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Triangular Similarity Metric Learning for Face Verification

Lilei Zheng, Khalid Idrissi, Christophe Garcia, Stefan Duffner and Atilla Baskurt
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract— We propose an efficient linear similarity metric
learning method for face verification called Triangular Similar-
ity Metric Learning (TSML). Compared with relevant state-of-
the-art work, this method improves the efficiency of learning
the cosine similarity while keeping effectiveness. Concretely,
we present a geometrical interpretation based on the triangle
inequality for developing a cost function and its efficient gradi-
ent function. We formulate the cost function as an optimization
problem and solve it with the advanced L-BFGS optimization
algorithm. We perform extensive experiments on the LFW data
set using four descriptors: LBP, OCLBP, SIFT and Gabor
wavelets. Moreover, for the optimization problem, we test two
kinds of initialization: the identity matrix and the WCCN
matrix. Experimental results demonstrate that both of the two
initializations are efficient and that our method achieves the
state-of-the-art performance on the problem of face verification.

I. INTRODUCTION

The objective of face verification is to determine whether
two face images are of the same person or not. Formally,
two face images of the same person are called a similar pair;
otherwise, two face images of different persons are called a
dissimilar pair or a different pair.

Face verification is a challenging problem in computer
vision due to the possible variations in face pose, facial
expression, illumination and partial occlusions, etc. Most of
these variations are present in the recently collected data set
’Labeled Faces in the Wild’ (LFW) [1] containing numerous
annotated images from Yahoo News. Hence LFW has been
the most popular benchmark for face verification.

Tremendous efforts have been put on developing robust
face descriptors [2], [3], [4], [5], [6], [7], [8], [9], [10]
and facial image comparison methods [11], [12], [13], [14],
[15], [16], [17], [18], [9]. Popular face descriptors include
eigenfaces [2], Gabor wavelets [5], SIFT [4], Local Binary
Patterns (LBP) [3], etc. Especially, LBP and its variants,
such as center-symmetric LBP (CSLBP) [19], multi-block
LBP (MLLBP) [20], three patch LBP (TPLBP) [6] and over-
complete LBP (OCLBP) [9], have been proven to be effective
at describing facial texture.

Since face verification needs an appropriate way to mea-
sure the difference or similarity between two images, many
researchers have been studying metric learning which aims
at automatically specifying a metric from data pairs [21].
Besides metric learning, discriminative subspace methods
have also attracted much attention. For example, whitened
Principle Component Analysis (WPCA) [14] and Within
Class Covariance Normalization (WCCN) [18], [9] have been
used for face verification. In this work, we focus on metric
learning methods.

This work was supported by the China Scholarship Council (CSC).

According to the learnt metrics in different methods, one
can divide metric learning methods into two main fami-
lies: distance metric learning and similarity metric learning.
Most of the work in distance metric learning has been
performed on learning the Mahalanobis distance [11], [12],
[13]: dM (x, y) =

√
(x− y)TM(x− y), where x and y are

two vectors and M is the matrix that needs to be learnt.
Note that when M is the identity matrix, dM (x, y) is the
Euclidean distance. In contrast, similarity metric learning
aims to learn similarity of the following form: sM (x, y) =
xTMy/N(x, y), where N(x, y) is a normalization term [22].
Specifically, when N(x, y) = 1, sM (x, y) is the bilinear
similarity function [23]; when N(x, y) =

√
xTMx

√
yTMy,

sM (x, y) is the generalized cosine similarity function [15],
which has shown its effectiveness on face verification.

In this paper, we propose a novel similarity metric learning
method. Compared with the above method of Cosine Simi-
larity Metric Learning (CSML) [15], we develop a geomet-
rically motivated approach based on the triangle inequality
which leads to efficient cost and gradient functions. We
call our approach TSML, for Triangular Similarity Metric
Learning. As a result, besides keeping good performance on
face verification, our TSML method is about 20% faster than
CSML for calculating the cost and gradient. We formulate
the cost and gradient functions into an optimization problem
and solve it using the L-BFGS optimization algorithm [24].

