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Abstract- The aim of this paper is to build a new nonlinear and nonseparable multiscale

representations of piecewise continuous bidimensional functions. This representation is based

on the definition of a linear projection and a nonlinear prediction operator which locally adapts

to the function to be represented. This adaptivity of the prediction operator proves to be very

interesting for image encoding in that it enables to considerably reduce the number of

significant coefficients compared with other representations. Applications of these new

nonlinear multiscale representation to image compression and super-resolution conclude the

paper.
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I. INTRODUCTION

For the last decade, research have been carried out to improve multiscale image representation by

departing from traditional linear tensor product (bi)orthogonal wavelet representations. In spite these are

known not to be optimal in terms of the number of non zero detail coefficients they generate, they are

supported by powerful encoders such as EZW [1] or EBCOT [2] and then by optimal quantizers making

them very efficient for image compression. Nevertheless, the fact that wavelet representations generate

too many detail coefficients has motivated new research toward more compact representations as for

instance:

• Frames having some anisotropic directional selectivity, such as curvelets [3] and contourlets [4].

• Bandlets [5] based on tensor products of wavelet bases combined with locally adapted edge operators.

• Edgeprint approximations [6], using wavelet expansions that are computed in the vicinity of an edge,

according to a wedge function which locally fits the image.

In all these approaches and in order to take into account the presence of an edge, the multiscale

structure is changed. We introduce here a new type of nonlinear multiscale image representation based

on cell-average discretization that accurately represents edges with a reduced number of detail coefficients

compared with wavelet transforms and keeps the same quadtree structure as the latter. The main difference

with respect to wavelet representations is that detail coefficients are computed by means of a local and

nonlinear prediction operator.

The new nonlinear multiscale representation (NMR) we introduce in this paper is based on cell-

average discretization and is close to essentially non oscillatory edge adapted (ENO-EA) method which

was previously discussed in [7]. First, we recall the general framework for NMR in the cell-average

discretization context in Section II. Then, we define a new local and nonlinear prediction operator in

Section V that relies both on a novel bidimensional edge detection strategy detailed in Section III and on

a new techniques for edge parameters estimation described in Section IV. Numerical simulations showing

the compactness of a NMR based on such a prediction operator along with its potential use for image

compression and super-resolution conclude the paper.

II. HARTEN’S NONLINEAR MULTISCALE REPRESENTATION

A. Harten introduced in [8] a strategy to construct NMRs based on two interscale discrete operators,

called projection and prediction operators respectively denoted by P j
j−1 and P j−1

j in the sequel.

Assuming an image is some function v defined on [0, 1]2 and vj its approximation on the grid

(2−jk1, 2
−jk2), 0 ≤ k1, k2 ≤ 2j − 1, one first defines a linear projection operator P j

j−1 acting from
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fine to coarse levels, i.e. , vj−1 = P j
j−1v

j . In the cell-average framework this operator is completely

characterized since vjk is a rescaled version of a local cell-average of v computed as:

vjk = 22j
∫
Cj

k

v(x, y)dx dy, (1)

with Cj
k = [2−jk1, 2

−j(k1 + 1)]× [2−jk2, 2
−j(k2 + 1)], where k = (k1, k2). In what follows, Cj

k will be

called a cell. From this, one infers that the projection operator reads:

vj−1k =
1

4

(
vj2k + vj2k+e1

+ vj2k+e2
+ vj2k+e1+e2

)
, (2)

where e1 and e2 are unit vectors oriented to the right and upward, respectively. The prediction operator

P j−1
j acts from coarse to fine levels by computing an ’approximation’ v̂j of vj from vj−1, i.e. v̂j =

P j−1
j vj−1. This operator may be nonlinear. Besides, one assumes that these operators satisfy the following

consistency property:

P j
j−1P

j−1
j = I, (3)

i.e. the projection of v̂j coincides with vj−1:

vj−1k =
1

4

(
v̂j2k + v̂j2k+e1

+ v̂j2k+e2
+ v̂j2k+e1+e2

)
. (4)

The prediction error ej := vj − v̂j thus satisfies from (3):

P j
j−1e

j = P j
j−1v

j − P j
j−1v̂

j = vj−1 − vj−1 = 0.

Hence, ej ∈ Ker(P j
j−1) and using a basis E of this kernel, one writes ej in a non-redundant way to obtain

the detail coefficients dj−1 satisfying ej = Edj−1. vj is thus completely equivalent to (vj−1, dj−1). In

practice, this non-redundancy means the size of the data is preserved through decomposition. Iterating

the proposed nonlinear procedure from the initial data vJ (meaning we assume the size of the original

image is 2J × 2J ), we obtain its NMR

MvJ = (v0, d0, . . . , dJ−1). (5)

One says that a prediction operator reproduces bidimensional polynomials of global degree N , if

dj = 0 when v = p with p(x, y) =
∑

0≤i,j≤N
pi,jx

iyj . Linear and nonlinear prediction operators satisfying

polynomial reproduction have been extensively used for image encoding [7]. In the present paper, we are

interested in building a new type of nonlinear prediction operator that generate very few detail coefficients

when v are some kind of bidimensional piecewise polynomials.

March 20, 2015 DRAFT



4

III. EDGE DETECTION

To start with, we shall say that we consider edge detection at level j−1 since the prediction at level j

is based only on the information available at level j− 1. In this section, we consider step-edges modeled

by straight lines separating regions with constant gray level, that is on a cell Cj−1
k containing an edge

the function v is supposed to have the form

v(x, y) = Aχ{y≥h(x)}(x, y) +Bχ{y<h(x)}(x, y), (6)

with h(x) = mx+ n and χC(x, y) the indicator function of C, A and B being some constants.

