||u − v||) is invariant under
translations and rotations, then a pairwise interaction point process is said
to be stationary and isotropic or homogeneous. The Papangelou conditional
intensity can be interpreted as follows: for any u ∈ Rd and x ∈ Nlf , λ(u,x)du
corresponds to the conditional probability of observing a point in a ball of
volume du around u given the rest of the point process is x. Fortunately
does not contain a normalising factor.

For convenience, throughout in this paper, we consider stationary and
isotropic pairwise interaction point process. Then its Papangelou conditional
intensity at a location u is given by

λ(u,x) = β? exp

(
−
∑
v∈x\u

γ(||v − u||)
)
, ∀u ∈ Rd,x ∈ Nlf (2.1)

where β? is the true value of the Poisson intensity parameter , γ is called the
pair potential, a name that originates in physics: it measures the potential
energy caused by the interaction among pairs of points (u, v) as a function
of their distance ||v−u||. Usually a finite range of interaction, R, is assumed
such that

γ(||v − u||) = 0 whenever ||v − u|| > R. (2.2)
We assume that γ(||v−u||) > 0 for ||v−u|| ≤ R, so that typical realizations
will be more or less regular compared to a completely random arrangement.
The pairwise interaction between points may also be described in terms of
the pair potential function γ into the interaction function Φ = exp(−γ). For
Φ > 1, λ(u,x) is increasing in x. For Φ < 1, λ(u,x) is decreasing in x (the
repulsive case). It can be computed for the case Φ = 1 which corresponds to
the homogeneous Poisson point process with with intensity β?.
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3 Examples of Papangelou conditional inten-
sity

Examples of conditional intensities are presented in Baddeley et al [1], Møller
and Waagepetersen ([19], [20]). The following presents some examples which
have been applied in various contexts and satisfying the assumptions needed
to prove our asymptotic results.

1. A special case of pairwise interaction is the Strauss process. It has
Papangelou conditional intensity

λ(u,x) = βΦn[0,R](u,x\u)

where β > 0, 0 ≤ Φ ≤ 1 and n[0,R](u,x) =
∑
v∈x

11(‖v − u‖ ≤ R) is the

number of pairs in x with distance not greater than R.

2. Piecewise Strauss point process.

λ(u,x) = β

p∏
j=1

Φ
n[Rj−1,Rj ]

(u,x\u)

j

where β > 0, 0 ≤ Φj ≤ 1, n[Rj−1,Rj ](u,x) =
∑
v∈x

11(‖v − u‖ ∈ [Rj−1, Rj])

and R0 = 0 < R1 < . . . < Rp = R <∞.

3. Triplets point process.

λ(u,x) = βΦs[0,R](x∪u)−s[0,R](x\u)

where β > 0, 0 ≤ Φ ≤ 1 and s[0,R](x) is the number of unordered
triplets that are closer than R.

4. Lennard-Jones model

λ(u,x) = β
∏
v∈x\u

Φ(‖v − u‖
)

with logΦ(r) =
(
θ6r−6−θ12r−12

)
11]0,R](r), for r = ||v−u||, where θ > 0

and β > 0 ares parameters.
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4 Main results
Suppose that a single realization x of a point process X is observed in a
bounded windowWn where (Wn)n≥1 is a sequence of cubes growing up to Rd.
Throughout in this paper, h̃ is a non-negative measurable function defined
for all u ∈ Rd, x ∈ Nlf by

h̃(u,x) = 11
(

inf
v∈x
||v − u|| > R

)
= 11 (d(u,x) > R) ,

note that
F̃ (o, rv) = E[h̃(o,x)h̃(rv,x)]

and
J(r) =

∫
Sd−1

F̃ (o, rv)dv.

To estimate the function β?2J(r)Φ(r), we introduce edge-corrected kernel-
type estimator R̂n(r) defined by

R̂n(r) =
1

bn|Wn	2R|σd

6=∑
u,v∈X
||v−u||≤R

11Wn	2R
(u)

||v − u||d−1
h̃(u,X\{u, v})h̃(v,X\{u, v})K1

(
||v − u|| − r

bn

)
.

(4.3)
	 will denote Minkowski substraction, with the convention that
Wn	2R = Wn 	 B(u, 2R) = {u ∈ Wn : ||u − v|| ≤ 2R for all v ∈ Wn}

denotes the 2R-interior of the cubesWn, with Lebesgue measure |Wn	2R| > 0.∑6= signifies summation over distinct pairs. K1 : R → R is an univariate
kernel function associated with a sequence (bn)n≥1 of bandwidths satisfying
the following:

Condition K(1, α) : The sequence of bandwidths bn > 0 for n ≥ 1, is
chosen such that

lim
n→∞

bn = 0 and lim
n→∞

bn|Wn	2R| =∞.

