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MINIMALITY OF THE EHRENFEST WIND-TREE MODEL

ALBA MÁLAGA SABOGAL AND SERGE TROUBETZKOY

Abstract. We consider aperiodic wind-tree models, and show that for a
generic (in the sense of Baire) configuration the wind-tree dynamics is minimal
in almost all directions, and has a dense set of periodic points.

1. Introduction

In 1912 Paul et Tatyana Ehrenfest proposed the wind-tree model in order to
interpret the ergodic hypothesis of Boltzmann [EhEh]. In the Ehrenfest wind-tree
model, a point particle (the “wind”) moves freely on the plane and collides with the
usual law of geometric optics with irregularly placed identical square scatterers (the
“trees”). Nowadays we would say “randomly placed”, but the notion of “random-
ness” was not made precise, in fact it would have been impossible to do so before
Kolmogorov laid the foundations of probability theory in the 1930s.

From the mathematical rigorous point of view, there have been many recent
results about the dynamical properties of a periodic version of wind-tree mod-
els, scatterers are identical square obstacles one obstacle centered at each lattice
point. The periodic wind-tree model has been shown to be recurrent ([HaWe],
[HuLeTr],[AvHu]), to have abnormal diffusion ([DeHuLe],[De]), and to have an ab-
scence of egodicity in almost every direction ([FrUl]); furthermore the periodic
wind-tree model can not have a minimal direction.1 Periodic wind-tree models
naturally yield infinite periodic translation surfaces, ergodicity in almost every di-
rection for such surfaces have been obtained only in a few situations [HoHuWe],
[HuWe], [RaTr].

For randomly placed obstacles the wind-tree model has been intensively studied
by physicists, see for example [BiRo], [DeCoVB], [Ga], [HaCo], [VBHa], [WoLa]
and the references therein. From the mathematically rigorous point of view, it has
been shown that if at each point of the lattice Z

2 we either center a square obstacle
of fixed size or omit it in a random way, then the generic in the sense of Baire
wind-tree model is recurrent and has a dense set of periodic points ([Tr1]).

In this article we continue the study of the Baire generic properties of wind-tree
models. We study a random version of the wind-tree model: the plane is tiled by
one by one cells with corners on the lattice Z

2, in each cell we place a square tree of
a fixed size with the center chosen randomly. Our main result is that for the generic
in the sense of Baire wind-tree model, for almost all directions the wind-tree model
is minimal, in stark contrast to the situation for the periodic wind-tree model. This
result can be viewed as a topological version of the Ehrenfests question.

1K. Frączek explained to us that this follows from elementary arguments close to those in the
article [Be].
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Our proofs hold in a more general setting than the one described above, for
example we can vary the size of the square, or use certain other polygonal trees.
We discuss such extensions of our result in the last section of the article.

The method of proof is by approximation by finite wind-tree models where the
dynamics is well understood. There is a long history of proving results about
billiard dynamics by approximation which began with the article of Katok and
Zemlyakov [KaZe]. This method was used in several of the results on wind-tree
models mentioned above [HuLeTr],[AvHu],[Tr1], see [Tr] for a survey of some other
usages in billiards. The idea of approximating infinite measure systems by compact
systems was first studied in [MS].

2. Statements of Results

We consider the plane R
2 tiled by one by one closed square cells with corners on

the lattice Z
2. Fix r ∈ [1/4, 1/2). We consider the set of 2r by 2r squares, with

vertical and horizontal sides, centered at (a, b) contained in the unit cell [0, 1]2, this
set is naturally parametrized by

A := {t = (a, b) : r ≤ a ≤ 1− r, r ≤ b ≤ 1− r}
with the usual topology inherited from R

2. Our parameter space is AZ
2

with the

product topology. It is a Baire space. Each parameter g = (ai,j , bi,j)(i,j)∈Z2 ∈ AZ
2

corresponds to a wind-tree table in the plane in the following manner: the tree
inside the cell corresponding to the lattice point (i, j) ∈ Z

2 is a 2r by 2r square
with center at position (ai,j , bi,j) + (i, j). The wind-tree table Bg is the plane R

2

with the interiors of the union of these trees removed. Note that trees can intersect
only at the boundary of cells.