The edge detection mechanism makes use of the one dimensional cost functions whose descriptions

follow:

Hj−1
k := |vj−1k − vj−1k−e1 |+ |v

j−1
k+e1

− vj−1k | (7)

V j−1
k := |vj−1k − vj−1k−e2 |+ |v

j−1
k+e2

− vj−1k |. (8)

For each k one defines:

lh,k = argmin
l

{
Hj−1

k+le1
, l ∈ {−1, 0, 1}

}
(9)

lv,k = argmin
l

{
V j−1
k+le2

, l ∈ {−1, 0, 1}
}
. (10)

As we will use different strategies depending on the orientation of the edge, we need an estimate of the

latter. To this end, we define:

Hj−1
k,1 = (vj−1k+e2−e1 + 2vj−1k+e2

+ vj−1k+e2+e1
)− (vj−1k−e2−e1 + 2vj−1k−e2 + vj−1k−e2+e1

)

V j−1
k,1 = (vj−1k+e2−e1 + 2vj−1k−e1 + vj−1k−e2−e1)− (vj−1k+e2+e1

+ 2vj−1k+e1
+ vj−1k−e2+e1

)

and then estimate the edge orientation by mj−1
k :=

V j−1
k,1

Hj−1
k,1

, if Hj−1
k,1 is non zero and by ±∞ otherwise,

depending on the sign of V j−1
k,1 . One then considers the set Ej−1 of cells Cj−1

k satisfying either:

a) lh,k−e1 = −1 and lh,k+e1 = 1

b) Hj−1
k > Hj−1

k−e1 and Hj−1
k > Hj−1

k+e1
,

c) mj−1
k > 1 (11)
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or

a) lv,k−e2 = −1 and lv,k+e2 = 1

b) V j−1
k > V j−1

k−e2 and V j−1
k > V j−1

k+e2
,

c) mj−1
k ≤ 1. (12)

This means that when the slope of the edge is estimated to be larger than 1 the edge detection is performed

horizontally and vertically otherwise. In the case of the step-edge model described by (6), it is easy to

k+2ek−2e k+ek−e k k+e
1 1

1 1

A

k+2ek−2e k+ek−e k k+e
1 1

1 1

B

Fig. 1. A: step-edge crossing cell Cj−1
k ; B: step-edge crossing cells Cj−1

k and Cj−1
k+e1

.

check that a cell containing an edge actually satisfies properties (11) a) or (12) a), depending on the

slope of the edge. As an illustration of property (11) a), we display on Figure 1 a step-edge crossing

either one or two successive cells. In such cases, lh,k−e1 = −1 and lh,k+e1 = 1 because the cell-average

differences are smaller when one moves away from the step-edge. It is worth noting here that when the

edge crosses three or more successive cells horizontally, (12) is used insted because then mj−1
k is smaller

than 1. Furthermore, requirement (11) b) enables to localize the edge on a single cell as we now prove.

Without loss of generality, we consider an edge with a slope larger than one crossing Cj−1
k then we have

the following result:

Lemma 3.1: Assume that v is a step-edge function with amplitude δ as defined in (6) with a slope

larger than one crossing Cj−1
k . If among Cj−1

k−e1 , C
j−1
k , Cj−1

k+e1
only Cj−1

k is actually crossed by the edge,

then only Cj−1
k belongs to Ej−1 otherwise if two cells among Cj−1

k−e1 , Cj−1
k , or Cj−1

k+e1
are crossed by

the edge then again only one of these cells belongs to Ej−1.

Proof: We consider two different cases separately:

Case 1. Only Cj−1
k is crossed by the edge. Since we have

Hj−1
k = |vj−1k+e1

− vj−1k |+ |vj−1k − vj−1k−e1 | = δ, (13)
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and

|vj−1k+2e1
− vj−1k+e1

| = 0 or |vj−1k−e1 − v
j−1
k−2e1 | = 0. (14)

It follows that Hj−1
k−e1 < Hj−1

k and Hj−1
k > Hj−1

k+e1
. Now, since Hj−1

k−2e1 = 0 and Hj−1
k+2e1

= 0, lh,k−e1 = −1

and lh,k+e1 = 1, which means that Cj−1
k belongs to Ej−1.

Case 2. Cells Cj−1
k and Cj−1

k+e1
are crossed by the edge. Then, we have Hj−1

k−e1 < Hj−1
k and Hj−1

k+2e1
<

Hj−1
k+e1

. When Hj−1
k > Hj−1

k+e1
, then lh,k−e1 = −1 and lh,k+e1 = 1, meaning that Cj−e1

k is an Ej−1 cell

else if Hj−1
k+e1

< Hj−1
k , Cj−1

k+e1
belongs to Ej−1. The same reasoning could be made when the two cells

crossed by the edge are Cj−1
k−e1 and Cj−1

k .

Note that we could have written a similar lemma assuming the edge slope to be smaller than one. On

the contrary, if we used only (11) a) an c) then for cases corresponding to Figure 1 B, the edge could

be localized on two successive cells.

Finally, from the set Ej−1 we define the subset:

Ej−1 =
{
Cj−1
k ∈ Ej−1, Cj−1

k−e1+e2
, Cj−1

k+e1−e2 /∈ E
j−1 if mj−1

k > 0, Cj−1
k+e1+e2

, Cj−1
k−e1−e2 /∈ E

j−1 if mj−1
k < 0

}
(15)

Considering

Ej−1
V =

{
Cj−1
k ∈ Ej−1 s. t. |mj−1

k | ≥ 1
}

Ej−1
H =

{
Cj−1
k ∈ Ej−1 s. t. |mj−1

k | < 1,
}
.

we have Ej−1 = Ej−1
H ∪ Ej−1

V which we call the set of edge-cells in what follows. An illustration of

the extra constraint put on Ej−1 to obtain Ej−1 is shown on Figure 2 A, when mj−1
k > 0. We need to

remark that to define Ej−1 as we did is crucial since if it were defined using only (11) a) and c) or (12)

a) and c) false detections create holes in the set Ej−1 where there should be a continuum of cells as

shown on Figure 2 C. This does not happen when the Ej−1 is defined using (11) a)-c) or (12) a)-c) (see

Figure 2 D). Finally, we also notice that adding conditions (11) b) and (12) b) improves the robustness

of the detection since we get much less false detections inside smooth regions (compare again Figure 2

C and D). By using this new edge detector, we remove some false detections but also some real ones ;

we will see later how to recover the latter.