The kernel functionK1 : R −→ R is non-negative and bounded with bounded
support, such that:∫

R
K1(u)du = 1,

∫
R
ujK1(u)du = 0, j = 0, 1, ..., α− 1, for α ≥ 2.
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To estimate the function β?J(r) we introduce empiric estimator Ĵn(r) defined
by

Ĵn(r) =
1

|Wn	2R|
∑
u∈X

11Wn	2R
(u)h̃(u,X \ {u})h?(u,X \ {u}), (4.4)

where h?(u,x) =
∫
Sd−1 h̃(rv − u,x)dv. Using the spatial ergodic theorem of

Nguyen and Zessin [22], estimator (4.4) turn out to be unbiased and strongly
consistent. The natural estimator of Poisson intensity β? is

β̂n =

∑
u∈X 11Λn,R(u)h̃(u,X \ {u})∫

Λn,R
h̃(u,X)du

. (4.5)

This estimator turn out to be unbiased and strongly consistent and results
on asymptotic normality were obtained by Morsli et al. [5].

Plugging in the above estimator (4.4) and (4.5), then the interaction
function Φ(r) = exp(−γ(r)) for r ∈ (0, R] can be estimated using edge-
corrected non-parametric estimate by

Φ̂n(r) =
R̂n(r)

β̂nĴn(r)
. (4.6)

The strong consistency of the estimators (4.4) and (4.5) implies the following:

Proposition 1. Let γ be pairwise interaction potential defined in (2.1) sat-
isfying condition (2.2). Let K1 kernel function satisfying Condition K(1, α)
and the function J(r)exp(−γ(r)) has bounded and continuous partial deriva-
tives of order α for all α ≥ 1 in (r − δ, r + δ) for some δ > 0. Then as
n→∞

Φ̂n(r)−→ exp(−γ(r)) in probability P (resp.P-a.s.) iff

R̂n(r)−→β?2J(r) exp(−γ(r)) in probability P (resp.P- a.s.).

The convergence in probability (consistency) for a wide class of point
process will be discussed in Section 5. Conditions ensuring uniform P-a.s.
convergence of kernel-type estimator of R̂n(r) and the strong consistency
Φ̂n(r) will be discussed in Section 6.
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5 Consistoncy

5.1 Asymptotic behaviour mean squared error of the
kernel-type estimator

In this section we will derive bounds for the mean squared error of the ker-
nel estimator kernel-type estimator of R̂n(r). We consider the mean square
error of R̂n(r), MSE

(
R̂n(r)

)
= Var

(
R̂n(r)

)
+
(
Biais(R̂n(r)

)2. So con-
vergence in MSE implies that as n → ∞

(
Biais(R̂n(r)

)2
=
(

E R̂n(r) −
β?2J(r) exp(−γ(r))

)2 −→ 0 and Var
(
R̂n(r)

)
= E

(
R̂n(r)− E R̂n(r)

)2 −→ 0.

Hence, R̂n(r) is consistent in the quadratic mean and hence consistent. For
doing this, we first determine the asymptotic behaviour of E R̂n(r) and
Var R̂n(r).

Theorem 1. Let γ be pairwise interaction potential defined in (2.1) satisfying
condition (2.2). Let K1 kernel function satisfying Condition K(1, 1). For all
r ∈ (0, R], we have

lim
n→∞

E R̂n(r) = β?2J(r) exp(−γ(r)).

If Condition K(1, α) is satisfied and the function exp(−γ(r))J(r) has bounded
and continuous partial derivatives of order α in (r− δ, r+ δ) for some δ > 0
and for all α ≥ 1. Then

E R̂n(r) = β?2J(r) exp(−γ(r)) +O(bαn) as n→∞.

Theorem 2. Let γ be pairwise interaction potential defined in (2.1) satisfying
condition (2.2). Let K1 kernel function satisfying Condition K(1, α) for all
α ≥ 1 such that

∫
RK

2
1(ρ)dρ <∞ . For all r ∈ (0, R], we have,

lim
n→∞

bn|Wn	2R|Var(R̂n(r)) =
2β?2

σdrd−1
J(r) exp(−γ(r))

∫
R
K2

1(ρ)dρ.

5.2 Proof of Theorem 1

Proof. We define

L̃(u1, ..., us,X) = h̃(u1,X)...h̃(us,X), F̃ (u1, ..., us) = E[h̃(u1,X)···h̃(us,X)]

and J̃(||u1||, ..., ||us||) = 11(||u1|| ≤ R, ..., ||us|| ≤ R).
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The calculation of expectation and variance of R̂n(r) is based on the
iterated Georgii-Nguyen-Zessin (GNZ) formula, see Papangelou [25]:

E

6=∑
u1,...,us∈X

h(u1, ..., us,X \ {u1, ..., us}) =

∫
...

