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MINIMALITY OF THE EHRENFEST WIND-TREE MODEL

ALBA MÁLAGA SABOGAL AND SERGE TROUBETZKOY

Abstract. We consider aperiodic wind-tree models, and show that for a
generic (in the sense of Baire) configuration the wind-tree dynamics is minimal
in almost all directions, and has a dense set of periodic points.

1. Introduction

In 1912 Paul et Tatyana Ehrenfest proposed the wind-tree model in order to
interpret the ergodic hypothesis of Boltzmann [EhEh]. In the Ehrenfest wind-tree
model, a point particle (the “wind”) moves freely on the plane and collides with
the usual law of geometric optics with irregularly placed identical square scatterers
(the “trees”). Nowadays we would say “randomly placed”, but the notion of “ran-
domness” was not made precise, in fact it would have been impossible to do so
before Kolmogorov laid the foundations of probability theory in the 1930s. The
wind-tree model has been intensively studied by physicists, see for example [BiRo],
[DeCoVB], [Ga], [HaCo], [VBHa], [WoLa] and the references therein.

From the mathematical rigorous point of view, there have been many recent
results about the dynamical properties of a periodic version of wind-tree mod-
els, scatterers are identical square obstacles one obstacle centered at each lattice
point. The periodic wind-tree model has been shown to be recurrent ([HaWe],
[HuLeTr],[AvHu]), to have abnormal diffusion ([DeHuLe],[De]), and to have an ab-
scence of egodicity in almost every direction ([FrUl]). Periodic wind-tree models
naturally yield infinite periodic translation surfaces, ergodicity in almost every di-
rection for such surfaces have been obtained only in a few situations [HoHuWe],
[HuWe], [RaTr].

On the other hand for randomly placed obstacles, from the mathematically rig-
orous point of view, up to know it has only been shown that if at each point of the
lattice Z2 we either center a square obstacle of fixed size or omit it in a random
way, then the generic in the sense of Baire wind-tree model is recurrent and has a
dense set of periodic points ([Tr1]).

In this article we continue the study of the Baire generic properties of wind-tree
models. We study a random version of the wind-tree model: the plane is tiled by
one by one cells with corners on the lattice Z2, in each cell we place a square tree
of a fixed size with the center chosen randomly. Our main result is that for the
generic in the sense of Baire wind-tree model, for almost all directions the wind-
tree model is minimal, in stark contrast to the situation for the periodic wind-tree
model which can not have a minimal direction.1 This result can be viewed as a
topological version of the Ehrenfests question.

1K. Frączek explained to us that this follows from arguments close to those in the article [Be].
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The method of proof is by approximation by finite wind-tree models where the
dynamics is well understood. There is a long history of proving results about
billiard dynamics by approximation which began with the article of Katok and
Zemlyakov [KaZe]. This method was used in several of the results on wind-tree
models mentioned above [HuLeTr],[AvHu],[Tr1], see [Tr] for a survey of some other
usages in billiards. The idea of approximating infinite measure systems by compact
systems was first studied in [MS].

The structure of the article is as follows, in Section 2 we give formal statements
of our results. In Section 3 we collect the notation necessary for our setup. In
Section 4, 5 and 6 are devoted to the proof of different parts of the main theorem.
Our proofs hold in a more general setting than the one described above, for example
we can vary the size of the square, or use certain other polygonal trees. We discuss
such extensions of our result in Section 7. Finally in Appendix A we discuss the
relationship between the usual convention on the orbit of singular points for interval
exchange transformations and for polygonal billiards, these conventions are not the
same. Since we are studying minimality in this article a careful comparison is
made, and certain known results are reproved for a class of maps we call eligible.
In particular the IETs arising from billiards with the billiard convention for orbits
arriving at corners of the polygon are eligible maps.

2. Statements of Results

We consider the plane R2 tiled by one by one closed square cells with corners on
the lattice Z2. Fix r ∈ [1/4, 1/2). We consider the set of 2r by 2r squares, with
vertical and horizontal sides, centered at (a, b) contained in the unit cell [0, 1]2, this
set is naturally parametrized by

A := {t = (a, b) : r ≤ a ≤ 1− r, r ≤ b ≤ 1− r}

with the usual topology inherited from R2. Our parameter space is AZ
2

with the

product topology. It is a Baire space. Each parameter g = (ai,j , bi,j)(i,j)∈Z2 ∈ AZ
2

corresponds to a wind-tree table in the plane in the following manner: the tree
inside the cell corresponding to the lattice point (i, j) ∈ Z2 is a 2r by 2r square
with center at position (ai,j , bi,j) + (i, j). The wind-tree table Bg is the plane R2

with the interiors of the union of these trees removed. Note that trees can intersect
only at the boundary of cells.

Fix a direction θ ∈ S1. The billiard flow in the direction θ is the free motion
on the interior of Bg with elastic collision from the boundary of Bg (the boundary
of the union of the trees). The billiard map T g

θ in the direction θ on the table is
the first return to the boundary. If the flow orbit arrives at a corner of the table,
the collision is not well defined, and we choose not to define the billiard map, i.e.
the orbit stops at the last collision with the boundary before reaching the corner;
also backwards orbits starting at a corner of a tree are not defined, but forward
orbits starting at a corner are defined. Once launched in the direction θ, the billiard
direction can only achieve four directions {±θ,±(θ−π)}; thus the phase space Ωg

θ of
the billiard map T g

θ is a subset of the cartesian product of the boundary with these
four directions. It contains precisely the pairs (s, φ) such that at s the direction φ
points to the interior of the table, i.e. away from the trees. The billiard map will
be called minimal if the orbit or every point is dense.
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The set of periodic points is called locally dense if there exists a Gδ-subset of
the boundary which is of full measure, such that for every s in this set, there is a
dense set of inner-pointing directions θ ∈ S1 for which (s, θ) is periodic. We call
a forward (resp. backward) T g

θ -orbit a forward (resp. backward) escape orbit if it
visits any compact set only a finite number of times.

Theorem 2.1. There is a dense Gδ set of parameters G such that for each g ∈ G:

i) for a dense-Gδ set of full measure of θ the billiard map T g
θ is minimal and has

forward and backward escape orbits,
ii) the map T g has a dense set of periodic points,
iii) if r is rational, then the map T g has a locally dense set of periodic points,
iv) no two trees intersect.

All the sets mentioned in the theorem depend on the fixed parameter r. From
our definition of minimality we conclude

Corollary 2.2. The backwards orbit of any forward escape orbit is dense (and vice
versa) for each g ∈ G.

Corollary 2.3. The billiard flow on the wind-tree table is also minimal for each
g ∈ G.