IV. ESTIMATION OF EDGE PARAMETERS AND DEFINITION OF S-CELLS

We assume in this section that Cj−1
k is an edge-cell and we consider the more general step-edge model

for function v inside Cj−1
k , i.e.

v(x, y) := a(x, y)χD(x, y) + b(x, y)χDc(x, y), (16)
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edge

UL

DR

A B

C D

Fig. 2. A: illustrates how the set Ej−1 is built when mj−1
k > 0, the cells denoted by UL (for upper left) and DR (for down

right) should not belong to Ej−1; B: 512 × 512 image of peppers; C: cells in Ej−1 computed at level J − 1 from image B

using only (11) a) and c) or (12) a) and c) at level J − 1; D: idem as C but using (11) a)-c) or (12) a)-c) to compute edge-cells.

where D = {(x, y), y ≥ h(x)} and Dc = Cj−1
k \D. h(x) will either be approximated by a straight line

p1,k(x) = lx+ q or by a second order polynomial p2,k(x) = mx2 + nx+ p, where index k indicates the

polynomial is different at each location k. As for a(x, y) and b(x, y), they will either be approximated

by constants A and B or by biquadratic polynomials pa,k and pb,k, i.e. pa,k(x, y) =
∑

0≤i,q≤2
ai,qx

iyq ( pb,k

being defined similarly from coefficients bi,q). We will see later in which instances the analysis benefits

from considering a curve model for the edge and non constant pa,k and pb,k. Regarding the edge model,

we shall say that the approach proposed in [7], subsequently denoted by ENO-EA, involves constant

approximations for a(x, y) and b(x, y) and edges locally modeled by straight lines. Nevertheless, this
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model is only valid when the scale of study 2−j+1 is lower than some critical scale hc whose definition

is now recalled for the sake of consistency [7]. Let v be a piecewise smooth function containing a curved

edge I . For a cell Cj−1
k crossed by I one defines its neighborhood Dj−1

k by

Dj−1
k :=

{
Cj−1
k+me1+ne2

,m, n ∈ {−1, 0, 1}
}
, (17)

and given an arclength parameterization γ(t) of I , one considers

Ij−1k = {t; γ(t) ∈ Dj−1
k },

the set of values t for which I crosses Dj−1
k . Following [7], the critical scale of detection is given by

1

hc
:=

supDj−1
k \I ‖∇v(x, y)‖

supIj−1
k
‖[v](t)‖

+ sup
Ij−1
k

|γ′′(t)|, (18)

where ‖[v](t)‖ is the amplitude of the step at γ(t). Our goal is to show that, as in practical situations

such as image analysis one cannot fix the scale of study to a value smaller than hc, it is worth considering

more complex edge models than straight lines. This aspect will become clearer in the numerical section.

A. Estimation of Edge Parameters with ENO-EA Method

In ENO-EA method, function h(x) is estimated by an affine polynomial p1,k computed on Cj−1
k

belonging to Ej−1
V and assuming mj−1

k is positive as follows (the same kind of computation can easily

be transposed to any other cases). To estimate h(x) one needs two different points which are obtained

using the following arguments. Assuming Cj−1
k−2e1 and Cj−1

k+2e1
are not crossed by an edge, one has the

following consistency property:

vj−1k−e1 + vj−1k + vj−1k+e1
= x0v

j−1
k−2e1 + (3− x0)vj−1k+2e1

. (19)

To explain where this consistency property comes from, we refer to Figure 3 A on which y0 = 1
2 so that

the two hatched areas filled with dotted lines are equal. This implies that the normalized integral of v on

the union of Cj−1
k−e1 , Cj−1

k and Cj−1
k+e1

, i.e. vj−1k−e1 + vj−1k + vj−1k+e1
, is equal to x0v

j−1
k−2e1 + (3− x0)vj−1k+2e1

because, in ENO-EA method, v is supposed to be piecewise constant on each side of the edge, i.e.

vj−1k−2e1 = A and vj−1k+2e1
= B. So, in that framework and taking into account the scale factor, we get

that the edge passes through (k1−1+x0

2j−1 , k2+1/2
2j−1 ). Now, we remark that since mj−1

k > 1, the edge crossing

Cj−1
k can only cross, on the row indexed by k2 + 1, Cj−1

k+e2
, Cj−1

k+e1+e2
and Cj−1

k+2e1+e2
and, on the row

indexed by k2−1, Cj−1
k−2e1−e2 , Cj−1

k−e1−e2 and Cj−1
k−e2 (see Figure 3 B). We define two points N and P using

consistency rules of type (19) on rows indexed by k2 + 1 and k2− 1 respectively. h(x) is then defined as

the straight line passing through N and P . Also, with this method, one considers pa,k(x, y) = vj−1k−e1+e2

and pb,k(x, y) = vj−1k+e1−e2 (the situation being summarized on Figure 3 B).
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Fig. 3. A: Illustration of the consistency property on the rows, the digits above the figure correspond to the scale for x0; B:

Cells involved in the computation of edge parameters along with actual edge.