To represent face images, besides the common used face
descriptors Gabor wavelets [5], SIFT [4] and LBP [3],
we introduce OCLBP [9] as another descriptor to improve
the overall performance on face verification. We compare
our approach with state-of-the-art methods, CSML [15] and
WCCN [18], [9] on the LFW data set. All the experiments
are performed under the LFW restricted configuration with
label-free outside data (LFW-a) [1]. Experimental results
show that our method achieves comparable performance with
CSML, and slightly surpasses WCCN. Moreover, fusion on
three different descriptors brings a significant performance
improvement to the proposed TSML: TSML-fusion achieves
an accuracy of 89.80% which is competitive with the state-
of-the-art results.

The remaining sections are organized as follows. Section II
develops the cost and gradient functions motivated by a
geometrical interpretation. Section III presents in detail the
scheme of our face verification system. Experimental results
are reported in section IV. Finally, we draw our conclusions
and present some perspectives in section V.



II. TRIANGULAR SIMILARITY METRIC LEARNING

The notion of pairwise metric plays an important role in
the area of machine learning [21]. Euclidean distance and
cosine similarity are two major metrics that have been used
to measure numerical difference or similarity between two
vectors. For the task of face verification, Hieu et al.[15]
showed that cosine similarity based metric learning achieved
better performance than the distance based methods in the
literature. In this section, we introduce a similar but more
efficient method for similarity metric learning.

The cosine similarity (CS) between two feature vectors x
and y is defined as:

CS(x, y) =
xT y

‖x‖‖y‖
. (1)

Applying a linear transformation f(x,A) = Ax on the inputs
x and y, we obtain two new vectors Ax and Ay in a new
space (the target space). Therefore, the cosine similarity in
the target space is:

CS(x, y,A) =
(Ax)TAy

‖Ax‖‖Ay‖
. (2)

The objective of this transformation is to make similar
vectors closer and separate dissimilar vectors: an optimal
matrix A makes CS(x, y,A) ≥ CS(x, y) for a similar pair
(x, y) and CS(x, y,A) ≤ CS(x, y) for a dissimilar pair. In
this work, instead of directly employing the cosine function
(Equation 2) in the optimization problem, we develop a novel
function to achieve the same goal. At first, we start from the
geometrical interpretation of the objective.

A. Geometrical motivation

We use a triplet (xi, yi, si) to represent a pair of instances,
where xi and yi are any two vectors, and si = 1 (resp. si =
−1) means that the two vectors are similar (resp. dissimilar).
Using the linear transformation function f(x,A), we obtain
another triplet (ai, bi, si), where ai = f(xi, A) = Axi and
bi = f(yi, A) = Ayi. Let ci = ai + sibi: ci is a diagonal
of the parallelogram formed by ai and bi (Fig. 1(a)). With
the well-known triangle inequality theorem: the sum of the
lengths of two sides of a triangle must always be greater than
the length of the third side, we get:

‖ai‖+ ‖bi‖ − ‖ci‖ > 0. (3)

We therefore propose to minimize the cost Ji = ‖ai‖ +
‖bi‖ − ‖ci‖. In addition, to prevent ‖ai‖ and ‖bi‖ from
degenerating to 0, we assume that we can keep the norms
‖ai‖ and ‖bi‖ unchanged during the minimization of Ji.
Under this assumption, minimizing the cost Ji is equivalent
to maximizing ‖ci‖. Furthermore, (see Fig. 1(a)) it is also
equivalent to minimizing the angle θ inside a similar pair
(si = 1) or maximizing the angle θ inside a dissimilar pair
(si = −1), in other words, minimizing the cosine similarity
between ai and sibi. Note that ‖ai‖+‖bi‖ = ‖ci‖ when the
cost Ji arrives the minimum 0.