We would like to point out that there is an old theorem of Gottshalk that (a
stronger version of) minimality is impossible in locally compact spaces [Go, Theo-
rem B]; more precisely for a homeomorphism of a locally compact metric space X ,
if the forward orbit of every point y ∈ Y is dense in Y , then Y is compact. This re-
sult does not apply directly to our situation: our map is not a homeomorphism, the
dynamics is not defined everywhere, and where it is not defined it is discontinuous.
There is a standard way of changing the topology to make the map a homeomor-
phism (this construction is well described in the context of interval exchanges in

[MMY, Section 2.1.2]). For any wind tree table g ∈ AZ
2

, including the periodic
ones the topology obtained from Ωg

θ will be locally compact, thus Gottshalks result
apply, the wind tree model can never be forward minimal. In fact, in Theorem
2.1.i) we construct examples of escape orbits.

3. Notations and preparatory remarks

As already mentioned in previous section the billiard map T g
θ is not defined at

a point whose next collision is with a corner, and the inverse billiard map (T g
θ )

−1

is not defined at a corner. In the world of billiards or (flat surfaces), a saddle
connection is a flow-orbit going from a corner of a tree to some corner (maybe
the same one). Because of the above convention, for the map there is a saddle
connection starting at a point x if, for some k ≥ 0, T k(x) is defined but T k+1(x)
and T−1(x) are not defined; then the saddle connection is the orbit

{x, Tx, T 2(x), . . . , T k(x)}.

A direction θ is called exceptional if there exists a saddle connection for T g
θ .

As there are countably many corners, there are at most countable many saddle
connections and thus at most countably many exceptional directions.

For any positive integer N , we define RN to be the closed rhombus (square)

{(x, y) : |x|+|y| ≤ N+ 1
2} and we define then Ωg

θ,N
to be Ωg

θ∩(RN×{±θ,±(θ−π)}).
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Figure 1. A 2-ringed
configuration.

Figure 2. A small per-
turbation.

Let EN the set of pairs (i, j) so that the interior of the (i, j)-th cell is contained in
RN , and let RN be the interior of the union of the closed cells indexed by EN . Let
us also define Ωg

θ,N to be Ωg
θ ∩ (RN × {±θ,±(θ − π)}).

Suppose that N is an integer satisfying N ≥ 2. We will call a parameter N -
tactful if for each cell inside the rhombus RN , the corresponding tree is contained
in the interior of its cell. We will call an N -tactful parameter N -ringed, if the
boundary of RN is completely covered by trees. We call a parameter tactful if it is
N -tactful for all N .

For N -ringed parameters there is a compact connected rational billiard table
RN ∩ Bf , called the N -ringed table, contained in the rhombus RN (see Figure 1).

The corresponding phase space is Ωf

θ,N
. It contains Ωf

θ,N which is compact for any

N -tactful parameter. A direction θ is called (f,N)-exceptional if there is a saddle

connection inside Ωf

θ,N
.

There are at most countably many exceptional directions, and for all non-

exceptional directions, Ωf

θ,N
is a minimal set for the billiard map T f

θ . (We reprove

this result in our context in Corollary A.6 of the Appendix.)
We need to describe Ωg

θ,N more concretely for any N -tactful g. Note that if the
tree is contained in the interior of a cell then if s is a corner of this tree there are
three directions pointing to the interior of the table, while for all other s there are
only two such directions (see Figure 3). Intersecting trees can have slightly different
behavior, but we do not need to describe it since they will not occur in our proof.

We think of the contribution of each tree to Ωg
θ,N as the union of four closed

intervals indexed by φ ∈ {±θ,±(θ − π)}, each of these intervals corresponds to
the cartesian product of the two intersecting sides of the tree with a fixed inner
pointing direction φ (see Figure 3) (as before the word inner means pointing into the
table, so away from the tree). In the proof we will think of each of these intervals

as I = [0, 2
√
2r] since it corresponds to the diagonal (of length 2

√
2r) of the tree

centered at (a, b). Note that the billiard map in a fixed direction has a natural
invariant measure. Let p be the arc-length parameter on I, then I = I1 ∪ I2 where
each Ii is an interval and the invariant measure is of the form Ki d p on Ii with Ki

an explicit constant. We stick to the use of I in order to avoid manipulating the
constants Ki (which are direction dependent) all the time.



5

Figure 3. The
phase space of
one tree.

Figure 4. The phase space is
the disjoint union of four closed
oriented “intervals”.

To make our map orientation preserving we choose the orientation of these in-
tervals in the following way; use the clockwise orientation inherited from the tree
for φ ∈ {θ, θ − π} and the counterclockwise orientation of the other two values of
φ. In particular this parametrization does not depend on the angle φ. (See figures
3,4). Despite that fact that these “intervals” come naturally as subsets of R2, we
will think of Ωg

θ,N and Ωg
θ as formal disjoint union of one-dimensional intervals.

For any N -tactful g, let J g
N be the collection of all the intervals as described

arising from the trees in RN . Note that the trees straddling the rhombus do not
contribute to this collection.

For each tree t ∈ A let U(t, ε) be the the standard ε-neighborhood in R2 inter-

sected with the interior of A in R2. For any parameter g = (ti,j) ∈ AZ
2

, consider
the open cylinder set UN(g, ε) =

∏
(i,j)∈EN

U(ti,j , ε).

4. Proof of Minimality in Theorem 2.1

Proof. In the Appendix we study a class of maps called eligible maps. The proof
of minimality in the theorem is based on Lemma A.1 of the Appendix which gives
a necessary and sufficient condition for the minimality of an eligible map. We start
by some remarks on the applicability of this lemma, first of all note that in the
proof we will only need to apply Lemma A.1 to maps which are tactful. However
these maps are not eligible. Ωg

θ is a disjoint union of closed intervals, if we restrict
the billiard map to the interior of these intervals it becomes an eligible map and we
can apply the lemma. More precisely we apply Lemma A.1 to the map T̃ g

θ which
is the map T g

θ restricted to Ωg
θ with endpoints of each interval in J g

N removed. We

call this union of open intervals Ω̃g
θ . Note that T g

θ being minimal is equivalent to

T̃ g
θ being minimal since the T g

θ -orbit of any corner x is the union of {x} with the

T̃ g
θ -orbit of T g

θ (x).

By Lemma A.1 for any tactful g, the map T̃ g
θ being minimal is equivalent to the

statement: for any interval I ⊂ Ω̃g
θ we have

⋃
k∈Z

(T̃ g
θ )

k
(I) covers the whole space

Ω̃g
θ. It is enough to show that this happens for a finite union of iterates of I. More

precisely it is enough to show that we have sets Cn ⊂ Ω̃g
θ satisfying Cn ⊂ Cn+1 and
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∪n≥1Cn = Ω̃g
θ , such that

∀n ≥ 1 ∀I ⊂ Ω̃g
θ ∃K,L s.t

L⋃

k=K

(T̃ g
θ )

k
(I) ⊃ Cn.

Furthermore it suffices to show this for a countable basis of intervals.
By Corollary A.4 in the Appendix for anyN -ringed f , any (f,N)-non-exceptional

direction θ and any interval I ⊂ Ω̃f
θ,N , there exists K,L such that

(1)

L⋃

k=K

(T̃ f
θ )

k(I) ⊃ Ω̃f
θ,N .