B. New Estimation of Edge Parameters

In the following sections we will make extensive used of the unique biquadratic polynomial pk

interpolating the average of v on the cells making up Dj−1
k and defined as follows:

vj−1k+le1+pe2
= 22(j−1)

∫
Cj−1

k+le1+pe2

pk(x, y) dxdy l, p ∈ {−1, 0, 1}. (20)

1) Computation of polynomials pa,k(x, y) and pb,k(x, y): we here explain how we compute pa,k(x, y)

and pb,k(x, y)) on Cj−1
k in Ej−1

V assuming mj−1
k is positive (the same kind of computation could be

carried out in the other cases). We first consider that the studied cell is such that (see Figure 4 A for an

illustration): (
Dj−1

k+2(e2−e1) ∪D
j−1
k+2(e1−e2)

)
∩ Ej−1 = ∅. (21)

If (21) is satisfied, polynomials pa,k and pb,k are respectively defined as pk−2e1+2e2 and pk+2e1−2e2 (where

pk was introduced in (20)). Note that if a(x, y) and b(x, y) are actually biquadratic polynomials on each

side of the edge then pa,k = a and pb,k = b. When (21) is not satisfied, we put pa,k(x, y) = A and

pb,k(x, y) = B, with A = vj−1k−e1+e2
and B = vj−1k+e1−e2 .

2) Estimation of h(x): to estimate h(x) when it is modeled by p2,k(x) on Cj−1
k in Ej−1

V , still assuming

mj−1
k is positive, we define three points N , M and P on the rows indexed by k2 + 1, k2 and k2 − 1

respectively by using a generalization of rule (19). It is important to remark here that, by analogy, points

N , M and P could be computed using consistency property of type (19) on the columns indexed by

k1 − 1, k1 and k1 + 1 for cells in Ej−1
H (this can be viewed as the transposed situation to the studied

case).
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Let us write down the generalization of the consistency rule (19) on the row indexed by k2. We first

integrate polynomials pa,k and pb,k with respect to y to define:

Aj−1
q,k (x) :=

∫ q+1

2j−1

q

2j−1

pa,k(x, y) dy, Bj−1
q,k (x) :=

∫ q+1

2j−1

q

2j−1

pb,k(x, y) dy, (22)

and then compute the abscissa xM of M through the following consistency rule:

vj−1k−e1 + vj−1k + vj−1k+e1
= Lj−1

k1,k2
(xM ) (23)

where:

Lj−1
k1,k2

(xM ) := 22(j−1)

(∫ k1−1+xM
2j−1

k1−1

2j−1

Aj−1
k2,k

(x) dx+

∫ k1+2

2j−1

k1−1+xM
2j−1

Bj−1
k2,k

(x) dx

)
. (24)

From Equation (23), xM is a root on [0, 3] of a third order polynomial. The motivation for integrating

biquadratic polynomials pk,a and pk,b in the vertical direction is the remark that in images the grey level

often varies smoothly along the edge. Also, this enables us to simplify the search for point M into a

one-dimensional problem. Indeed, we again define yM := k2+1/2
2j−1 and use the same arguments as in the

piecewise constant case (see Section IV-A) to justify this new consistency rule. This means that point

M is not on the edge curve but sufficiently close to it to bring significant improvement in terms of edge

estimation compared with a straight line estimation as we will see in the numerical section.

Then, similarly to what was done in the ENO-EA case, if one assumes the slope of the edge does not

vary too rapidly along the vertical direction, potential edge-cells on the row indexed by k2 + 1 (resp.

k2 − 1) are Cj−1
k+e2

, Cj−1
k+e1+e2

and Cj−1
k+2e1+e2

(resp. Cj−1
k−2e1−e2 , Cj−1

k−e1−e2 and Cj−1
k−e2 , see Figure 4 B for

an illustration). Consistency rule (23) on rows indexed by k2 + 1 and k2 − 1 then respectively read

vj−1k+e2
+ vj−1k+e2+e1

+ vj−1k+e2+2e1
= Lj−1

k1+1,k2+1(xN )

vj−1k−e1−2e2 + vj−1k−e2−e1 + vj−1k−e2 = Lj−1
k1−1,k2−1(xP ), (25)

so that both xN and xP are roots of third order polynomials on [0, 3] and yN = k2+3/2
2j−1 while yP = k2−1/2

2j−1 .

We shall finally stress that to define all these consistency rules, we use polynomials pa,k and pb,k on

each of the rows indexed by k2 − 1, k2 and k2 + 1.

When (21) is not satisfied, to take into account a potential variation of the gray level in the direction

of the edge, we adopt the following strategy:

• Aj−1
k2+1,k(x) is replaced by 2−2(j−1)vj−1k−e1+e2

and Bj−1
k2+1,k(x) by 2−2(j−1)vj−1k+3e1+e2

in Lk1+1,k2+1(xN )

provided Cj−1
k−e1+e2

, Cj−1
k+3e1+e2

/∈ Ej−1.

• Aj−1
k2,k

(x) is replaced by 2−2(j−1)vj−1k−2e1 and Bj−1
k2,k

(x) by 2−2(j−1)vj−1k+2e1
in Lk1,k2

(xM ) provided

Cj−1
k−2e1 , C

j−1
k+2e1

/∈ Ej−1.
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• Aj−1
k2−1,k(x) is replaced by 2−2(j−1)vj−1k−3e1−e2 and Bj−1

k2−1,k(x) by 2−2(j−1)vj−1k+e1−e2 in Lk1−1,k2−1(xP )

provided Cj−1
k−3e1−e2 , C

j−1
k+e1−e2 /∈ E

j−1.

Note that this framework is easily transposable to Ej−1
V cells associated with negative mj−1

k . Indeed,

the same reasoning as previously could be carried out remarking the cells potentially containing an edge

in that case are those indicated on Figure 4 C (assuming the central cell is Cj−1
k ).

While trying to compute edge parameters we determine a subset Ẽj−1 of Ej−1 corresponding to the

edge-cells for which the parameters are actually computable, so that Ej−1 = Ẽj−1 ∪ Dj−1. It is worth

remarking here that T-junctions are edges with locally high curvature will be contained in the set Dj−1

because these edge cells are typically outside the proposed step-edge model.