Fix a direction θ ∈ S
1. The billiard flow in the direction θ is the free motion

on the interior of Bg with elastic collision from the boundary of Bg (the boundary
of the union of the trees). The billiard map T g

θ in the direction θ on the table is
the first return to the boundary. If the flow orbit arrives at a corner of the table,
the collision is not well defined, and we choose not to define the billiard map, i.e.
the orbit stops. Once launched in the direction θ, the billiard direction can only
achieve four directions {±θ,±(θ− π)}; thus the phase space Ωg

θ of the billiard map
T g
θ is a subset of the cartesian product of the boundary with these four directions.

It contains precisely the pairs (s, φ) such that at s the direction φ points to the
interior of the table.

Note that the billiard map T := T g
θ can be decomposed as T = R ◦ D, where

R = Rg
θ acts only on the angle component (it is the reflexion map with respect to

the normal) and D = Dg
θ , called a displacement map, acts as follows: D(s, φ) :=

(s′, φ + π), where s′ is the point that s hits when following direction φ. D is
everywhere defined on Ωg

θ, but R is not defined at the corners. Note that T−1

can also be decomposed through these same transformations: T−1 = D ◦ R, since
R2 = D2 = Id.

A saddle connection is loosely speaking a T g
θ -orbit going from a corner of a tree

to some corner (maybe the same one). However, we want to include the corners
in this set. More precisely, we say that a saddle connection of length k > 0 from
x = (s, φ) to x′ = (s′, φ′), where s and s′ are corners, exists if y = D ◦ T k−1(x),
then we define the saddle connection as the set

{x, Tx, T 2(x), . . . , T k−1(x), D ◦ T k−1(x)}.
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For any positive integer N , we define RN to be the closed rhombus {(x, y) :

|x|+ |y| ≤ N + 1
2} and we define then Ωg

θ,N
to be Ωg

θ ∩ (RN ∩Bg)×{±θ,±(θ−π)}.
In a similar way, we define RN to be the open set {(x, y) : ⌊|x|⌋ + ⌊|y|⌋ < N − 1}
and then Ωg

θ,N to be Ωg
θ ∩ (RN ∩ Bg) × {±θ,±(θ − π)}. Let EN the set of pairs

(i, j) so that the interior of the (i, j)-th cell is contained in RN+1.
The set of periodic points is called locally dense if there exists a Gδ-subset of

the boundary which is of full measure, such that for every s in this set, there is a
dense set of inner-pointing directions θ ∈ S

1 for which (s, θ) is periodic. We call
a forward (resp. backward) T g

θ -orbit a forward (resp. backward) escape orbit if it
visits any compact set only a finite number of times.

Theorem 1. There is a dense Gδ set of parameters G such that for each g ∈ G:

• for a dense-Gδ set of full measure of θ the billiard map T g
θ is minimal and

has forward and backward escape orbits,
• the map T g has a dense set of periodic points,
• if r is rational, then the map T g has a locally dense set of periodic points,
• no two trees intersect.

Since the map is minimal we conclude

Corollary 2. The backwards orbit of any forward escape orbit is dense (and vice
versa) for each g ∈ G.

Corollary 3. The billiard flow on the wind-tree table is also minimal for each
g ∈ G.

3. Proof of Minimality

Proof. We begin by the proof of the minimality. For the map T g
θ to be minimal is

equivalent to the statement: for any interval I ⊂ Ωg
θ we have

⋃
k∈Z

(T g
θ )

k
(I) covers

the whole space Ωg
θ. It is enough to show that this happens for a finite union of

iterates of I:

∀I, C ⊂ Ωg
θ compact ∃K,L s.t

L⋃

k=K

(T g
θ )

k
(I) ⊃ C.