Now consider the following perturbation of f , the new configuration g is arbitrary
in the cells which do not intersect RN , each tree (ai,j , bi,j) in RN is replaced with
a tree (a′i,j , b

′
i,j) which is sufficiently close to (ai,j , bi,j) in such a way that the new

parameter is still N -tactful and the trees in the cells covering the boundary of RN

are replaced by close trees in such a way that the configuration is N+1-tactful (see
Figure 2).

The main idea is if Equation (1) holds for an open interval I in Ω̃f
θ,N there exists

an ε > 0 such that for all g ∈ UN(f, ε), the Equation (1) still holds for g and I,
namely

L⋃

k=K

(
T̃ g
θ

)k
(I) ⊃ Ω̃g

θ,N .

Here we can write the same interval I since there is a natural identification between
Ω̃g

θ,N and Ω̃f
θ,N which will be made explicit in the proof.

We remind that each tree contributes four intervals to the phase space of the
wind-tree transformation in a given direction. Each of these intervals is a copy of the
interval [0, 2

√
2r]. Since in Ω̃g

θ,N only the trees contained in RN are contributing,

J g
N is a collection of 4 card(EN ) = 8N(N − 1) copies of this interval.
For any N -tactful g, Ig

N,θ will be the union of all open coverings

(2)

{(√
2r

2N
(i − 1),

√
2r

2N
(i+ 1)

)
∩ (0, 2

√
2r) : i = 0, . . . , 2N+1

}

of (0, 2
√
2r), one such open covering for each copy of the interval [0, 2

√
2r] which

appears in J g
N . Note that we have remove the endpoints of the interval [0, 2

√
2r]

because of the discussion at the beginning of the proof of the applicability of the
results in the Appendix. Thus Ig

N,θ is a finite collection of open intervals in Ω̃g
θ,N .

Note also that
⋃
N

Ig
N,θ is a topological basis of Ω̃g

θ. We will call the endpoints of

intervals in Ig
N,θ dyadic points (the endpoints 0 and 2

√
2r included).

We will say that there is a *saddle connection starting at a point x ∈ Ωg
θ if for

some k ≥ 0 we have:
(
T g
θ

)i
(x) is defined and is not a dyadic point for all 0 < i ≤ k,

and
(
T g
θ

)k+1
(x) and

(
T g
θ

)−1
(x), if defined, are dyadic points ; then the *saddle

connection is the orbit segment
{
x,
(
T g
θ

)
x,
(
T g
θ

)2
(x), . . . ,

(
T g
θ

)k
(x)
}
.
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A direction θ is called ((g,N))-*exceptional if there is a *saddle connection in-
side Ωg

θ,N
. There are at most countably many *exceptional directions. Any non-

*exceptional direction is non-exceptional, thus Equation (1) still holds for any non-
*exceptional direction θ, for f an N -ringed configuration.

To prove that the billiard map T̃ g
θ in a given direction is minimal, it suffices to

show that there exists infinitely many N such that

(3) ∃K,L ∀I ∈ Ig
N,θ

L⋃

k=K

(T̃ g
θ )

k
(I) ⊃ Ω̃g

θ,N .

For any N -tactful g, let Cg
N(K,L) be the collection of all the connected compo-

nents of (T̃ g
θ )

k(I) ∩ Ω̃g
θ,N where k varies from K to L. These intervals are open

intervals. Each interval I ′ in Cg
N (K,L) is a connected component of (T̃ g

θ )
k(I) for

some k between K and L, and some I ∈ Ig
N,θ. Thus, for this k, (T̃ g

θ )
−k(I ′) is an

interval in Ω̃g
θ,N , we will call Dg

N (K,L) the collection of all such intervals.

Note that Ω̃g
θ,N and Ω̃f

θ,N for every N -ringed parameter f and every N -tactful
g are formally identical. In particular this is true for any g in the cylinder set
UN(f, ε) (defined at the end of the previous section).

By Baire’s theorem the set of configurations which are tactful is dense since for
each N the set of all N -tactful configurations is an open dense set. Thus we can
consider a countable dense set of parameters which are N -tactful for all N . By
modifying the parameters we can assume that each one is N -ringed for a certain
N still maintaining the density. Call this countable dense set {fi}, with fi being
Ni-ringed. We also assume Ni+1 > Ni. Suppose εi are strictly positive. Let

G :=
⋂

m≥1

⋃

i≥m

UNi
(fi, εi).

Clearly G is a dense Gδ. We claim that there is a choice for εi such that every
parameter in G gives rise to a wind tree which is minimal in almost all directions.

Fix fi. We already proved that Equation (3) holds for g = fi, N = Ni and θ
any direction which is not (fi, Ni)-exceptional (c.f. Equation (1)). Let Ki = Ki(θ),
Li = Li(θ) be the two integers given by Equation (3). For sake of simplicity, we

will denote Ci := Cfi
Ni
(Ki, Li) the collection of intervals in the covering in Equation

(3) and we will denote Di := Dfi
Ni
(Ki, Li) the collection defined in the paragraph

after Equation (3). The collection of intervals Ci is an open cover of the open set

Ω̃fi
θ,Ni

. We denote by ∂Ci the set of endpoints in Ωfi
θ of the intervals in Ci.

We describe the set ∂Ci(θ) exactly. Without loss of generality let suppose

Ki(θ) < 0 and Li(θ) > 0. First, let us consider the set Ωfi
θ,Ni

\
(
T fi
θ

)Ki

(
Ωfi

θ,Ni

)

which is just the collection of points x whose forward iterate
(
T fi
θ

)k
(x) is not de-

fined for some time k ≤ −Ki(θ), and similarly consider Ωfi
θ,Ni

\
(
T fi
θ

)Li

(
Ωfi

θ,Ni

)

for backward orbits. Second, let us consider the following sub-collection of the for-
ward orbits of corners of trees

{
T̃ k
θ (x) : x ∈ ∂JNi

, 0 ≤ k ≤ Li

}
, and similarly

for backward iterates. Third, consider the iterates of the endpoints of I for times
between Ki(θ) and Li(θ). Then ∂Ci(θ) is the restriction of the union of these three

collections to Ωfi
θ,Ni

. For each θ this is a finite collection of points. Note that the

each point in in ∂Ci(θ) is the endpoint of exactly one interval in Ci(θ) because θ
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is not (fi, Ni)-*exceptional. As we vary the parameters (g, θ), clearly ∂Ci(θ) will
change. Moreover, if the direction θ is a non-(fi, Ni)-*exceptional direction, then
the points in the set change continuously in the following sense: each point in ∂Ci(θ)
has (fi, θ) as a point of continuity.

Let Θi be the set of all directions θ who are not (fi, Ni)-*exceptional. This set is
of measure one since its complement is countable. For every θ ∈ Θ the points in the

collection ∂Ci(θ) are all distinct. Recall that Ωfi
θ,Ni

is a union of oriented intervals,

so the intersection of ∂Ci(θ) with any of these intervals has a natural total order
(which is a strict order). These orders induce a strict partial order in ∂Ci(θ).