C. Definition of S-cells

In our formalism, S-cells are going to be the cells actually crossed by an edge for which the computation

of the edge parameters is possible. The set of S-cells will definitely contain Ej−1 but much more cells

are crossed by an edge as explained earlier. To build the set of S-cells, we proceed iteratively starting

from Ẽj−1 and using the parameters of the edge computed on the cells making up that set. To explain

how we proceed, we consider the case of a cell Cj−1
k in Ẽj−1 ∩ Ej−1

V . As already noticed above, the

studied edge can also potentially cross cells Cj−1
k−e1 and Cj−1

k+e1
. One then just checks whether the edge

estimated on cell Cj−1
k crosses one of the latter. If so, one tries to recompute the parameters of the edge

on this cell and if it is successful this cell is added to the set of S-cells. The same kind of procedure is

applied to the set of cells Ẽj−1 ∩Ej−1
H for which we check whether the edge computed on Cj−1

k crosses

Cj−1
k−e2 or Cj−1

k+e2
.

Finally, because the addition of new S-cells is based only on a estimate of the edge parameters, we

may add cells in such a way that some S-cells Cj−1
k such that mj−1

k > 0 have neighbors Cj−1
k−e1+e2

and

Cj−1
k+e1−e2 also considered as S-cells. To do away with this cases and when mj−1

k > 1 we keep Cj−1
k in

the set of S-cells if Hj−1
k > Hj−1

k−e1+e2
and Hj−1

k > Hj−1
k+e1−e2 and when mj−1

k < 1, we keep Cj−1
k in

the set if V j−1
k > V j−1

k−e1+e2
and V j−1

k > V j−1
k+e1−e2 . The same kind of reasoning is made when mj−1

k is

negative.

V. DEFINITION OF THE NONLINEAR PREDICTION OPERATOR

Once we have determined S-cells, the other cells are automatically labelled by O. In the following

sections, we detail how we build the prediction operator knowing the nature of the cells and their

corresponding edge parameters (for S-cells).
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Fig. 4. A: The upper and lower hatched regions represent the neighborhood Dj−1
k−e1+e2

and Dj−1
k+e1−e2

respectively used to

compute pa,k and pb,k when condition (21) is satisfied; B: points M,N,P along with the polynomial p2,k(x) = mx2 +nx+p

interpolating these points, the hatched zone corresponds to the region potentially crossed by the edge; C: The hatched region

corresponds to the cells that may be intersected by the edge when mj−1
k is smaller than -1.

A. Prediction on O-cells

To build the prediction operator on Cj−1
k supposed to be an O-cell, we use a biquadratic polynomial

pk∗ approximating function v which is built by interpolation of the average of v on the cells making up

stencil Dj−1
k∗ . To find the latter, ENO-EA method needs the definition of F j−1

k = Hj−1
k,2 + V j−1

k,2 where

Hj−1
k,2 :=

1∑
p=−1

| vj−1k−e1+pe2
− vj−1k+pe2

|+ | vj−1k+pe2
− vj−1k+e1+pe2

|

V j−1
k,2 :=

1∑
l=−1

| vj−1k+le1−e2 − v
j−1
k+le1

|+ | vj−1k+le1
− vj−1k+le1+e2

|,

which corresponds to the sum of all the moduli of the first order vertical and horizontal finite differences

on the stencil Dj−1
k . ENO-EA method [9] finds k∗ associated with the least oscillatory 3 × 3 stencil

containing Cj−1
k , i.e.:

k∗ = argmin
q

{
F j−1
q , q = k + le1 + pe2 l, p ∈ {−1, 0, 1}

}
. (26)

However, it is well known that this method for stencil selection is particularly unstable since a slight

change in the data may entail a change of stencil. To overcome this problem, we put k∗ = k when Dj−1
k

does not contain a S-cell. In other cases, rather than using the cost function F j−1
k , we preferentially use

the following strategy that minimizes the displacement with respect to the centered stencil:
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• Find k∗ associated with the first (if any) stencil in the list {Dj−1
k−e2 , D

j−1
k+e1

, Dj−1
k+e2

, Dj−1
k−e1} not

containing any S-cells.

• If no stencil is selected by the above process, find k∗ associated with the first (if any) stencil in the

list {Dj−1
k+e1+e2

, Dj−1
k+e1−e2 , D

j−1
k−e1−e2 , D

j−1
k−e1+e2

} not containing any S-cells.

If the above mechanism does not find any suitable stencil, we again put k∗ = k. By using such a procedure

based on the location of S-cells instead of F j−1
k , we no longer use a cost function to determine the stencils

we use for prediction on O-cells. Note also that to choose the stencil Dj−1
k∗ for prediction, means that

we define polynomial pk∗ to predict that is:

v̂j2k+le1+qe2
= 22j

∫
Cj

2k+le1+qe2

pk∗(x, y) dxdy, l, q ∈ {0, 1}.

To illustrate this procedure, in the case of a straight line edge, we display on Figure 5 A, S-cells labeled

by 3, O-cells on which stencil Dj−1
k is used to predict labeled by 1 and by 2 the O-cells on which stencil

Dj−1
k∗ is used instead.

B. Prediction on S-cells

We now present the prediction scheme on a S-cell when we model the step-edge by a second order

polynomial and the image on each side of the edge by a biquadratic polynomial. We first consider

Cj−1
k ∈ Ẽj−1 associated with two biquadratic polynomials pa,k and pb,k and an edge equation modeled

by second order polynomial p2,k. These parameters define an approximation of v inside Cj−1
k of the

form:

pS(x, y) := pa,k(x, y)χ{y≥p2,k(x)}(x, y) + pb,k(x, y)χ{y<p2,k(x,y)}(x, y). (27)

We then estimate the average at level j, on the four subcell of cell Cj−1
k by:

v̂j2k+le1+qe2
= 22j

∫
C2k+le1+qe2

pS(x, y) dxdy, l, q ∈ {0, 1}.