However, it is difficult to leave the norms ‖ai‖ and ‖bi‖
unchanged during the optimization. Therefore, to prevent
‖ai‖ and ‖bi‖ from degenerating to 0, we constrain the

norms to be approaching 1, i.e., we add constraint factors
(‖ai‖ − 1)2 and (‖bi‖ − 1)2 to the cost:

Ji =
1

2
(‖ai‖ − 1)2 +

1

2
(‖bi‖ − 1)2 + ‖ai‖+ ‖bi‖ − ‖ci‖

=
1

2
‖ai‖2 +

1

2
‖bi‖2 − ‖ci‖+ 1.

(4)
Substituting the equations ai = Axi and bi = Ayi to the
above cost function, we get:

Ji =
1

2
xTi A

TAxi +
1

2
yTi A

TAyi−‖Axi + siAyi‖+1. (5)

The gradient function over the matrix A is:

∂Ji
∂A

= (Axi −
Axi + siAyi
‖Axi + siAyi‖

)xTi + (Ayi − si
Axi + siAyi
‖Axi + siAyi‖

)yTi

= (ai −
ci
‖ci‖

)xTi + (bi −
sici
‖ci‖

)yTi .

(6)
Now, we can obtain the optimal cost at the zero gradient:
ai − ci

‖ci‖ = 0 and bi − sici
‖ci‖ = 0. In other words, the

gradient function has set ci
‖ci‖ and sici

‖ci‖ as targets for ai and
bi, respectively. See Fig. 1(b): for a similar pair, ai and bi
are mapped to the same unit vector along the diagonal (the
red solid line); for a dissimilar pair, ai and bi are mapped
to opposite unit vectors along the other diagonal (the blue
solid line).

B. Cost function

For all possible similar and dissimilar pairs, the overall
cost function is:

J =
1

n

n∑
i=1

Ji =
1

n

n∑
i=1

[
1

2
‖ai‖2 +

1

2
‖bi‖2 − ‖ci‖+ 1], (7)

and the corresponding gradient function is:

∂J

∂A
=

1

n

n∑
i=1

[(ai −
ci
‖ci‖

)xTi + (bi −
sici
‖ci‖

)yTi ]. (8)

However, in this overall case, we can not obtain the optimal
solution by computing the zero gradient. Indeed, a specific
vector ai appears in more than one pairs (with different bi),
that means taking zero gradient would set many different
targets for ai. However, it is impossible for ai to satisfy all
the targets at the same time. Consequently, in the optimal
solution, ai will be mapped to a balanced point of all the
targets rather than any one of them.

To prevent the above cost function from over-fitting, we
add a regularization term to it:

J =
1

n

n∑
i=1

[
1

2
‖ai‖2+

1

2
‖bi‖2−‖ci‖+1]+

λ

2
‖A−A0‖2, (9)

where A0 is a pre-defined constant matrix. Additionally,
A0 is also the initialization for A, i.e., A is set to be
A0 before optimizing the cost. The positive parameter λ
adjusts the effects of the regularization term: the larger the
parameter λ is, the closer A is to A0. And the best A,
denoted by A?, which performs the best on face verification
on a validation set, is selected by tuning the parameter



(a) (b)
Fig. 1. Geometrical interpretation of the cost and gradient. (a) Minimizing the cost means to make similar vectors parallel and make dissimilar vectors
opposite. (b) Taking zero gradient means to set unit diagonal vectors as targets for ai and bi. (si = 1 for similar pair and si = −1 for dissimilar pair)

λ. Thus, this regularization guarantees the learnt optimal
transformation function f(x,A?) to perform better than the
initial function f(x,A0) [25]. The corresponding gradient
function is:

∂J

∂A
=

1

n

n∑
i=1

[(ai−
ci
‖ci‖

)xTi +(bi−
sici
‖ci‖

)yTi ] +λ(A−A0).