So, for every fixed θ ∈ Θi it is possible to choose continuously δi(θ) > 0 such
that the strict partial order on ∂Ci(θ′) is preserved for all (g, θ′) in the open set
UNi

(fi, δi(θ)) ×B(θ, δi(θ)) (where B denotes a ball in S1); and thus, Equation (3)
holds with the same Ki(θ) and Li(θ) for every such (g, θ′).

Furthermore, let us suppose now that Ki(θ) and Li(θ) are optimal for Equation
(3) to hold. By this we mean the −Ki(θ)+Li(θ) is minimal, and then if there are
several choices Ki(θ) is chosen maximal still satisfying Ki(θ) < 0. Then

ΘK,L,M,i := {θ ∈ Θi : Ki(θ) ≥ K,Li(θ) ≤ L, δi(θ) >
1

M
}

is an open set. Since Θi =
⋃

K≤0

⋃
L≥0

⋃
M≥1 ΘK,L,M,i is an increasing union of

ΘK,L,M,i and is of full measure, there exists Ki, Li,Mi such that Θ̂i := ΘKi,Li,Mi,i

is an open set of measure larger than 1
Ni

. Equation (3) holds with the constants

Ki, Li for every θ ∈ Θ̂i. Thus

Θ :=
⋂

N≥1

⋃

{i≥N}

Θ̂i

is a Gδ-dense set of full measure. Without loss of generality, we suppose Mi is
increasing. If we choose εi =

1
Mi

in the definition of G, then this is a set of minimal
directions for all tables g ∈ G. �

5. Proof of the existence of escape orbits.

Proof. We will proof the existence of an escape orbit for the parameter set G and
direction set Θ defined in the proof of minimality in Section 4. For any g ∈ G and
θ ∈ Θ, as shown above θ will be a minimal direction of T = T g

θ .
Let consider f an N -ringed parameter and ε > 0. Let be N ′ > N and f ′ an N ′-

ringed parameter in UN (f, ε). Then, for any ε′ > 0, the set UN (f, ε)∩UN ′(f ′, ε′) is
non-empty, moreover if ε′ is small enough then UN ′(f ′, ε′) ⊂ UN (f, ε). Let us now
fix such an ε′, and let θ be a direction which is far for horizontal and vertical in

the following sense: min(| tan(θ)|, | cot(θ)|) ≥ ε′

2r . Then for any g ∈ UN ′(f ′, ε′) we
have that Ωg

θ,N ′+1 \ Ω
g
θ,N ′ is visited by any orbit starting in Ωg

θ,N ′ before reaching

Ωg \ Ωg
θ,N ′+1 since it makes a collision with one of the squares in the ring. In

particular for any point x ∈ Ωg
θ,N its orbit cannot escape to Ωg \Ωg

θ,N ′+1 without a

collision in the ring of obstacles Λg
θ,N ′ := Ωg

θ,N ′+1 \Ωg
θ,N ′. Similarly in the opposite

way, an orbit that is already outside cannot come inside without a collision on the
ring of obstacles.

Let g ∈ G and let us consider an approximating sequence fij such the g ∈
UNij

(fij , εij ) for all j. For simplicity of notation let Λj = Λg
θ,Nij

. For any non

horizontal and non vertical direction θ, the condition min(| tan(θ)|, | cot(θ)|) ≥ εij
2r
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discussed above is verified for j large enough since εi is a decreasing sequence going
to zero. Thus, we can choose J so large that for any j ≥ J , the εij is sufficiently
small such that for any x ∈ Ωg

θ,Nij
the T orbit of x must visit the set Λj before

reaching Λj+1. The same is true in the opposite direction: no orbit can go from
Ωg

θ \ Ω
g
θ,1+Nij+1

to Λj without a collision on Λj+1. (A similar statement holds for

T−1. )
Thus the far away dynamics of T can be understood via the following transfor-

mations. For any j > J and any x ∈ Λj , let S+(x) be T k(x), the first visit to
Λj±1. (Note that this is not a first return map to the union of the Λj and it is not
invertible.) Similarly, S−(x) for any x in Λj is T−k(x) where k is minimal such

that T−k(x) ∈ Λj±1. For x ∈ Λj , let R+(x) = T k′

(x) where k′ is the maximal i ≥ 0
so that x, T (x), . . . , T i(x) ∈ Λj . Similarly we define for x ∈ Λj, R

−(x) = T−k(x)
where k is the maximal i ≥ 0 so that x, T−1(x), . . . , T−i(x) ∈ Λj.

Where defined, these transformations satisfy:

(4)
R− ◦ S+ = S+ = R− ◦R+ ◦ S+,
R+ ◦ S− = S− = R+ ◦R− ◦ S−,

S− ◦ S+ = R+ and S+ ◦ S− = R−.

Now suppose θ ∈ Θ. Note that θ is not vertical nor horizontal because these
directions are (fi, Ni)-exceptional for every i. Consider the compact set Ωg

θ,Mj
for

j ≥ J . Let

Aj,1 :=
{
x ∈ Λj : S+(x) ∈ Λj+1

}
.

The set Aj,1 is non-empty since the (forward) T -orbit of any corner of a tree in Λj

is dense in Ωg
θ , thus it has to get out of Ωg

θ,j+1 and in doing so it is forced to have
a collision in Λj+1. Thus the last time this orbit visits Λj before visiting Λj+1 will
be an element of Aj,1. Now inductively define the set

Aj,n+1 :=
{
x ∈ Aj,n : ∃k > 0, such that ∀i = 1, 2, . . . , k − 1,

Si(x) 6∈ Λj and Skx ∈ Λj+n

}
.

For each n ≥ 1 the set Aj,n is non-empty by a similar reasoning as above. Clearly

Aj,n+1 ⊂ Aj,n, thus since Λj is compact, Bj := ∩n≥1Aj,n is non-empty. We claim
that if x is in this intersection, then x is in all of the Aj,n, and thus the forward
orbit of x never returns to Λj .

Suppose not, then let m := min{n ≥ 1 : x ∈ Aj,n \ Aj,n}. This implies that
for some k, T i(x) 6∈ Λj for i = 1, . . . , k − 1 and T k(x) is not defined, in fact
T k(x) would arrive at a corner of a tree of the obstacle ring Λj+m. More precisely
chose a sequence (xℓ) ⊂ Aj,m such that xℓ → x and T k(x) ∈ Λj+m, then y =
limℓ→∞ T k(xℓ). Since our direction θ is non-exceptional, the forward orbit of y is
infinite. Furthermore, we have y ∈ Aj+m,n for all n, thus y is a forward orbit which
never visits Λj and which is backwards singular. Since Λj has non-empty interior
(it contains intervals), this contradicts the minimality of T , thus the forward orbit
of x is not singular.

Since T g
θ is minimal, every point in Bj+1 must have come from Λj, thus we have

Bj+1 ⊆ R+ ◦ S+
(
Bj

)
. This implies

S− ◦R−
(
Bj+1

)
⊆ S− ◦R− ◦R+ ◦ S+

(
Bj

)
= S− ◦ S+

(
Bj

)
= R+

(
Bj

)
= Bj
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for all j ≥ J ; here the first two equalities use the relations in Equations (4) and
the last equality follows from the definitions of Bj and R+.