Furthermore it suffices to show this for a countable basis of intervals and a countable
exhaustion of Ωg

θ by compact sets Ci. If we had been in a compact situation (which
will occur in the proof) this sufficient condition becomes necessary with C = Ωg

θ .
Suppose that N is an integer satisfying N ≥ 2. We will call a parameter f N -

tactful if for each cell inside the rhombus RN , the corresponding tree is contained
in the interior of its cell. We will call an N -tactful parameter f N -ringed, if the
boundary of RN is completely covered by trees.

For N -ringed parameters there is a compact connected rational billiard table
RN ∩ Bf , called the N -ringed table, contained in the rhombus RN (see Figure 1).

The corresponding phase space is Ωf

θ,N
. It contains Ωf

θ,N which is compact for any

N -tactful parameter. A direction θ is called (f,N)-exceptional if there is a saddle

connection inside Ωf

θ,N
. There are at most countably many exceptional directions,

and for all non-exceptional directions, Ωf

θ,N
is a minimal set for the billiard map

T f
θ [MaTa].
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Figure 1. A 2-ringed
configuration.

Figure 2. A small per-
turbation.

We need to describe Ωg
θ,N more concretely for any N -tactful g. We think of the

contribution of each tree to Ωg
θ,N as the union of four closed intervals indexed by

φ ∈ {±θ,±(θ − π)}, each of these intervals corresponds to the cartesian product
of the two intersecting sides of the tree with a fixed inner pointing direction φ (see

Figure 3). We think of each of these intervals as [0, 2
√
2r] since it corresponds

to the diagonal (of length 2
√
2r) of the tree centered at (a, b). To make our map

orientation preserving we choose the orientation of these interval in the following
way; use the clockwise orientation inherited from the tree for φ ∈ {θ, θ − π} and
the counterclockwise orientation of the other two values of φ. In particular this
parametrization does not depend on the angle φ. (See figures 3,4).

For any N -tactful g, let J g
N be the collection of all the intervals as described

above.

Figure 3. The phase
space of one tree.

Figure 4. The phase
space decomposes into
four oriented “intervals”.

Thus for any N -ringed f , any (f,N)-non-exceptional direction θ and any interval

I ⊂ Ωf
θ,N , there exists K,L such that

(1)

L⋃

k=K

(T f
θ )

k(I) ⊃ Ωf
θ,N .

Now consider the following perturbation of f , the new configuration g is arbitrary
outside RN+1, and each tree (ai,j , bi,j) in RN+1 is replaced with a tree (a′i,j , b

′
i,j)
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which is sufficiently close to (ai,j , bi,j) in such a way that the new parameter is
(N + 1)-tactful (see Figure 2). We claim that if the perturbation is sufficiently
small then Equation (1) still holds, to understand what this means we need to
explain how we will choose I to depend on f .

Note that if the tree is contained in the interior of a cell then if s is a corner of
this tree there are three directions pointing to the interior of the table, while for
all other s there are only two such directions. Intersecting trees can have slightly
different behavior, but we do not need to describe it.

We will consider the following covering of [0, 2
√
2r]:

{(√
2r

2N
(i− 1),

√
2r

2N
(i + 1)

)
∩ [0, 2

√
2r] : i = 0, . . . , 2N+1

}
.

Note that this covering is an open covering even though there are two half-open
intervals in the collection but they are open in the topology of [0, 2

√
2r].

For any N -tactful g, Ig
N,θ will be the union of all such families, where the interval

[0, 2
√
2r] corresponds to one of the intervals in J g

N . Note that Ig
N,θ is a finite

collection of open intervals in Ωg
θ,N . Note also that

⋃
N

Ig
N,θ is a topological basis of

Ωg
θ. We will call the endpoints of intervals in Ig

N,θ dyadic points.
For our proof we need to enlarge the definition of a saddle connection. We will

say that a *saddle connection of length k > 0 from x = (s, φ) to x′ = (s′, φ′), where
each s and s′ is a corner or a dyadic point, exists if y = D ◦T k−1(x), then we define
the saddle connection as the set

{x, Tx, T 2(x), . . . , T k−1(x), D ◦ T k−1(x)}.
Note that we could make the final reflection in the case when y is not a corner, in
order to uniformize the notation in the proof, we chose not to do so.