The prediction based on the piecewise biquadratic polynomial pS is however not strictly speaking

consistent with (4) because p2,k is only an estimate of the real edge. Therefore, we force the prediction

into being consistent on Cj−1
k by defining ma, mb, mc and md the final prediction on the four subcells

of Cj−1
k (as depicted on Figure 5 B) as follows. If mj−1

k is positive and if pS(k1+1/2
2j−1 , k2+1/2

2j−1 ) =

pb,k(k1+1/2
2j−1 , k2+1/2

2j−1 ), we are in the situation depicted on Figure 5 B, and we put:

ma := v̂j2k, md := v̂j2k+e1
, mc := v̂j2k+e1+e2

, mb = 4vj−1k − (ma +mb +mc). (28)
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On the contrary, when pS(k1+1/2
2j−1 , k2+1/2

2j−1 ) = pa,k(k1+1/2
2j−1 , k2+1/2

2j−1 ), we leave ma, mb and mc unchanged

and use (4) to define md. The same kind of computation could be made when mj−1
k is negative. It is

important to remark that when the edge intersects only one of the four subcells, such a procedure enables

to compensate for the lack of accuracy in the determination of the location of the edge.
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Fig. 5. A: illustration in the case of a straight line edge of the different type of cells (3: S-cells, 2: O-cells associated with

shifted stencil for prediction, 1: O-cells associated with centered stencil for prediction); B: illustration of the procedure to ensure

that the prediction satisfies (4).

C. Nonlinear Multiscale Representation

Once a prediction operator has been defined, to obtain a non redundant representation one rewrites the

prediction error in a basis of the projection operator. Denoting ejk := vjk − v̂
j
k, the consistency property

satisfied by the prediction operator implies:

ej2k + ej2k−e1 + ej2k−e2 + ej2k−e1−e2 = 0,

and then we rearrange the prediction error into detail coefficients as follows:

d1,j−1k :=
1

4
(ej2k−e1−e2 − e

j
2k−e2 + ej2k−e1 − e

j
2k)

d2,j−1k :=
1

4
(ej2k−e1−e2 + ej2k−e2 − e

j
2k−e1 − e

j
2k)

d2,j−1k :=
1

4
(ej2k−e1−e2 − e

j
2k−e2 − e

j
2k−e1 + ej2k).

One can then easily check that d1,j−1, d2,j−1 and d3,j−1 respectively correspond to detail coefficients in

the horizontal, vertical and oblique directions, so that we have the same representation as in the orthogonal
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wavelet transform. This also implies that we should be able to use powerful encoders such as EZW [1]

to encode the decomposition since these encoders are designed for such a quadtree structure.

VI. EXPERIMENTAL RESULTS

In the previous section, we defined the prediction operator on O-cells using biquadratic polynomials

based on a stencil either centered or shifted and on S-cells using piecewise polynomials. Our goal is here

to investigate how different choices for prediction operator impact the NMR. To this end, we consider

NMRs built either assuming the image is piecewise constant on each side of a straight line edge (the

parameters of the edge being in that case computed using the ENO-EA strategy detailed in Section IV-A).

The associated prediction will be denoted by SR1 in the simulations, SR standing for subcell resolution.

We can also assume that the image is piecewise constant on each side of a curved-edge locally modeled

by a second order polynomial (prediction denoted by SR2) or finally by a biquadratic polynomial on each

side of a curved-edge (prediction denoted by SR3). The idea motivating the use of nonlinear prediction

operators is to drastically reduce the number and the amplitude of detail coefficients generated by the

presence of edges. We first illustrate this by studying the decay of detail coefficients on various synthetic

images. Then, we investigate the NMR performance in terms of compression using an adapted version

of EZW algorithm [1]. Finally, we show how our approach can be used for super resolution problems.

Since most image processing algorithms are designed for L2-normalized transform and since the studied

NMR are L1-normalized, we first define the renormalized representations as follows:

M̃v = (2J−1v0, 2J−1d0, ..., 2p−1dJ−p, ..., dJ−1). (29)

A. Comparison of NMRs on Synthetic Images: Decay of Detail Coefficients

In this section, we perform several numerical tests to illustrate the faster decay of the renormalized

detail coefficients when one uses a nonlinear prediction rather than a linear one. Our goal is also to

show how the edge model impacts the decay of the detail coefficients. For that purpose, we consider 3

different synthetic images (see Figure 6 first row), all of size 128×128, that is J = 27. On the one hand,

we consider linear predictions corresponding to the Haar basis (Haar prediction) and to the prediction

using the polynomial pk on each cell Cj−1
k (Linear prediction) and on the other hand, the three different

types of nonlinear predictions SR1, SR2 and SR3 mentioned above. We depict on Figure 6 second row

the decay of the amplitude of the renormalized detail coefficients (nonlinear decomposition is performed
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Fig. 6. A: 128× 128 image of a straight-line edge (i.e. averaged over cells of size 1/128× 1/128); B: 128× 128 image of a

circle (i.e. averaged over cells of size 1/128× 1/128); C: 128× 128 image of a piecewise biquadratic model; D: decay of the

renormalized detail coefficients using different linear and nonlinear methods on image A (depth of decomposition 3); E: idem

as D but for image B; F: idem as D but for image C.

only at the first 3 levels of decomposition for SR1, SR2 and SR3 techniques, linear decomposition being

then performed at coarser scales). For the image of Figure 6 A, SR1 and SR2 and SR3 are the same,

so we only compare linear predictions with SR1 in that case. What is remarkable on Figure 6 D is that

linear and SR1 prediction coincides for the first 20 or so coefficients: these coefficients are associated

with levels smaller or equal to J − 4. Then the decay of the detail coefficients for SR1 is much faster

and is controlled by the behavior of detail coefficients at levels larger or equal to J−3. It is important to

notice here that nonlinear prediction does not create detail coefficients at level larger than J − 3 having