Let Cj+n :=
(
S− ◦ R−

)n(
Bj+n

)
. Iterating the above computation shows that

these sets are nested, Cj+n+1 ⊂ Cj+n for all n ≥ 0. The set ∩n≥0Cj+n is non-
empty since it is contained in the compact set Λj . The forward orbit of any point
in this set is either singular, or an escape orbit. The argument that such forward
orbits are non-singular is identical to the one given above for the set Bj .

Finally we remark that if (s, θ) is a forward escape orbit, then (s, θ + π) is a
backward escape orbit, and vice versa. �

6. Proof of density and local density of periodic points

Proof. The idea behind the proof is similar to what has been done for minimality
in Section 4. We first apply a known result to N -ringed parameters.

In this section, the direction θ varies in the proof, so we abandon the notation
T g
θ and we note the billiard transformation in the wind-tree by T g(s, θ).

For each point x = (s, θ) ∈ Ωg
θ and each p such that

(
T g
)p
(x) exists, let us

consider the set of directions for which the orbit starting at s hits the same sequence
of sides up to time p:

{
θ′ :

(
T g
)i
(s, θ′) and

(
T g
)i
(s, θ)

lie on the same side of the same tree for i = 1, . . . , p
}
.

This set is an open interval, we will note by θg−(x, p), and θg+(x, p) the lower and
the upper bound of this interval. We also consider the interval (tg−, t

g
+) where t± is

the spatial coordinate of
(
T g
)p
(s, θg±).

Fix a N -ringed parameter f , and x = (s, θ) ∈ Ωf
θ,N such that (T f)p(x) exists.

Remember that the identification between the phase space is a formal identity
map discussed in Section 4. Since (T g)p is locally continuous at x, both θg−(x, p)
and θg+(x, p), and thus tg−(x, p) and tg+(x, p) vary continuously with respect to g

in a sufficiently small neighborhood of f . Let (sg∗, θ) :=
(
T g
)p
(s, θ), then, in a

sufficiently small neighborhood of f , sg∗ varies continuously with respect to g.
By definition of tg±, for all s′ ∈ (tg−, t

g
+), there exists an orbit starting at (s, θ′) and

ending at (s′, θ′) for some θ′ ∈
(
θg−(x, p), θ

g
+(x, p)

)
. Now, suppose that x = (s, θ)

is T f -periodic of period p. Note that sf∗ = s ∈ (tf−, t
f
+). So there exists θg∗(s) such

that
(
s, θg∗(s)

)
is T g-periodic and its period is a divisor of p.

Furthermore we can assume that this neighborhood V (x) of f is so small that
(s, θg∗) is 1

N
-close to (s, θ) (with respect to a fixed usual norm).

We will use the following theorem

Theorem. [BoGaKrTr, Theorem 1] In a rational polygon periodic points of the
billiard flow are dense in the phase space.

This theorem immediately implies that the same is true for the billiard map. In

particular periodic points are dense in Ωf
θ,N . Let {x1, . . . , xk} ⊂ Ωf

θ,N be a set of

T f -periodic points be such that {x1, . . . , xk} is 1
N

-dense in Ωf
θ,N . Combining this

with the previous paragraph, we conclude that for every g in the neighborhood
VN (f) =

⋂
i V (xi), the set of T g-periodic points is at least 2

N
-dense in Ωg

θ,N .
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Let {fi} ⊂ AZ
2

be countable and dense, such that each fi is Ni-ringed for some
Ni. Let

G :=
⋂

N≥1

⋃

{i:Ni≥N}

VNi
(fi).

Clearly G is a dense Gδ. We have shown that every parameter in G gives rise to a
wind tree with dense periodic points.

Now additionally suppose r is rational. In this case, we can use a stronger
property on periodic orbits, it is a part of a special case of Veech’s famous theorem
known as the Veech dichotomy:

Theorem. [Ve, Theorem 1.4][MaTa, Theorem 5.10] If a polygon P is square tiled
then every non-singular orbit in an non-exception direction is periodic.

We will call a parameter f rationally N -ringed if f is N -ringed and all ai,j , bi,j
are rational for all (i, j) ∈ EN . The key property here is that for any rationally N -
ringed parameter the N -ringed table is square-tiled and thus we can apply Veech’s
theorem: there exists a countable dense set {θj} ⊂ S1 such that every non-singular

point of the form (s, θj) ∈ Ωf
θj ,N

is periodic. We call such a direction a periodic

direction.
We assume θj are enumerated so that the maximal combinatorial length of the

periodic orbits inside Ωf
θj,N

is increasing with j. Consider the smallest ℓ(f) such

that θ1, . . . , θℓ(f) is 1
N

-dense.
Let f be a rationallyN -ringed parameter. Consider a periodic direction θ and the

set Ωf
θ,N with saddle connections removed. We decompose this set into its periodic

orbit structure; more precisely this decomposition consists of a finite collection of
intervals permuted by the dynamics such that the boundary of each interval from
this decomposition is in a saddle connection. We call this collection of intervals
D(f, θ). For each I ∈ D(f, θ), all points in I are periodic of the same period p, and

we call
⋃p−1

i=0

(
T f
)i
(I) a periodic cylinder.

In the general case, we presented a construction that associates to every T f -
periodic point x = (s, θ) and every g in a small enough neighborhood U1(s, θ) of f ,
an angle θg∗(x) such that (s, θg∗(x)) is T g-periodic.

Because the periodic points come in cylinders, as described above for f , the
angles θg∗(s, θ) and θg∗(s

′, θ) will coincide for s′ in an open interval around s (if
g ∈ U1(s, θ) ∩ U1(s

′, θ)).
For each interval I in D(f, θ), we can thus find an interval I ′ ⊂ I containing

at least 1 − 1
ℓ(f)·N proportion of points of I such that the intersection UN(f) :=⋂

s′∈I′

U1(s
′, θ) is open. For all g ∈ UN (f) and all s, s′ ∈ I ′ we have θg∗(s, θ) =

θg∗(s′, θ).
Furthermore we can assume that this neighborhood UN (f) of f is so small that

θg∗ is 1
N

-close to θ (with respect to a fixed usual norm).

Let {fi} ⊂ AZ
2

be countable dense and such that each fi is rationally Ni-ringed
for some Ni. Let

G :=
⋂

N≥1

⋃

{i:Ni≥N}

UNi
(fi).