∫
Eh(u1, ..., us,X)λ(u1, ..., us,X)du1...dun

(5.7)

for non-negative functions h : (Rd)n × Nlf −→ R, where λ(u1, ..., us,x) is
Papangelou conditional intensity and is defined (not uniquely) by

λ(u1, ..., us,x) = λ(u1,x)λ(u2,x ∪ {u1})...λ(us,x ∪ {u1, ..., us−1}).

Applying the preceding formula (5.7) for s = 2, we derive

E R̂n(r) =
1

bn|Wn	2R|σd

E

∫
R2d

11Wn	2R
(u)

||v − u||d−1
J̃(||v − u||)L̃(u, v,X)K1

(
||v − u|| − r

bn

)
λ(u, v,X)dudv.

For an interaction radius R, the Papangelou conditional intensity satisfies

λ(u,x) = λ(u, ∅) for all x with d(u,x) > R

since points further away from u than R do not contribute to the Papangelou
conditional intensity at u. Using the finite range property (2.2), we get

E R̂n(r) =
β?2

bn|Wn	2R|σd

E

∫
R2d

11Wn	2R
(u)

||v − u||d−1
J̃(||v − u||)L̃(u, v,X)K1

(
||v − u|| − r

bn

)
Φ(||v − u||)dudv

=
β?2

bnσd

∫
Rd

J̃(||s||)
||s||d−1

E[L̃(o, s,X)]K1

(
||s|| − r
bn

)
Φ(||s||)ds.

Recall a property of the integration theory (see Briane and Pagès [4] or
Rudin [28]). Let Sd−1 be the unit sphere in Rd, i.e. Sd−1 = {u ∈ Rd : ||u|| =
1}, then for any Borel function f : Rd −→ R+,∫

Rd
f(u)du =

∫ ∞
0

∫
Sd−1

f(rz)rd−1σddrdz.

By combining the above result, we get so:

E R̂n(r) =
β?2

σd

∫ ∞
−r/bn

∫
Sd−1

J̃(bn%+ r)F̃ (o, (bn%+ r)v)K1(%)Φ(bn%+ r)σdd%dv.
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With bounded support on the kernel function and by dominated convergence
theorem, we get as n → ∞, E R̂n(r) −→ β?2J(r) exp(−γ(r)). Now, we are
going to prove the second part of the Theorem 1. We have a product of two
functions F̃ (o, (bn% + r)v)Φ(bn% + r) and we approximate each one of them
with a Taylor formula up to a certain α. We use Taylor’s formula to obtain
for n→∞,

Φ(bn%+ r) = Φ(r) +
α−1∑
k=1

(bn%)k

k!

dΦ

dr
(r)dr +

bαn
α!

dαΦ

drα
(r + bn%θ)

and

F̃ (o, (bn%+ r)v) = F̃ (o, rv) +
α−1∑
k=1

(bn%)k

k!

dF̃ (o, rv)

dr
dr +

bαn
α!

dαF̃

drα
(o, (r + bn%θ)v).

So we denote this product by Tn(rv, r), then we have as n→∞

F̃ (o, (bn%+ r)v)Φ(bn%+ r) = F̃ (o, rv)Φ(r) +
α−1∑
k=1

Tn(rv, r)(bn%)k +O(bαn).

It follows that,

E R̂n(r) = β?2J(r)Φ(r)

+ β?2
∫
Sd−1

α−1∑
k=1

Tn(rv, r)bkndv

∫
R
%kK1(%)d%

+O(bαn) as n→∞.

Together with Condition K(1, α) imply the second assertion of Theorem
1. �

5.3 Proof of Theorem 2

Proof. The proof of Theorem 2 makes use of the following corollary.

Corollary 1. Consider any Gibbs point process X in Rd with Papangelou
conditional intensity λ. For any non-negative, measurable and symmetric
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function f : Rd × Rd ×Nlf −→ R, we have

Var

( 6=∑
u,v∈X

f(u, v,X\{u, v})
)

= 2 E

∫
R2d

f 2(u, v,X)λ(u, v,X)dudv

+ 4 E

∫
R3d

f(u, v,X)f(v, w,X)λ(u, v, w,X)dudvdw

+ E

∫
R4d

f(u, v,X)f(w, y,X)λ(u, v, w, y,X)dudvdwdy

−
∫
R4d

E[f(u, v,X)λ(u, v,X)] E[f(w, y,X)λ(w, y,X)]dudvdwdy.