A direction θ is called ((f,N))-*exceptional if there is a *saddle connection inside

Ωf

θ,N
. There are at most countably many *exceptional directions, and since any

non-*exceptional direction is non-exceptional for all non-*exceptional directions,

Ωf

θ,N
is a minimal set for the billiard map T f

θ .

To prove that the billiard map T g
θ in a given direction is minimal, it suffices to

show that there exists infinitely many N such that

(2) ∃K,L ∀I ∈ Ig
N,θ

L⋃

k=K

(T g
θ )

k
(I) ⊃ Ωg

θ,N .

For any N -tactful g, let Cg
N (K,L) be the collection of all the connected com-

ponents of (T g
θ )

k(I) ∩ Ωg
θ,N where k varies from K to L. These intervals can be

either open or half-open. Each interval I ′ in Cg
N (K,L) is a connected component of

(T g
θ )

k(I) for some k between K and L, and some I ∈ Ig
N,θ. Thus, for this k, T−k(I ′)

is an interval in Ωg
θ,N , we will call Dg

N (K,L) the collection of all such intervals.

For each tree t ∈ A let U(t, ε) be the open set of trees (centers of trees) in the

standard ε-neighborhood. For any parameter g = (ti,j) ∈ AZ
2

, consider the open
cylinder set UN (g, ε) of (N + 1)-tactful parameters in

∏
(i,j)∈EN

U(ti,j , ε).

Define a homeomorphism ψ = ψg,f between Ωg
θ,N and Ωf

θ,N for every N -ringed

parameter f and every g in UN(f, ε) by mapping each interval [0, 2
√
2ri,j ] in J g

N to

the corresponding interval in J f
N by multiplying by the ratio of the corresponding
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side-lengths (rfi,j/r
g
i,j). Note that this homeomorphism induces a homeomorphism

beetween Bg ∩RN and Bf ∩RN which we will note by the same letter ψ.
Let {fi} be a countable dense set of parameters such that each fi is Ni-ringed

for some Ni. Suppose εi are strictly positive. Let

G :=
⋂

N≥1

⋃

{i:Ni≥N}

UNi
(fi, εi).

Clearly G is a dense Gδ. We claim that there is a choice for εi such that every
parameter in G gives rise to a wind tree which is minimal in almost all directions.

Fix fi. We already proved that (2) holds for g = fi, N = Ni and θ any direction
which is not (fi, Ni)-exceptional (c.f. (1)). Let Ki, Li be the two integers given by

Equation (2). For sake of simplicity, we will denote Ci := Cfi
Ni
(Ki, Li) the collection

of intervals in the covering in Equation (2) and we will denote Di := Dfi
Ni

(Ki, Li).
We denote by ∂Ci the set of endpoints of the intervals in Ci.

Let us describe how the intervals in Ci cover Ωfi
θ,Ni

. A point in Ωfi
θ,Ni

can be
covered by:

• an open interval,
• the interior of a half-open interval,
• or the boundary of a half-open interval.

Suppose x ∈ ∂Ci such that x is not the endpoint of an interval in J f
N . If x is

not an interior point of any other interval in Ci, then it is the endpoint of another
interval in Ci and there are two cases:

(1) either x is the closed endpoint of precisely one half-closed interval,
(2) or x is the closed endpoint of several half-closed intervals.

The second case implies that the direction θ is (fi, Ni)-exceptional and thus cannot
happen.