Clearly G is a dense Gδ. We claim that every parameter in G gives rise to a wind
tree with locally dense periodic orbits. For each parameter g ∈ G, there exists
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Figure 5. An example of periodic cylinder of length 4 (filled),
and this cylinder after perturbation (striped).

an infinite subsequence (fik) ⊂ (fi) such that g ∈ UNik
(fik) for all k and Nik is

increasing. For sake of simplicity we denote this subsequence by (fk).
Let mk be the measure of

⋃
I∈D(fk,θj)

I (it does not depend on j). By definition of

I ′,
⋃

I∈D(fk,θj)
I ′ is of measure at least

(
1− 1

ℓ(fk)·Nk

)
mk. Thus

⋂ℓ(fk)
j=1

⋃
I∈D(fk,θj)

I ′

is of measure at least
(
1− 1

Nk

)
mk and thus the complement of the following infinite

measure Gδ set:

⋂

K

⋃

k≥K

ℓ(fk)⋂

j=1

⋃

I∈D(fk,θj)

I ′

is of zero measure. �

7. Generalizations

Our results hold in a much larger framework. In the proof of minimality we only
used that N -ringed configurations are dense in the space of all configurations, and
that they are rational polygonal billiard tables. For the local density of periodic
orbits we also used that N -ringed configurations which are Veech polygonal billiard
tables are dense. Now we give some examples where these properties hold.

1) We stay in the setup discussed in the article but additionally allow the empty
tree denoted by ∅, thus the space of parameter is {∅} ∪ {(a, b) : r ≤ a ≤ 1− r, r ≤
b ≤ 1−r}. The Ehrenfests specifically required that the average distance A between
neighboring squares is large compared to 2r. For any probability distribution m on
the continuous part of the space of parameters, if we add a δ function on the empty
tree, then for c < 1 large enough, the distribution cδ + (1 − c)m verifies almost
surely this requirement. However our result tells nothing about a full measure set
of parameters for Lebesgue measure.

2) Instead of fixing r ∈ [ 14 ,
1
2 ), we fix r between 0 and 1

2 . If r ∈
[

1
2(n+1) ,

1
2n

)
, place

at most n2 copies of trees in each cell. We can then form N -ringed configuration in
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a more general sense where we replace the rhombus by an appropriate curve around
the origin. One can do so using just n+ 1 copies of the tree in each cell.

3) Instead of fixed size squares we use all vertical horizontal squares contained
in the unit cell [0, 1]2. This set is naturally parametrized by

{t = (a, b, r) : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ r ≤ min(a, b, 1− a, 1− b)}
where a 2r by 2r square tree is centered at the point (a, b). More generally we
call a polygon a VH-tree if the sides alternate between vertical and horizontal. For
example a VH-tree with 4 sides is a rectangle, with 6 sides is a figure L. We can
use various subsets of VH-trees, for example all VH-trees with at most 2M sides
(M ≥ 4 fixed) contained in the unit cell. Or we can use the VH-trees with 12
sides and fixed side length r ∈ [1/4, 1/3) (called + signs). Many other interesting
subclasses can be considered.

4) Fix a rational triangle P , and consider the set of all rescalings of P contained
in the unit cell [0, 1]2 oriented in such a way that they have either a vertical or
horizontal side.

5) One can also change the cell structure to the hexagonal tiling and consider ap-
propriate polygonal trees, for example one can use appropriate classes of equilateral
triangular trees or hexagonal trees.
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Appendix A. Minimality of discontinuous maps

In this section we develop in a general context the tools we will use for proving
minimality of maps with singularities.

A.1. Definitions. First, let us make precise the context in which we are using the
definition of minimal map.

Definition. Let X be a locally compact metrizable topological space endowed with
a Borel measure without atoms. Let T : X 99K X be a measure-preserving map.
(The dashed arrow stands for the fact that T is possibly not everywhere defined).
Let us suppose that T sends homeomorphically a complement of a discrete set of
points to a complement of a (possibly different) discrete set of points. We call such
a map eligible.

Remark. If a map T : X 99K X is eligible there exists a set S ⊂ X that is discrete
and such that T restricted to X \ S is an homeomorphism. If S1 and S2 are two
such sets, than S1

⋂S2 is also such a set. Indeed, S1

⋂S2 is discrete and T is a
homeomorphism on X \ (S1

⋂S2) = X \ S1

⋃
X \ S2.

More generally, any intersection of such sets is also such a set. Thus, there exists
a minimal discrete set (w.r.t. inclusion) such that T is a homeomorphism outside
this set.
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Definition. Let T : X 99K X be an eligible map. We call Sing(T ) the minimal
discrete subset of X such that T restricted to X \ Sing(T ) is a homeomorphism.
We call every point in Sing(T ) a singularity of T .

Remark. If T is eligible, then T−1 is also eligible and

Sing
(
T−1

)
= X \ T (X \ Sing(T )) .

Next, we redefine the notions of images and pre-images of sets in a way that
makes clear that we will never apply the eligible transformation on its singular
points.

Definition. Let T : X 99K X be an eligible map. For any A ⊂ X , the image of A
by T is

T (A) := {T (x) : x ∈ A \ Sing(T )}.
The preimage of A by T is its image by T−1, thus:

T−1(A) =
{
T−1(x) : x ∈ A ∩ T (X \ Sing(T ))

}
.

We then define T k(A) by recurrence for any integer k, as follows: T k+1(A) =
T (T k(A)) for any k ≥ 0; T k−1(A) = T−1(T k(A)) for any k ≤ 0.

Remark. The set of singularities, Sing(T ), is closed because it is discrete in a
locally compact space. Thus X \ Sing(T ) and T (X \ Sing(T )) are both open in X .
It follows that, even with this redefined notion of image and preimage, the image
and preimage of an open set are always open. However, we can say nothing about
the closedness of the image, or preimage, of a closed set.

Definition. Let T : X 99K X be an eligible map. Let us consider a point x0 ∈ X .

• The future orbit of this point is the set of all the positive iterates of T on
x0, as long as T is applied to non-singular points. It is noted by O+(x0),
thus:

O+(x0) :=
⋃

k≥0

T k ({x0}) .

• In a similar way, the past orbit is

O−(x0) :=
⋃

k≤0

T k ({x0}) .

• The orbit of a point is the union of its past and future orbit:

O(x0) :=
⋃

k∈Z

T k ({x0}) .

We define the orbit of a set in a similar way. Let A ⊂ X , then

• The future orbit of this set is the collection of all the positive iterates of T
on A. It is noted by O+(x0), thus:

O+(A) := {T k (A) : k ≥ 0}.
• In a similar way, the past orbit is

O−(A) := {T k (A) : k ≤ 0}.
• The orbit of a point is the union of its past and future orbit:

O−(A) := {T k (A) : k ∈ Z}.
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A half orbit is a future or past orbit.
We say that a point orbit or half orbit is singular if it is an orbit or half orbit of

a singular point (a point in Sing(T ) ∪ Sing(T−1)).

Remark that the image of a non-empty set may be empty and an orbit may be
finite.

Definition. Let T : X 99K X be an eligible map. A connection is a finite non-
periodic orbit. Thus, it is both an orbit of a singularity of T and an orbit of a
singularity of T−1.

Remark. If x0 ∈ X is singular for both T and T−1, then {x0} is a connection.

Definition. Let T : X 99K X be an eligible map. We say that T is minimal if and
only if every orbit is dense.

Remark. Let T : X 99K X be an eligible map. If T is minimal and has connections,
then X is finite.