Proof. Consider the decomposition (see Jolivet [14] and Heinrich [12])( 6=∑
u,v∈X

f(u, v,X\{u, v})
)2

= 2

6=∑
u,v∈X

f 2(u, v,X\{u, v})

+ 4

6=∑
u,v,w∈X

f(u, v,X\{u, v, w})f(v, w,X\{u, v, w})

+

6=∑
u,v,w,y∈X

f(u, v,X\{u, v, w, y})f(w, y,X\{u, v, w, y}).

(5.8)

Applying the preceding (GNZ) formula (5.7) combining with (5.8), we obtain

Var

6=∑
u,v∈X

f(u, v,X\{u, v})

= E
( 6=∑
u,v∈X

f(u, v,X\{u, v})
)2 −

(
E

6=∑
u,v∈X

f(u, v,X\{u, v})
)2

= 2 E

∫
R2d

f 2(u, v,X)λ(u, v,X)dudv

+ 4 E

∫
R3d

f(u, v,X)f(v, w,X)λ(u, v, w,X)dudvdw

+ E

∫
R4d

f(u, v,X)f(w, y,X)λ(u, v, w, y,X)dudvdwdy

−
∫
R4d

E[f(u, v,X)λ(u, v,X)] E[f(w, y,X)λ(w, y,X)]dudvdwdy.
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We obtain the desired result. �

Applying Corollary 1 to this function

f(u, v,X) =
11Wn	2R

(u)

||v − u||d−1
J̃(||v − u||)L̃(u, v,X)K1

(
||v − u|| − r

bn

)
,

it is easily seen that Var R̂n(r) = A1 + A2 + A3 − A4, where

A1 =
2

b2
n|Wn	2R|2σ2

d

E

∫
R2d

11Wn	2R
(u)

||v − u||2(d−1)
J̃(||v − u||)L̃(u, v,X)K2

1

(
||v − u|| − r

bn

)
λ(u, v,X)dudv,

A2 =
4

b2
n|Wn	2R|2σ2

d

E

∫
R3d

11Wn	2R
(u)11Wn	2R

(v)

||v − u||d−1||v − w||d−1
J̃(||v − u||, ||v − w||)L̃(u, v, w,X)

K1

(
||v − u|| − r

bn

)
K1

(
||v − w|| − r

bn

)
λ(u, v, w,X)dudvdw,

A3 =
1

b2
n|Wn	2R|2σ2

d

E

∫
R4d

11Wn	2R
(u)11Wn	2R

(w)

||v − u||d−1||w − y||d−1
J̃(||v − u||, ||w − y||)L̃(u, v, w, y,X)

×K1

(
||v − u|| − r

bn

)
K1

(
||w − y|| − r

bn

)
λ(u, v, w, y,X)dudvdwdy,

and

A4 =
1

b2
n|Wn	2R|2σ2

d(
E

∫
Rd

11Wn	2R
(u)

||v − u||d−1
J̃(||v − u||)L̃(u, v,X)K1

(
||v − u|| − r

bn

)
λ(u, v,X)dudv

)2

.

The asymptotic behaviour of the leading term A1 is obtained by applying
the second order Papangelou conditional intensity given by:

λ(u, v,x) = λ(u,x)λ(v,x ∪ {u}) for any u, v ∈ Rd and x ∈ Nlf .

Using the finite range property (2.2) for each function λ(u,x) and λ(v,x∪
{u}), this implies that

λ(u, ∅) = β? and λ(v, ∅ ∪ {u}) = β?Φ(||v − u||) for all u, v ∈ Rd.

And by stationarity of X, it results

11



A1 =
2β?2

b2
n|Wn	2R|2σ2

d∫
R2d

11Wn	2R
(u)

||v − u||2(d−1)
J̃(||v − u||) E[H̃(o, v − u,X)]K2

1

(
||v − u|| − r

bn

)
Φ(||v − u||)dudv

=
2β?2

bn|Wn	2R|σ2
d

∫ ∞
−r/bn

∫
Sd−1

J̃(bn%+ r)

(bn%+ r)d−1
F̃ (o, (bn%+ r)w)K2

1(%)Φ(bn%+ r)d%dσ(w).

Dominated convergence theorem and assumption of K1 imply for all r ∈
(0, R]

lim
n→∞

bn|Wn	2R|A1 =
2β?2

σdrd−1
J(r)Φ(r)

∫
R
K2

1(ρ)dρ.