Let us analyze case (1). For concreteness we suppose that the half-closed interval
is of the form [a, b), the other case is similar. The point a must be the forward image

of an endpoint of an interval in J f
N (note that the endpoints of intervals in J f

N do
not have backwards images by definition). The case when a is equal to such an
endpoint does not interest us, thus suppose that a = T kA for some endpoint A for
some k > 0, thus T−k[a, b) = [A,B), thus [A,B) ⊂ I where A is the left endpoint
of the original interval I in (2).

Let 〈x, y〉 denote any of the intervals contained in [x, y] and containing (x, y). In
a similar way, we adopt the notations 〈x, y) and (x, y〉.

By definition of Ci, the interval 〈c, a) is a connected component of T j(I) for
some j. If j = 0 then a = A which we have already excluded, thus assume j 6= 0.
We claim that j > 0. Otherwise T−j〈c, a) = 〈C̄, Ā) ⊂ I. If Ā is not a the right

endpoint of I, then for some 0 ≤ j′ < −j, D ◦ T j′(a) is on a corner of a tree. This
means that θ is an exceptional direction, there exists a saddle connection, starting
at A, passing through a, of length k + j′ + 1. Similarly, if Ā is the right endpoint
of I, then there exists a *saddle connection, starting at A, passing through a, of
length at most k− j. Since we assumed that θ is not *exceptional, we have proven
that j > 0.

Let 〈C̄, Ā) ⊂ I such that 〈c, a) = T j〈C̄, Ā). Let 〈Ĉ, Â) := T j−k〈C̄, Ā). Â
belongs to some interval in Ci. It can not be in the boundary of its covering
interval, otherwise there would be a *saddle connection ending at A and passing
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through Â of length at most j. So there exists D̂ and B̂ 6= Â such that 〈D̂, B̂〉
belongs to Ci and 〈Ĉ, Â) ⊂ 〈D̂, B̂〉.

We describe the set ∂Ci(θ) exactly. Without loss of generality let suppose
Ki(θ) < 0 and Li(θ) > 0. First, let us consider the collection of points whose
forward orbit arrive at a corner of a tree in time at most −Ki(θ), and similarly
for backward orbits. Second, let us consider the following sub-collection of the for-
ward orbits of corners of trees

{
T k
θ (x) : x ∈ ∂JNi

, 0 ≤ k ≤ Li

}
, and similarly

for backward orbits. Third, consider the iterates of the endpoints of I for times
between Ki(θ) and Li(θ). Then ∂Ci(θ) is the restriction of the union of these three

collections to Ωfi
θ,Ni

. For each θ this is a finite collection of points. As we vary the

parameters each point in ∂Ci(θ) varies continuously with respect to g and θ.
Let Θi be the set of all directions θ who are not (fi, Ni)-*exceptional. This set

is of measure one since its complement is countable. For every θ ∈ Θ the points in

the collection ∂Ci(θ) are all distinct. Recall that Ωfi
θ,Ni

is oriented, so it induces a

strict partial order in ∂Ci(θ) which is total on each interval in JNi
.

So, for every fixed θ ∈ Θ it is possible to choose εi(θ) > 0 such that the strict
partial order on ∂Ci(θ) is preserved for all g ∈ UNi

(fi, εi); and thus, Equation (2)
holds for every such g.

Let ΘK,L,i := {θ ∈ Θi : Ki(θ) ≥ K,Li(θ) ≤ L}. Since Θi =
⋃

K≤0

⋃
L≥0 ΘK,L,i

is an increasing union of ΘK,L,i and is of full measure, there exists Ki, Li such that

ΘKi,Li,i is of measure larger than 1
Ni

. We can choose an open neighborhood Θ̂i of

ΘKi,Li,i such that Equation (2) holds with the constants Ki, Li for every θ ∈ Θ̂i.
Thus ⋂

N≥1

⋃

{i:Ni≥N}

Θ̂i

is a Gδ-dense set of full measure of minimal directions for all tables g ∈ G.
�

4. Proof of the existence of escape orbits.

Proof. Consider the set G defined above. We additionally assume that εi → 0. Fix
g ∈ G and consider a minimal direction θ of T = T g