A.2. Equivalent definition of minimality.

Lemma A.1. Let T : X 99K X be an eligible map. Then T is minimal if and only
if the orbit of every open set covers X.

Proof. Suppose that T is minimal. Let U be an open set, then the orbit of ev-
ery point meets U . More precisely, for every x ∈ X , there exists k ≥ 0 such
that either x, T−1(x), . . . , T−k+1(x) are non-singular for T−1 and T−k(x) ∈ U ; or
x, T (x), . . . , T k−1(x) are non-singular for T and T k(x) ∈ U . It follows that for
every x ∈ X there exists an integer k such that x ∈ T k(U). Thus, O(U) is an open
covering of X .

Reciprocally, let us suppose that the orbit of every open set is an open covering
of X . Let us consider x ∈ X and U an open set. Because the orbit of U covers
X , there exists an integer k ≥ 0 such that x ∈ T k(U) or x ∈ T−k(U). So, there
exists u ∈ U such that x = T k(u) and u, T (u), . . . , T k−1(u) are non-singular for T ;
or x = T−k(u) and u, T−1(u), . . . , T−k+1(u) are non-singular for T−1. Thus one
has u = T−k(x) or u = T k(x). Thus T is minimal because the orbit of any point
intersects any open set. �

A.3. Keane’s minimality criterion. Keane has shown that interval exchange
transformations with no connections are minimal [Ke]. Keane’s proves this fact with
the usual convention that the IET is defined at singular points via left continuity.
This convention does not agree with our convention that billiard orbits stop when
they arrive at a corner. Thus we do not define IETs at singular points, this makes an
IET an eligible map. Moreover, Keane considered IETs defined on a single interval
while in our context the arising IETs are naturally defined on a finite disjoint union
of intervals. More precisely:

Definition. An IET is an eligible map T : X 99K X where X ⊂ R is a finite
union of open, bounded intervals whose closures are disjoint, and T is a translation
on each connected component of X \ Sing(T ). We call T reducible if a non-trivial
finite union of connected components of X is invariant, and otherwise we call T
irreducible.
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Figure 6. The two ways I ′ and T j(I ′) can overlap

Remark: the billiard map restricted to Ωg
θ as described in the article is not an

eligible map. The billiard map is defined on a disjoint union of closed intervals, if we
restrict it to the interior of these intervals it becomes an eligible map. Furthermore
if we restrict to the inside of a ringed it is an IET.

Keane’s result remains none the less true with a slight adjustment; for complete-
ness we give a proof here.

Theorem A.2. An aperiodic, irreducible IET T : X 99K X with no connections is
minimal.

The proof of this theorem uses the following lemma (compare with [MaTa, The-
orem 1.8]).

Lemma A.3. Suppose that T : X 99K X is an IET with no connections and
that O+(x) is an infinite non-periodic forward orbit. If I is an open interval with
endpoint x, then O+(x) returns to I.

Proof. Since there are a finite number of singularities, there are a finite number of
trajectories starting at points of I that hit a singularity before crossing I again.
By shortening I to a subinterval I ′ with one endpoint x we can assume that no
trajectory leaving I ′ hits a singularity before returning to I ′. Now consider the
forward iterates T i(I ′). By the definition of I ′, these are intervals of the same
length for each i ≥ 0 until the interval returns and overlaps I ′. The interval I ′

must return and overlap I ′ in a finite time since the total length of X is finite. Let
j be the minimum number of iterates needed until T i(I ′) overlaps I ′. T j(x) 6= x
since x is not periodic.

If T j(x) ∈ I ′, we are done (see Figure 1 left). Otherwise (see Figure 1 right)
it is the trajectory leaving the other endpoint y of I ′ which returns to I ′ at time
j and for some z ∈ I ′ we have T j(z) = x. We now consider the interval I ′′ with
endpoints z and x and apply the previous analysis to it. Orbiting I ′′ in the forward
direction it must return to I ′′ at a certain (minimal) time k > j. We have either
T k(z) ∈ I ′′ or T k(x) ∈ T j(I ′) But the first can not happen since it implies that
T k(x) ∈ T j(I ′), or equivalently T k−j(x) ∈ I ′, which contradicts the minimality of
k. Thus T k(x) ∈ I ′′ as required. �

Proof of Theorem A.2. By way of contradiction suppose there is a non-periodic
infinite trajectory O(x) which is not dense. Let A 6= X be the set of limit points
of O(x). Then A is invariant under the map T . Since A 6= X and T is irreducible
one can choose a trajectory O(y) ⊂ int(X) ∩ A \ int(A) (here the closure and the
interior are taken in R). Note that O(y) ⊂ A since A is closed.

We will show that this trajectory is a saddle connection. We prove this by
contradiction. Suppose it is not true, then O(y) is infinite in at least one of the
two directions. We will show that this implies that there is an open neighborhood
of y contained in A, a contradiction to y being a boundary point. Let I be an open
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interval with y an endpoint. It is enough to show that there exists an open interval
(y, z) ⊂ I which is contained in A. Doing this on both sides will yield our open
neighborhood.

Lemma A.3 implies that O(y) hits I again at some point z. If the interval
(y, z) ⊂ A we are done. Suppose not. Then there exists w ∈ (y, z) which is not in
A. Since A is closed, there is a largest open subinterval I ′ ⊂ (y, z) containing w
which is in the complement of A. Let v be the endpoint of I ′ closest to y. Then,
since A is closed, v ∈ A and the trajectory through v must be a saddle connection.
For if it were infinite in either direction, it would intersect I ′. Since A is invariant,
this contradicts that I ′ misses A. �

Corollary A.4. If T : X 99K X is an aperiodic and irreducible IET with no
connections, then the orbit of every open interval I covers X. Moreover, there

exists K,L such that
⋃L

k=K T k(I) = X.

Proof. The first statement is a direct corollary of Theorem A.2 and Lemma A.1.
To see that the covering happens in finite time we need to use compactness. Let

I denote the closure of I in R and Î := I ∪ ((X \X) ∩ I). Then Î is open in the

induced topology of X̂ = X .
Now consider a ∈ X \X . By the definition of IET any point b ∈ int(X) close

enough to a satisfy that: the open interval J whose endpoints are b and a is included

in X , a is in Ĵ and there is an open interval J ′ ⊂ X \ Sing(T ) such that T (J ′) = J

(so a is in T̂ (J ′) = Ĵ).