We will now show that all other integrals to Var R̂n(r) converge to zero.
For the asymptotic behaviour of the second term A2, we remember the third
order Papangelou conditional intensity by

λ(u, v, w,x) = λ(u,x)λ(v,x ∪ {u})λ(w,x ∪ {u, v})

for any u, v, w ∈ Rd and x ∈ Nlf . Since X is a point process to interact
in pairs, the interaction terms due to triplets or higher order are equal to
one, i.e. the potential γ(y) = 0 when n(y) ≥ 3, for ∅ 6= y ⊆ x. Using
the finite range property (2.2) for each function λ(u,x), λ(v,x ∪ {u}) and
λ(w,x ∪ {u, v}) and after a elementary calculation, we have

λ(u, v, w, ∅) =

{
β?3Φ(||v − u||)Φ(||w − v||) if d(u,w) < R

β?3Φ(||v − u||) otherwise.

Which ensures that λ(u, v, w, ∅) is a function that depends only variables
||v − u||, ||w − v||, denoted by Φ1(||v − u||, ||w − v||).

According to the stationarity of X, it follows that

A2 =
4

b2
n|Wn	2R|2σ2

d

E

∫
R3d

11Wn	2R
(u)11Wn	2R

(v)

||v − u||d−1||v − w||d−1
J̃(||v − u||, ||v − w||)L̃(u, v, w,X)

× Φ1(||v − u||, ||w − v||)K1

(
||v − u|| − r

bn

)
K1

(
||v − w|| − r

bn

)
dudvdw

=
4

|Wn	2R|σ2
d

∫ ∞
−r/bn

∫ ∞
−r/bn

∫
Sd−1

∫
Sd−1

|Wn	2R ∩ (Wn	2R − (bn%+ r)z)|
|Wn	2R|

× F̃ (o, (bn%+ r)z, (bn%
′ + r)z′)Φ1(bn%+ r, bn%

′ + r)K1(%)K1(%′)d%d%′dσd(z)dσd(z
′).
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The asymptotic behaviour of the leading term A2 is obtained by applying
the dominated convergence theorem. When multiplied by bnWn	2R|, we get
limn→∞ bn|Wn	2R|A2 = 0.

Next we introduce the finite range property (2.2) and reasoning analogous
with the foregoing on λ(u, v, w, y, ∅). which ensures that λ(u, v, w, y, ∅) is a
function that depends only variables ||v − u||, ||y − w||, ||w − u||, ||w − v||),
denoted by Φ2(||v − u||, ||y − w||, ||w − u||, ||w − v||). We find that

A3 =
1

b2n|Wn	2R|2σ2
d

E

∫
R4

11Wn	2R
(u)11Wn	2R

(w)

||v − u||d−1||w − y||d−1
J̃(||v − u||, ||w − y||)L̃(u, v, w, y,X)

×K1

(
||v − u|| − r

bn

)
K1

(
||w − y|| − r

bn

)
λ(u, v, w, y,X)dudvdwdy

=
1

|Wn	2R|σ2
d

∫
Rd

∫ ∞
−r/bn

∫ ∞
−r/bn

∫
Sd−1

∫
Sd−1

|Wn	2R ∩ (Wn	2R − w)|
|Wn	2R|

K1(%)K1(%′)

× Φ?2(bn%+ r, bn%
′ + r, ||w||, ||(bn%+ r)z − w||)dwd%d%′dσd(z)dσd(z

′).

Where
Φ?2(bn%+r, bn%

′+r, ||w||, ||(bn%+r)z−w||) = J̃(bn%+r, bn%
′+r)F̃ (o, (bn%+

r)z, (bn%
′ + r)z′)Φ2(bn%+ r, bn%

′ + r, ||w||, ||(bn%+ r)z − w||).
By dominated convergence theorem, we get limn→∞ bn|Wn	2R|A3 = 0.
For asymptotic behaviour of the leading term A4, it then suffices to repeat

the arguments developed previously to conclude the following result.

A4 =
β?4

b2n|Wn	2R|2σ2
d∫

R4d

11Wn	2R
(u)11Wn	2R

(w)
J̃(||v − u||, ||w − y||)
||v − u||d−1||w − y||d−1

E[L̃(u, v,X)] E[L̃(w, y,X)]

× Φ(||v − u||)Φ(||y − w||)K1

(
||v − u|| − r

bn

)
K1

(
||w − y|| − r

bn

)
dudvdwdy

=
β4

b2n|Wn	2R|σ2
d∫

R3d

|Wn	2R ∩ (Wn	2R − w)|
|Wn	2R|||v − u||d−1||w − y||d−1

J̃(||v||, ||w − y||) E[H̃(o, v,X)] E[L̃(w, y,X)]