March 20, 2015 DRAFT



17

A

Number of non zero detail coefficients
1200 1250 1300 1350 1400 1450 1500

a
m

p
lit

u
d

e

30

40

50

60

70

80

90

Linear prediction
SR

1
 prediction 

SR
2
 prediction

SR
3
 prediction

B

Number of non zero detail coefficients
200 300 400 500

R
e

co
n

st
ru

ct
io

n
 e

rr
o

r 
(l
o

g
 s

ca
le

)

-30

-25

-20

-15

-10

-5

0

Linear prediction
SR

1
 prediction

SR
2
 prediction

SR
3
 prediction

C

level j
0

5678

M
e

a
n

 s
q

u
a

re
 e

rr
o

r 
a

ft
e

r 
re

co
n

st
ru

ct
io

n

0

20

40

60

80

100

120

Linear prediction
SR

1
 prediction

SR
2
 prediction

SR
3
 prediction 

D

Fig. 7. A: 512× 512 geometric image containing linear, curvilinear edges and T-junction; B: decay of detail coefficients using

linear and nonlinear methods computed on the finest three levels of decomposition for image A; C: Nonlinear reconstruction error

corresponding to image of Figure for image A; D: mean square reconstruction error associated with super-resolution procedure

using only the information available at level j0 for image A.

an amplitude larger than that of the detail coefficients obtained at level smaller than J − 4.

Then, for the image of Figure 6 B, SR2 and SR3 are the same since pa,k and pb,k used by SR3

reduce to constants in that case, so we only depict the results associated with SR2. For such an image,

the behavior of the different decompositions, depicted on Figure 6 E, are the same as previously: the first

detail coefficients of the transforms are the same (corresponding to the level where the decomposition is

linear) and then the decay is faster with SR2 which is the only method to take into account the curvature

of the edge. The bad behavior of SR1 on this image indicates that it is worth taking into account the

curvature of the edge when possible: the straight-line model on S-cells is a too crude approximation of

the edge at the scales of study (some of which are thus larger than the critical scale hc mentioned in

Section IV).
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Finally, for a piecewise biquadratic signal as the one of Figure 6 C, one notices again that the largest

detail coefficients are the same for each type of decompositions. Then, as far as the remaining coefficients

are concerned, to consider a biquadratic model on each side of the edge significantly improves the

prediction as SR3 behaves much better than other methods. Another illustration of the decay of the

detail coefficients is given on Figure 7 B for the more sophisticated image of Figure 7 A, for which the

advantage of using SR3 to predict is again significant.

B. Comparison of NMRs on Synthetic Images: Nonlinear Approximation

Let us define ṽN,J the approximation of vJ obtained by keeping the N largest detail coefficients,

and then εN := ‖ṽN,J − vJ‖2. The L2 error obtained by keeping the N largest detail coefficients of a

L2-normalized wavelet transform satisfies ‖εN‖2 ≤ CN−s, and one obtains s = 1 for bounded variation

images [10]. Our goal is to illustrate here that a faster decay of the normalized detail coefficients entails

a faster decay of the approximation error εN . As previously, for SR1, SR2 and SR3 method we consider

that the prediction is nonlinear at the finest three levels of decomposition and linear afterwards. We display

εN on Figure 7 C for the image of Figure 6 C corresponding to the different multiscale decompositions.

We notice that the results are in accordance with the decay of the detail coefficients observed on Figure 6

E and the reason for such a behavior can be explained as follows. Despite S-cells are unknown and since

the largest detail coefficients are at the coarsest scales, the algorithm first integrates detail coefficients

belonging to these scales thus progressively reconstructs the set of S-cells while adding new detail

coefficients. This remark is very important since it circumvents satisfactorily the problem of the absence

of synchronization which can be stated as: there is no reason for S-cells to be the same at the encoding

and decoding steps. Indeed, since the proposed NMRs do not create large coefficients at fine scale, S-cells

are properly recovered leading to a faster decay of the reconstruction error. Furthermore, this study also

shows that the edge parameters are accurately estimated even when all the detail coefficients are not

available. Finally, we should mention that the reconstruction error also drastically decreases with all the

other methods but for a much larger N .

C. Application of NMRs to Super-Resolution Image Reconstruction

Super-resolution is a class of techniques to enhance the resolution of an imaging system. In principle,

the latter is limited by the diffraction limit which in short means that the image is lowpass filtered at the

acquisition. This has the consequence that some high frequencies are not resolved.
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Transposed to our context, the diffraction limit means that the information on the image is not available

at levels larger than some j0. The challenge is thus to reconstruct an approximation of the original image

vJ as faithful as possible using only the coarse approximation vj0 , j0 < J . The literature on super-

resolution techniques relative to image processing is huge and our goal is not to compare to existing

techniques but to show the relevance of using nonlinear techniques in that context. For a review on

super-resolution image reconstruction we refer the reader to [11] and the references therein.

The fact that nonlinear prediction operators lead to very few significant high frequency detail co-

efficients should naturally result in good behavior regarding super-resolution. Indeed, the knowledge

of the high frequency detail coefficients should matter much less than when the linear prediction is

used. We check this property by measuring the mean square error of the reconstruction process, i.e.
1

22J

∑
k(ṽj0,Jk −vJk )2 where ṽj0,J is the reconstructed image at level J using only the information available

at level j0.