By assumption
⋃

k∈Z
T k(I) covers J ′ and J , thus

⋃
k∈Z

T̂ k(I) covers a. Repeating

this for all points a ∈ X \X , it shows that
⋃

k∈Z
T̂ k(I) is a countable open cover

of the compact set X̂ , and thus there exists K,L such that
⋃L

k=K T̂ k(I) is a open

cover of X̂. This immediately implies that
⋃L

k=K T k(I) is an open cover of X . �

A.4. Application to rational polygonal billiards. A polygon P is a compact,
finitely connected, planar domain whose boundary ∂P consists of a finite union of
segments. We play billiards in P , take any point s ∈ ∂P any θ ∈ S1 such that
the vector (s, θ) points into the interior of P ; flow (s, θ) until it hits the boundary
∂P and then reflect the direction with the usual law of geometric optics, angle
of incidence equals angle of reflection to produce the point (s′, θ′) = T (s, θ). T
is called the billiard map, it is not defined if s′ is a corner of the polygon. The
inverse T−1 is defined if s is not a corner. A polygon is called rational if the angle
between any pair of sides is a rational multiple of π. Suppose that the angles are
πmi

ni
with mi and ni relatively prime; let N be the least common multiple of the

ni, and DN be the dihedral group generated by reflections in the lines through the
origin that meet at angle π

N
. Let DN (θ) denote the DN orbit of a direction θ ∈ S1.

The following Theorem is a compilation of the well known results, see for example
[MaTa][Sections 1.5 and 1.7]:

Theorem A.5. Suppose P is a rational polygon.
i) For each θ ∈ S1 any orbit starting in the direction θ only takes directions in the
set DN (θ).
ii) For each θ ∈ S1 the restriction Tθ of the map T to ∂P ×DN (θ) is an interval
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exchange transformation in the sense defined in this appendix.
iii) If θ is non-exceptional, then Tθ is irreducible and has no connections.

Combining this theorem with Corollary A.4 yields

Corollary A.6. If P is a rational polygon and θ is non-exceptional, then the map
Tθ : X → X is minimal, and thus the orbit of every open interval I covers X.

References

[AvHu] A. Avila, P. Hubert, Recurrence for the wind-tree model Annales de l’Institut Henri
Poincaré - Analyse non linéaire.

[Be] A.S. Besicovitch, A problem on topological transformations of the plane. II. Proc. Cambridge
Philos. Soc. 47 (1951) 38–45.

[BiRo] C. Bianca and L. Rondoni, The nonequilibrium Ehrenfest gas: A chaotic model with flat
obstacles? Chaos 19 (2009) 013121 .

[BoGaKrTr] M. Boshernitzan, G. Galperin, T. Krüger, S. Troubetzkoy Periodic billiard orbits are
dense in rational polygons Trans. Am. Math. Soc. 350 (1998) 3523–3535.

[De] V. Delecroix, Divergent trajectories in the periodic wind-tree model J. Mod. Dyn. 7 (2013)
1–29.

[DeCoVB] C. P. Dettmann, E. G. D. Cohen, H. van Beijeren Statistical mechanics: Microscopic
chaos from brownian motion? Nature 401, 875 (1999) doi:10.1038/44759

[EhEh] P. and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik
Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The
conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.),
10-13 Cornell University Press, Itacha NY, (1959).

[FrUl] K. Frączek, Krzysztof, K. Ulcigrai, Non-ergodic Z-periodic billiards and infinite translation
surfaces Invent. Math. 197 (2014) 241–298.

[Ga] G. Gallavotti, Divergences and the Approach to Equilibrium in the Lorentz and the Wind-
Tree Models Phys. Rev. 185 (1969) 308–322.

[Go] W.H. Gottschalk, Orbit-closur decompositions and almost periodic properties Bull. AMS 50
(1944) 915–919.

[HaWe] J. Hardy, J. Weber, Diffusion in a periodic wind-tree model J. Math. Phys. 21 (1980)
1802–1808.

[HaCo] E.H. Hauge, E.G.D. Cohen, Normal and Abnormal Diffusion in Ehrenfest’s Wind-Tree
Model J. Math. Phys. 10 (1969) 397–414.

[HuWe] P. Hubert, and B. Weiss, Ergodicity for infinite periodic translation surfaces Compos.
Math. 149 (2013) 1364–1380.

[HoHuWe] P. Hooper, P. Hubert, and B. Weiss, Dynamics on the infinite staircase Discrete
Contin. Dyn. Syst. 33 (2013) 4341–4347.

[HuLeTr] P. Hubert, Pascal, S. Lelièvre, and S. Troubetzkoy, The Ehrenfest wind-tree model:
periodic directions, recurrence, diffusion J. Reine Angew. Math. 656 (2011) 223–244.

[DeHuLe] V. Delecroix, P. Hubert, Pascal, S. Lelièvre. Diffusion for the periodic wind-tree model
Ann. Sci. ENS 47 (2014) 1085–1110.

[KaZe] A. Katok and A. Zemlyakov, Topological transitivity of billiards in polygons Math. Notes
18 (1975) 760–764.

[Ke] M. Keane, Interval exchange transformations Math. Z. 141 (1975) 25–31.
[MS] A. Málaga Sabogal, Étude d’une famille de transformations préservant la mesure de Z× T

Thèse Paris 11, 2014.
[MMY] S. Marmi, P. Moussa and Y.-C. Yoccoz, The cohomological equation for Roth-type interval

exchange maps J. AMS 18 (2005) 823–872.
[MaTa] H. Masur and S. Tabachnikov, Rational billiards and flat structures Handbook of dynam-

ical systems, Vol. 1A, 1015–1089, North-Holland, Amsterdam, 2002.
[RaTr] D. Ralston, S. Troubetzkoy, Ergodic infinite group extensions of geodesic flows on trans-

lation surfaces J. Mod. Dyn. 6 (2012) 477–497.
[Tr] S. Troubetzkoy, Approximation and billiards Dynamical systems and Diophantine approxi-

mation, 173–185, Semin. Congr., 19, Soc. Math. France, Paris, 2009.
[Tr1] S. Troubetzkoy, Typical recurrence for the Ehrenfest wind-tree model J. Stat. Phys. 141

(2010) 60–67.



19

[Ve] W.A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to
triangular billiards Inventiones Mathematicae 97 (1989) 553–583.

[Vo] Y. Vorobets, Periodic geodesics on translation surfaces arXiv:math/0307249
[VBHa] H. Van Beyeren and E.H. Hauge, Abnormal diffusion in Ehrenfest’s wind-tree model

Physics Letters A 39, (1972) 397–398.
[WoLa] W. Wood and F. Lado, Monte Carlo calculation of normal and abnormal diffusion in

Ehrenfest’s wind-tree model J. Comp. Physics 7 (1971) 528–546.

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453

Marseille, France

Address: I2M, CMI, 39 rue Joliot-Curie, F-13453 Marseille Cedex 13, France
E-mail address: alba.malaga-sabogal@univ-amu.fr

E-mail address: alba.malaga@polytechnique.edu

Address: I2M, Luminy, Case 907, F-13288 Marseille CEDEX 9, France
E-mail address: serge.troubetzkoy@univ-amu.fr


	1. Introduction
	2. Statements of Results
	3. Notations and preparatory remarks
	4. Proof of Minimality in Theorem 2.1
	5. Proof of the existence of escape orbits.
	6. Proof of density and local density of periodic points
	7. Generalizations
	8. Acknowledgements.
	Appendix A. Minimality of discontinuous maps
	A.1. Definitions
	A.2. Equivalent definition of minimality
	A.3. Keane's minimality criterion
	A.4. Application to rational polygonal billiards

	References