× Φ(||v||)Φ(||y − w||)K1

(
||v|| − r
bn

)
K1

(
||w − y|| − r

bn

)
dvdwdy

=
β4

|Wn	2R|σ2
d

×
∫
Rd

∫ ∞
−r/bn

∫ ∞
−r/bn

∫
Sd−1

∫
Sd−1

|Wn	2R ∩ (Wn	2R − w)|
|Wn	2R|

J̃(bn%+ r, bn%
′ + r)F̃ (o, (bn%+ r)z)

× F̃ o, (bn%′ + r)z′)Φ(bn%+ r)Φ(bn%
′ + r)K1(%)K1(%′)dwd%d%′dσd(z)dσd(z

′).
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Then by dominated convergence theorem, we get limn→∞ bn|Wn	2R|A4 =
0. �

6 Strong consistency

6.1 Rates uniform strong convergence of the kernel-type
estimator

Before realizing the strong consistency Φ̂n(r) we introduce some necessary
definitions and notation. A Young function ψ is a real convex nondecreasing
function defined on R+ which satisfies limt→∞ ψ(t) = +∞ and ψ(0) = 0. We
define the Orlicz space Lψ as the space of real random variables Z defined
on the probability space (Nlf ,F ,P) such that E[ψ(|Z|/c)] < +∞ for some
c > 0. The Orlicz space Lψ equipped with the so-called Luxemburg norm
‖.‖ψ defined for any real random variable Z by

‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }

is a Banach space. For more about Young functions and Orlicz spaces one
can refer to Krasnosel’skii and Rutickii [15]. Let θ > 0. We denote by ψθ the
Young function defined for any x ∈ R+ by

ψθ(x) = exp((x+ ξθ)
θ)− exp(ξθθ) where ξθ = ((1− θ)/θ)1/θ11{0 < θ < 1}.

On the lattice Zd we define the lexicographic order as follows: if i = (i1, ..., id)
and j = (j1, ..., jd) are distinct elements of Zd, the notation i <lex j means
that either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for
1 ≤ q < p. Let the sets {V k

i ; i ∈ Zd , k ∈ N∗} be defined as follows:

V 1
i = {j ∈ Zd ; j <lex i},

and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Zd ; |i− j| ≥ k} where |i− j| = max
1≤l≤d

|il − jl|.

For any subset Γ of Zd define FΓ = σ(εi ; i ∈ Γ) and set

E|k|(εi) = E(εi|FV |k|i
), k ∈ V 1

i .

Denote θ(q) = 2q/(2− q) for 0 < q < 2 and by convention 1/θ(2) = 0.

14



Next we list a set of conditions which are needed to obtain (rates of)
uniform strong consistency over some compact set [r1, r2] in (0, R] of the
estimator R̂n(r) to the function β?2J(r)Φ(r). The following assumption is
imposed:

Condition Lp : The kernel function K is a Lipschitz condition, i.e. there
exists a constant η > 0 such that∣∣K1(ρ)−K1(ρ′)

∣∣ ≤ η|ρ− ρ′| for all ρ, ρ′ ∈ [r1, r2].

Strong uniform consistency for the resulting estimator are obtained via
assumptions of belonging to Orlicz spaces induced by exponential Young
functions for stationary real random fields which allows us to derive the
Kahane-Khintchine inequalities by El Machkouri [17]. Our results also carry
through the most important particular case of Orlicz spaces random fields,
we use the inequality follows from a Marcinkiewicz-Zygmund type inequality
by Dedecker [6].

Now, we split up the sampling windowWn	2R into cubes such asWn	2R =
∪i∈ΓnΛi, where Λi are centered at i and assume that Γn = {−n, ..., 0, ..., n}d
increases towards Zd. We split up R̂n(r) as follows:

R̂n(r) =
1

bn|Wn	2R|σd

∑
i∈Γn

Rk(r)

Rk(r) =

6=∑
u,v∈X
||v−u||≤R.

11Λk(u)

||v − u||d−1
h̃(u,X\{u, v})h̃(v,X\{u, v})K1

(
||v − u|| − r

bn

)
.

Note for all k ∈ Γn, R̄k = Rk(r)− ERk(r) and Sn =
∑

k∈Γn
R̄k(r).

Theorem 3. Under ConditionsK(1, α) and Lp. Further, assume that J(r) exp(−γ(r))
has bounded and continuous partial derivatives of order α in [r1 − δ, r2 + δ]
for some δ > 0.

1) If there exists 0 < q < 2 such that R̄0 ∈ Lψθ(q) and∑
k∈V 1

0

∥∥∥∥√∣∣R̄kE|k|(R̄0)
∣∣∥∥∥∥2

ψθ(q)

<∞. (6.9)

Then

sup
r1≤r≤r2

∣∣R̂n(r)−β?2J(r) exp(−γ(r))
∣∣ = Oa.s.