(10)
Compared with the gradient of CSML [15]:

∂JCSML

∂A
=

1

n

n∑
i=1

si
‖ai‖‖bi‖

[(
aTi bi
‖ai‖2

ai − bi)xTi + (
aTi bi
‖bi‖2

bi − ai)yTi ]

+ λ(A−A0),
(11)

our gradient (Equation 10) needs fewer matrix multiplica-
tions, this makes TSML more efficient than CSML during
gradient descent. In the experiment section IV-C, we present
a runtime comparison of CSML and TSML to prove the ef-
ficiency of our method. Concretely, we use the L-BFGS [24]
optimization algorithm to compute the optimal solution.
Compared with the standard gradient descent algorithm, the
L-BFGS algorithm has no need to manually pick a learning
rate and it’s usually much faster. In this work, we use a
MATLAB implementation of L-BFGS provided by Mark
Schmidt 1.

III. FACE VERIFICATION

We apply the linear TSML method for face verification
on the LFW data set [1]. In this section, we introduce the
scheme of our verification system in detail. First, we con-
sider several data pre-processing techniques: subset partition,
feature extraction, dimensionality reduction, and parameter
initialization. Then, we explain the procedure of learning
and evaluation. All the experiments are performed under the
LFW restricted configuration with label-free outside data:
only the provided 6000 pairs of data are used in evaluation.

A. Subsets partition

As suggested in [1], we only use View 2 subset of LFW
for performance evaluation. In View 2, all the 5749 people in
the data set are divided into 10 folds where the identities are

1http://www.di.ens.fr/ mschmidt/Software/minFunc.html

mutually exclusive. The total number of images for all the
people is 13,233, however, the number of images for each
person varies from 1 to 530.

We experiment only on the restricted configuration of
LFW, i.e., training and evaluating only on the specified 3000
similar pairs and 3000 dissimilar pairs. Concretely, all data
of the restricted configuration are separated into 3 partitions:
a training set, a validation set and a test set. We learn a
model on the training set, choose the best model that achieves
the highest performance on the validation set, and report the
performance on the testing set using the best model.

We perform cross-validation on the 10 folds: there are
overall 10 experiments, in each repetition, 4800 pairs from
8 folds are used for training, 600 pairs from another fold
are used for validation and 600 pairs from the last fold
are used for testing. For example, the first experiment uses
subsets (1,2,3,4,5,6,7,8) for training, subset 9 for valida-
tion and subset 10 for testing; the second experiment uses
(2,3,4,5,6,7,8,9) for training, subset 10 for validation and
subset 1 for testing. At last, we report the mean accuracy
(±standard error of the mean) of the 10 experiments.

B. Feature extraction

Following [15], [9], [18], we use aligned images of the
LFW-a version [26]: the original 250 × 250 images are
aligned and cropped to subimages of 150× 80 pixels, from
which we extract four face descriptors: Gabor wavelets [5],
LBP [3], SIFT [4] and OCLBP [9]. For Gabor and LBP, we
used the same setting as in [15], dimension of Gabor and
LBP is 4800 and 7080, respectively. For SIFT, we directly
use the feature data provided by [27]. For OCLBP, we used
similar setting as in [9], dimension of our OCLBP vectors is
46,846. Readers are referred to the appendix for the details
of extracting OCLBP. Additionally, square roots of all the
descriptors are also evaluated.

C. Dimensionality reduction

Usually, automatic learning is performed on thousands of
feature vectors. Directly taking the original facial vectors
for learning causes computational problem. For example, the
time required for multiplications between 46846-d OCLBP
vectors would be unacceptable. Therefore, before learning,



we apply whitened Principle Component Analysis (WPCA)
for dimensionality reduction [15], [9]. On the one hand,
performing PCA reduces the original dimension; on the
other hand, whitening makes new feature vectors more
discriminative for face verification: the PCA reduced feature
is normalized by the eigenvalues over all the dimensions, thus
the negative influences of the large eigenvectors are reduced
while the discriminating details of the smaller eigenvectors
are enhanced [28].

In our experiments, following [18], all the original feature
vectors are transformed to new vectors with dimension 300.
The transformation matrix of WPCA is computed only
using similar pairs from the 8-fold training set, i.e., 4800
feature vectors. Usually, data selection for WPCA does not
significantly affect the performance after transformation. The
only point worth noting is that we should select enough
data, for example, under this experiment setting, an appro-
priate number of feature vectors for whitening is more than
1000 [15], [18].