θ .
In the definition of the set G consider an approximating sequence fij such the

g ∈ UNij
(fij , εij ). For simplicity of notation let Mj := Nij . Clearly θ is neither

vertical nor horizontal, since these directions are exceptional. Then we can choose J
so large that for any j ≥ J , the εij is sufficiently small such that for any x ∈ Ωg

θ,Mj

the T orbit of x must visit the set Ωg
θ,Mj+1

\Ωg
θ,Mj

before reaching Ωg
θ,Mj+2

\Ωg
θ,Mj+1

and the same for T−1.
Consider the compact set Ωg

θ,MJ
. Since T is minimal at least one of the two open

sets
A±

J,1 := {x ∈ Ωg
θ,MJ

: T±1x 6∈ Ωg
θ,MJ

}
is non-empty. In fact, both A+

J,1 and A−
J,1 are non-empty because A+

J,1 contains the

singularities of T−1 (in Ωg
θ,MJ

) and A−
J,1 contains the singularities of T (in Ωg

θ,MJ
).

Now inductively define the open sets

A+
J,n+1 :=

{
x ∈ A+

J,n : ∃k > 0, ∀j = 1, 2, . . . , k − 1, such that

T j ∈ Ωg
θ,Mn

\ Ωg
θ,MJ

and T kx 6∈ Ωg
θ,Mn

}
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and in the analogous way A−
J,n+1. For each n ≥ 1 at least one of the two sets A±

J,n

is non-empty by the minimality of T and the definition of J . In fact, by a similar
reasoning as above, both A+

J,n 6= ∅ for all n ≥ 1 and A−
J,n 6= ∅ for all n ≥ 1. Let us

concentrate on the +-sets and set An := A+
J,n. Clearly Ān+1 ⊂ Ān, thus ∩n≥1Ān

is non-empty. We claim that if x is in this intersection, then x is in the interior of
all of the An, and thus a forward escape orbit.

Suppose not, then let m := min{n ≥ 1 : x ∈ Ān \ An}. This implies that
for some k, T jx ∈ Ωg

θ,Mm
\ Ωg

θ,MJ
for j = 1, . . . , k − 1 and T kx is not defined.

Chose a sequence (xℓ) ⊂ Am such that xℓ → x and let y = limℓ→∞ T kxℓ. Since
our direction θ is non-exceptional, the forward orbit of y is infinite. Furthermore,
we have y ∈ A+

m,n for all n, thus y is a forward espace orbit which is backwards
singular. This contradicts the minimality of T , thus x was a forward escape orbit.
The case A−

J,n is similar.

Finally we remark that if (s, θ) is a forward escape orbit, then (s, θ + π) is a
backward escape orbit, and vice versa. �

5. Proof of density and local density of periodic points

Proof. The idea behind the proof is similar to what has been done for minimality
in Section 3. We first apply a known result to N -ringed parameters.

In this section, the direction θ varies in the proof, so we abandon the notation
T g
θ and we note the billiard transformation in the wind-tree by T g(s, θ).

For each point x = (s, θ) ∈ Ωg
θ and each p such that

(
T g
)p
(x) exists, let us

consider the following set :
{
θ′ :

(
T g
)i
(s, θ′) and

(
T g
)i
(s, θ)

lie on the same side of the same tree for i = 1, . . . , p
}
.

This set is an open interval, we will note by θg−(x, p), and θg+(x, p) the lower and
the upper bound of this interval. We also consider the interval (tg−, t

g
+) where t± is

the spatial coordinate of
(
T g
)p
(s, θg±).