(
(log n)1/q

bnnd/2

)
+O(bαn) as n→∞.
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2) If R̄0 ∈ L∞ and ∑
k∈V 1

0

∥∥R̄kE|k|(R̄0)
∥∥
∞ <∞. (6.10)

Then

sup
r1≤r≤r2

∣∣R̂n(r)−β?2J(r) exp(−γ(r))
∣∣ = Oa.s.

(
(log n)1/2

bnnd/2

)
+O(bαn) as n→∞.

3) If there exists p > 2 such that R̄0 ∈ Lp and∑
k∈V 1

0

∥∥R̄kE|k|(R̄0)
∥∥
p
2

<∞. (6.11)

Assume that bn = n−q2(log n)q1 for some q1, q2 > 0. Let a, b ≥ 0 be fixed
and if a(p+ 1)− d2/2− q2 > 1 and b(p+ 1) + q1 > 1. Then

sup
r1≤r≤r2

∣∣R̂n(r)−β?2J(r) exp(−γ(r))
∣∣ = Oa.s.

(
na(log n)b

bnnd/2

)
+O(bαn) as n→∞.

Remark 1. From the Markov property of X entails that for i 6= 0 are not
neighborhoods, then R̄i et R̄o are conditionally independent, i.e E[R̄0|(XΛi ; i 6=
0] = 0. Since σ(Ri, i ∈ V k

0 ) is contained in σ(XΛi , i 6= 0) for k > l, for some
integer l, it follows immediately that conditions (6.9), (6.10), (6.11) are sat-
isfied.

6.2 Proof of Theorem 3

Proof. To establish rates of the uniform P- a.s. convergence for the estimator
R̂n(r), we apply a triangle inequality decomposition allows for

sup
si−1≤r≤si

∣∣∣∣R̂n(r)− E R̂n(r)| ≤ sup
si−1≤r,ρ≤si

∣∣∣∣R̂n(r)− R̂n(ρ)

∣∣∣∣
+ sup

si−1≤r,ρ≤si

∣∣∣∣E R̂n(r)− E R̂n(ρ)

∣∣∣∣
+ sup

si−1≤ρ≤si

∣∣∣∣R̂n(ρ)− E R̂n(ρ)

∣∣∣∣.
The compact set [r1, r2] is covered by the intervals Ci = [si−1 − si], where
si = r1 + i(r2 − r1)/N, i = 1, ..., N . Choosing N as the largest integer
satisfying N ≤ c/ln and ln = rnb

2
n. Under the condition Lp, we deduce that

there exists a constant η > 0 such that for any n sufficiently large
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sup
si−1≤r,ρ≤si

∣∣∣∣R̂n(r)− R̂n(ρ)

∣∣∣∣ ≤ 1

b2
n

η|r − ρ|R̃n

≤ rnR̃n

where

R̃n =
1

σd|Wn	2R|

6=∑
u,v∈X
||v−u||≤R

11Wn	2R
(u)

||v − u||d−1
h̃(u,X \ {u, v})h̃(v,X \ {u, v}).

Follows from the last inequalities and the Nguyen and Zessin ergodic theorem
[22]:

sup
si−1≤r,ρ≤si

∣∣∣∣R̂n(r)− R̂n(ρ)

∣∣∣∣ = Op.s.(rn) as n→∞.

As well

sup
si−1≤r,ρ≤si

∣∣∣∣E R̂n(r)− E R̂n(ρ)

∣∣∣∣ = Op.s.(rn) as n→∞.

Lemma 1. Assume that either (6.9) holds for some 0 < q < 2 such that
R̄0 ∈ Lψθ(q) and rn = (log n)1/q/bn(

√
n)d or (6.10) holds such that R̄0 ∈ L∞

and rn = (log n)1/2/bn(
√
n)d. Then

sup
si−1≤ρ≤si

∣∣∣∣R̂n(ρ)− E R̂n(ρ)

∣∣∣∣ = Op.s.(rn) as n→∞.

Proof. For ε > 0, using Markov’s inequality, we get

P
(
|R̂n(r)− E R̂n(r)| > εrn

)
= P

(
|Sn| > εrnbnn

d
)

≤ exp

[
−

(
ε rnbnn

d

||Sn||ψθ(q)
+ ξq

)q ]
E exp

[(
|Sn|

||Sn||ψθ(q)
+ ξq

)q ]
.

Therefore, we assume that there exists a real 0 < q < 2, such that
R̄0 ∈ Lψθ(q) and using Kahane-Khintchine inequalities (cf. El Machkouri
[17], Theorem 1), we have

P
(
|R̂n(r)− E R̂n(r)| > εrn

)
≤ P

(
|Sn| > εrnbnn

d
)

≤ (1 + eξ
q
q ) exp

[
−

(
ε rnbnn

d

M(
∑

i∈Γn
bi,q(R̄))1/2

+ ξq

)q ]
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denote

bi,q(R̄) =
∥∥R̄0

∥∥2

ψθ(q)
+
∑
k∈V 1

0

∥∥∥∥√∣∣R̄kE|k|(R̄0)
∣∣∥∥∥∥2

ψθ(q)

.