The reconstruction process is either linear or nonlinear and the results are depicted on Figure 7 D for

the image of Figure 7 A. To interpret the results, we note that since the studied image is 512 × 512,

J = 9 and we reconstruct the image using vj0 , j0 < J . To use nonlinear prediction techniques appears

to improve super-resolution performance for level j0 ≥ 7. Furthermore, to consider a more accurate edge

model, i.e. to use SR3, leads to significantly lower reconstruction error compared with other studied

nonlinear methods and also with linear method provided j0 ≥ 6.
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Fig. 8. A: Compression results with EZW on image of Figure 6 A; B: idem for image of Figure 6 B; C: idem for image of

Figure 6 C.
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D. Image Compression

We have just showed that the proposed NMRs have nice properties regarding nonlinear approximation

and super-resolution performance. This could be explained by the fact that coarse levels of decomposition

contain the information on the location of S-cells (i.e. see super-resolution performance) and, since

nonlinear approximation integrates first coarse scales, S-cells are mostly recovered before the detail

coefficients computed nonlinearly are added. Now, if one is interested in image compression, the problem

is somehow different because not only partial information is available at the decoding step but also the

latter is quantized. The questions are thus whether our algorithm can detect S-cells from a quantized

transform and, if so, can the edge parameters be estimated accurately.

Since the proposed NMRs is associated with a quadtree structure it can be compressed using one of

the most efficient compression algorithm, the so-called EZW (Embedded Zero-Tree) algorithm [1]. First,

note that the renormalized NMR M̃v can be written under a matrix form following the same display

of detail coefficients as the one used by orthogonal wavelet representation. We call this matrix V J in

what follows. EZW algorithm, developed for wavelet transforms (supposed to be L2-normalized therefore

we use M̃v), exploits the quadtree structure generated by the wavelet decomposition. The algorithm is

based on progressive encoding: the data is compressed through multiple passes with increasing accuracy.

EZW encoder builds zero-tree structures from the quadtree based on the observation that the wavelet

coefficients decrease as j increases.

In practice, we set the initial threshold for compression to T0 = 2blog2(max |V J |)c. The encoder then

scans matrix V J using the Morton scan [12], compares each scanned coefficient with threshold T0 and

issues ’p’, ’n’, ’z’ or ’t’ as outputs; if the magnitude of the scanned coefficient is larger than T0, the

output is ’p’ if the coefficient is positive and ’n’ otherwise, else the algorithm constructs a tree with the

considered element as the root. If it is a zero-tree, i.e. the values at the nodes are all smaller or equal to

the threshold, the output is ’t’, and ’z’ (isolated zero) otherwise. EZW encoder assumes that there will

be a very high probability that all the coefficients in a quadtree will be smaller than a certain threshold

if the root is smaller than this threshold. One then encodes elements ’p’ or ’n’: one puts each of them in

a so-called ’subordinate list’ associated with 3T0

2 (resp. −3T0

2 ) when the associated coefficient is positive

(resp. negative) with magnitude larger than 3T0

2 . After all the elements have been scanned, the threshold is

set to T0/2 and the algorithm starts a new pass and finally stops after a number of passes corresponding

to a predefined minimal value for the threshold. This procedure can be viewed as a bit-plane coding

algorithm, the level of quantification depending on the number of passes. The just described encoding
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algorithm thus computes a sequence of quantized coefficients:

M̃v = (2J−1v̄0, 2J−1d̄0, ..., 2p−1dJ−p, ..., dJ−1). (30)

To recover an approximation of the original image from the quantized decomposition, one writes the

inverse operator, i.e. decoding step, as follows:

v̂J = M̃−1(2J−1v̄0, 2J−1d̄0, ..., 2p−1dJ−p, ..., dJ−1).

It is worth noting that due to the compression step, v̂j is not equal to vj which implies that the prediction

operator at the encoding step and at the decoding step will not be the same. This problem is known as

the absence of synchronization between the encoder and the decoder. To avoid this problem, a possible

choice would be to memorize the location of S-cells at each level during the encoding step and to reuse

them in the decoding step [13]. However, this requires to allocate too many bits for that operation which

deteriorates the compression results. On the contrary and similarly to what was shown previously in

the application of NMRs to super-resolution and nonlinear approximation, we expect that the quantized

decomposition will enable to recover automatically S-cells and estimate edge parameters provided the

number of bits per pixel (bpp) is sufficiently high. In this regard, the compression results using EZW

algorithm expressed in terms of the PNSR with respect to the bpp after compression is displayed on

Figure 8. For the sake of consistency, we recall that the PSNR corresponds to the formula:

PSNR = 10 log10

(
Q2

1
22J

∑
k(v̂Jk − vJk )2

)
,

where Q is the maximum of the amplitude of the image coefficients. It is important to note here that for

the different NMRs only the first level of decomposition is computed nonlinearly.

Looking at the results depicted on Figure 8, we see that when the image contains only a straight line

edge SR1 and SR2 behaves similarly which means that SR2 adapts to non curved edges (see Figure

8 A). Furthermore, when the edge is actually curved, better compression results are obtained by taking

into account the curvature at the encoding step (compare SR1 and SR2 on Figure 8 B). In these first

two cases, we also notice that when one uses a more sophisticated edge model such as SR3, the number

of bpp to recover the edge parameters is more important than with SR1 and SR2. Finally, we notice

on Figure 8 C that SR3 behaves better than SR1 and SR2 when the image is actually a piecewise

biquadratic polynomial and provided enough bits are transmitted. We finally give an illustration of the

compression performance of the proposed NMRs on the image of a convection flow (see Figure 9 A) for

which we notice on Figure 9 B a better behavior of SR3 compared with SR1 and SR2 .
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Fig. 9. A: Image of a convection flow, the heat source is at the top left; B: Compression results using the different NMRs

VII. CONCLUSION

In this paper, we derived a new type of nonlinear multiscale representations based on nonlinear

prediction operator in the cell-average framework. As the structure obeys the same quadtree structure

as orthogonal wavelet transform compression algorithm such as EZW can be applied to the nonlinear

multiscale representation. In this regard, we noticed significant improvement in terms of compression

performance compared with the linear multiscale representations. Another application of the proposed

nonlinear representations is on super-resolution for which we showed that accurate reconstruction of

piecewise regular images could be achieved using an approximation of the image at a coarse resolution

level.
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