Fix aN -ringed parameter f , and x = (s, θ) ∈ Ωf
θ,N such that (T f )p(x) exists. Let

ψ = ψg,f the map defined in section 3. Since ψ−1 is continuous with respect to g and
since (T g)p is locally continuous at ψ−1(x), both θg−(ψ

−1(x), p) and θg+(ψ
−1(x), p),

and thus tg−(ψ
−1(x), p) and tg+(ψ

−1(x), p) vary continuously with respect to g in

a sufficiently small neighborhood of f . Let (sg∗, θ) :=
(
T g
)p
(ψ−1(s), θ), then, in a

sufficiently small neighborhood of f , sg∗ varies continuously with respect to g.
By definition of tg±, for all s′ ∈ (tg−, t

g
+), there exists an orbit starting at (ψ−1(s), θ′)

and ending at (s′, θ′) for some θ′ ∈
(
θg−(x, p), θ

g
+(x, p)

)
. Now, suppose that x =

(s, θ) is T f -periodic of period p. Note that sf∗ = s ∈ (tf−, t
f
+). By continuity,

ψ−1(s) ∈ (tg−, t
g
+) for all g in a neighborhood of f . So there exists θg∗(s) such that(

ψ−1(s), θg∗(s)
)

is T g-periodic and its period is a divisor of p.
Furthermore we can assume that this neighborhood U1(x) of f is so small that

(s, θg∗) is 1
N

-close to (ψ(s), θ) (with respect to a fixed usual norm).

Periodic points are dense in Ωf
θ,N by [BoGaKrTr]. Let {x1, . . . , xk} ⊂ Ωf

θ,N be a

set of T f -periodic points be such that {ψ−1(x1), . . . , ψ
−1(xk)} is 1

N
-dense in Ωg

θ,N

for each g in a neighborhood U2 of f . Combining this with the previous paragraph,
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Figure 5. An example of periodic cylinder of length 4 (filled),
and this cylinder after perturbation (striped).

we conclude that for every g in UN (f) = U2 ∩ ⋂i U1(xi), the set of T g-periodic
points is at least 2

N
-dense in Ωg

θ,N .

Let {fi} ⊂ AZ
2

be countable and dense, such that each fi is Ni-ringed for some
Ni. Let

G :=
⋂

N≥1

⋃

{i:Ni≥N}

UNi
(fi).

Clearly G is a dense Gδ. We have shown that every parameter in G gives rise to a
wind tree with dense periodic points.

Now suppose r is rational. In this case, we can use a stronger property on
periodic orbits. We will call a parameter f rationally N -ringed if f is N -ringed
and all ai,j , bi,j are rational for all (i, j) ∈ EN . The key property here is that
for any rationally N -ringed parameter the N -ringed table is Veech (moreover it is
square-tiled) and thus there exists a countable dense set {θj} ⊂ S

1 such that every

non-singular point of the form (s, θj) ∈ Ωf
θj ,N

is periodic [Ve][MaTa]. We call such

a direction a periodic direction.
We assume θj are enumerated so that the maximal combinatorial length of the

periodic orbits inside Ωf
θj,N

is increasing with j. Consider the smallest ℓ(f) such

that θ1, . . . , θℓ(f) is 1
N

-dense.
Let f be a rationally N -ringed parameter. For each periodic direction θ, we

decompose all of Ωf
θ,N but points in saddle connections by the periodic orbit struc-

ture. More precisely this decomposition consists of a finite collection of intervals
permuted by the dynamics such that the boundary of each interval from this de-
composition is in a saddle connection. We call this collection of intervals D(f, θ).
For each I ∈ D(f, θ), all points in I are periodic of the same period p, and we call⋃p−1

i=0

(
T f
)i
(I) a periodic cylinder.
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In the general case, we presented a construction that associates to every T f -
periodic point x = (s, θ) and every g in a small enough neighborhood U1(s, θ) of f ,
an angle θg∗(x) such that (ψ−1(s), θg∗(x)) is T g-periodic.

Because the periodic points come in cylinders, as described above for f , the
angles θg∗(s, θ) and θg∗(s

′, θ) will coincide for s′ in an open interval around s (if
g ∈ U1(s, θ) ∩ U1(s

′, θ)).
For each interval I in D(f, θ), we can thus find an interval I ′ ⊂ ψ−1(I) containing

at least 1− 1
ℓ(f)·N proportion of points of ψ−1(I) such that the intersection UN (f) :=⋂

s′∈I′

U1(s
′, θ) is open. For all g ∈ UN (f) and all s, s′ ∈ I ′ we have θg∗(s, θ) =

θg∗(s
′, θ).