We derive that if condition (6.9) holds, then there exist constant C > 0 and
so if rn = (log n)1/q/bn(

√
n)d

sup
r1≤r≤r2

P(|R̂n(r)− E R̂n(r)| > εrn) ≤ (1 + eξ
q
q ) exp

[
− εq log n

Cq

]
.

Now, we will accomplish the second step the proof of Proposition 3. Using
Kahane-Khintchine inequalities (cf. El Machkouri [17], Theorem 1) with
q = 2, such that R̄0 ∈ L∞, we have

P
(
|R̂n(r)− E R̂n(r)| > εrn

)
≤ 2 exp

[
−

(
ε rnbnn

d

M(
∑

i∈Γn
bi,2(R̄))1/2

)2 ]
denote

bi,2(R̄) =
∥∥R̄0

∥∥2

∞ +
∑
k∈V 1

0

∥∥R̄kE|k|(R̄0)
∥∥
∞.

We derive that if condition (6.10) holds and so if rn = (log n)1/2/bn(
√
n)d,

there exists C > 0 such that

sup
r1≤r≤r2

P(|R̂n(r)− E R̂n(r)| > εrn) ≤ 2 exp

[
− ε2 log n

C2

]
.

choosing ε sufficiently large, therefore, it follows with Borel-Cantelli’s lemma

P(lim sup
n→∞

sup
si−1≤ρ≤si

∣∣∣∣R̂n(ρ)− E R̂n(ρ)

∣∣∣∣ > εrn) = 0.

�

Now, we will accomplish the last step the proof of Theorem 3.

Lemma 2. Assume (6.11) holds for some p > 2 such that R̄0 ∈ Lp and
bn = n−q2(log n)q1 for some constants q1, q2 > 0. Let Let a, b ≥ 0 be fixed and
denote rn = na(log n)b/bn(

√
n)d. If

a(p+ 1)− d/2− q2 > 1 et b(p+ 1) + q1 > 1,

then
sup

si−1≤ρ≤si

∣∣∣∣R̂n(ρ)− E R̂n(ρ)

∣∣∣∣ = Op.s(rn) as n→∞.
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Proof. Let p > 2 be fixed, such that R̄0 ∈ Lp and for any ε > 0,

P(|R̂n(r)− E R̂n(r)| > εrn) = P
(
|Sn| > εrnbnn

d
)

≤ ε−p E |Sn|p

rpnb
p
nnpd

≤ ε−p

rpnb
p
nnpd

(
2p
∑
i∈Γn

ci(R̄)

)p/2

.

The last inequality follows from a Marcinkiewicz-Zygmund type inequality
by Dedecker [6], where

ci(R̄) = ‖R̄i‖2
p +

∑
k∈V 1

i

‖R̄kE|k−i|(R̄i)‖ p
2
.

Under assumption (6.11) and with the stationarity of X, we derive that there
exists C > 0 such that

P
(

sup
si−1≤ρ≤si

∣∣∣∣R̂n(ρ)− E R̂n(ρ)

∣∣∣∣ > εrn

)
≤ N sup

r1≤r≤r2
P(|R̂n(r)− E R̂n(r)| > εrn)

≤ N
κε−p

rpnb
p
n(
√
n)pd

.

As N ≤ c/ln and ln = rnb
2
n, then for rn = na(log n)b/bn(

√
n)d , it results for

n ε sufficiently large,

P
(

sup
si−1≤ρ≤si

∣∣∣∣R̂n(ρ)− E R̂n(ρ)

∣∣∣∣ > εrn

)
≤ κε−p

na(p+1)−d/2(log n)b(p+1)bn

≤ κε−p

na(p+1)−d/2−q2(log n)b(p+1)+q1
.

For a(p+ 1)− d/2− q2 > 1 et b(p+ 1) + q1 > 1, we get for any ε > 0 ε > 0∑
n≥1

P
(

sup
si−1≤ρ≤si

∣∣∣∣R̂n(ρ)− E R̂n(ρ)

∣∣∣∣ > εrn

)
<∞.

�

Considering these arguments the proofs of Theorem 3 are completed, it
results from a direct application of the theorem of Borel-Cantelli and by
Theorem 1 we have

sup
r1≤r≤r2

|E R̂n(r)−R(r)| = O(bαn) as n→∞.

�
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