Furthermore we can assume that this neighborhood UN (f) of f is so small that
θg∗ is 1

N
-close to θ (with respect to a fixed usual norm).

Let {fi} ⊂ AZ
2

be countable dense and such that each fi is rationally Ni-ringed
for some Ni. Let

G :=
⋂

N≥1

⋃

{i:Ni≥N}

UNi
(fi).

Clearly G is a dense Gδ. We claim that every parameter in G gives rise to a wind
tree with locally dense periodic orbits. For each parameter g ∈ G, there exists
an infinite subsequence (fik) ⊂ (fi) such that g ∈ UNik

(fik) for all k and Nik is

increasing. For sake of simplicity we denote this subsequence by (fk).
Letmk be the measure of

⋃
I∈D(fk,θj)

I (it does not depend on j). By definition of

I ′,
⋃

I∈D(fk,θj)
I ′ is of measure at least

(
1− 1

ℓ(fk)·Nk

)
mk. Thus

⋂ℓ(fk)
j=1

⋃
I∈D(fk,θj)

I ′

is of measure at least
(
1− 1

Nk

)
mk and thus the complement of the following infinite

measure Gδ set:

⋂

K

⋃

k≥K

ℓ(fk)⋂

j=1

⋃

I∈D(fk,θj)

I ′

is of zero measure. �

6. Generalizations

Our results hold in a much larger framework. In the proof of minimality we only
used that N -ringed configurations are dense in the space of all configurations, and
that they are rational polygonal billiard tables. For the local density of periodic
orbits we also used that N -ringed configurations which are Veech polygonal billiard
tables are dense. Now we give some examples where these properties hold.

1) We stay in the setup discussed in the article but additionally allow the empty
tree denoted by ∅, thus the space of parameter is {∅} ∪ {(a, b) : r ≤ a ≤ 1− r, r ≤
b ≤ 1−r}. The Ehrenfests specifically required that the average distance A between
neighboring squares is large compared to 2r. For any probability distribution m on
the continuous part of the space of parameters, if we add a δ function on the empty
tree, then for c < 1 large enough, the distribution cδ + (1 − c)m verifies almost
surely this requirement. However our result tells nothing about a full measure set
of parameters for Lebesgue measure.

2) Instead of fixing r ∈ [ 14 ,
1
2 ), we fix r beetween 0 and 1

2 . If r ∈
[

1
2(n+1) ,

1
2n

)
,

place at most n2 copies of trees in each cell. We can then form N -ringed config-
uration in a more general sense where we replace the rhombus by an appropriate
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curve around the origin. One can do so using just n+ 1 copies of the tree in each
cell.

3) Instead of fixed size squares we use all vertical horizontal squares contained
in the unit cell [0, 1]2. This set is naturally parametrized by

{t = (a, b, r) : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ r ≤ min(a, b, 1− a, 1− b)}
where a 2r by 2r square tree is centered at the point (a, b). More generally we
call a polygon a VH-tree if the sides alternate between vertical and horizontal. For
example a VH-tree with 4 sides is a rectangle, with 6 sides is a figure L. We can
use various subsets of VH-trees, for example all VH-trees with at most 2M sides
(M ≥ 4 fixed) contained in the unit cell. Or we can use the VH-trees with 12
sides and fixed side length r ∈ [1/4, 1/3) (called + signs). Many other interesting
subclasses can be considered.

4) Fix a rational triangle P , and consider the set of all rescalings of P contained
in the unit cell [0, 1]2 oriented in such a way that they have either a vertical or
horizontal side.

5) One can also change the cell structure to the hexagonal tiling and consider ap-
propriate polygonal trees, for example one can use appropriate classes of equilateral
triangular trees or hexagonal trees.
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