D. Parameter initialization

As we have mentioned when commenting Equations 9
and 10, we need to specify the initialization matrix A0

before learning. In our experiments, we use two kinds of
initialization: the first one is the identity matrix I , the second
one is the WCCN matrix W [9], [18], i.e., we directly set
A = A0 = I or A = A0 =W before learning.

WCCN was first used for speaker recognition [29]. Re-
cently, it was introduced to improve the discrimination for
face verification [9]. At first, a within class covariance matrix
C is defined as:

C =
1

t

t∑
i=1

1

mi

mi∑
j=1

(xij − µi)(xij − µi)
T , (12)

where t is the number of different classes, mi is the number
of instances in the ith class, xij is the jth instance in the
ith class and µi is the mean of the ith class. Decomposi-
tion on the matrix C produces eigenvalues λ1, . . . , λk and
eigenvectors V = {v1, . . . , vk}. Thus, the WCCN matrix is:

W = diag(λ1, . . . , λk)V
T , (13)

Under the restricted configuration of LFW, we regard each
similar pair as a mini-class of its own for doing WCCN
transformation [9]. It is worth noting that all the eigenval-
ues and eigenvectors are retained, i.e., we do not perform
dimensionality reduction in this step.

E. Learning and evaluation

Once we set up the initialization, we use the advanced
optimization algorithm L-BFGS [24] to compute the optimal
solution.

Inspired by WCCN that only considers the within class
covariance, we perform learning on similar pairs only. In
fact, using similar pairs only achieved better performance
than using both similar and dissimilar pairs. Indeed, since
in LFW, the identities in the validation and testing set are
different from those in the training set, the discriminative

information learnt between the individuals in the training set
is not a good prediction of that between the individuals in
the validation and testing set. So it is better not to use the
dissimilar pairs.

Let x and y denote whitened feature vectors after per-
forming dimensionality reduction. Once we learn the op-
timal solution A?, we compute the cosine similarity score
CS(x, y,A?) using Equation 2. The final decision is made
by comparing to a threshold γ: if CS(x, y,A?) ≥ γ, x and
y are similar; otherwise, they are dissimilar. We record the
percentage of right decisions on the validation set, i.e.,

accuracy =
number of right decisions

total number of pairs
. (14)

After that, we select the best optimal solution A? and the
best threshold γ that give the best accuracy on the validation
set. At last, we report accuracy on the testing set using the
best A? and γ.

IV. EXPERIMENTS AND ANALYSIS

We experiment with five different methods for face veri-
fication on LFW:
• WCCN [18], [9]: performing WCCN on the whitened

feature vectors x and y and evaluating on the out-
puts, i.e., computing cosine similarity score using
CS(x, y,W ), where W is the WCCN matrix;

• CSML-I: performing CSML on the whitened feature
vectors x and y with initialization matrix A0 = I ,
and evaluating on the outputs, i.e., computing cosine
similarity score using CS(x, y,A?), where A? is the
learnt transformation matrix;

• CSML-WCCN: performing CSML on the whitened fea-
ture vectors x and y with initialization matrix A0 =W ,
and evaluating on the outputs, i.e., computing cosine
similarity score using CS(x, y,A?), where A? is the
learnt transformation matrix;

• TSML-I: performing TSML on the whitened feature
vectors x and y with initialization matrix A0 = I ,
and evaluating on the outputs, i.e., computing cosine
similarity score using CS(x, y,A?), where A? is the
learnt transformation matrix;

• TSML-WCCN: performing TSML on the whitened fea-
ture vectors x and y with initialization matrix A0 =W ,
and evaluating on the outputs, i.e., computing cosine
similarity score using CS(x, y,A?), where A? is the
learnt transformation matrix;

We have only two parameters to tune in the experiments:
the regularization term λ and the decision threshold γ. The
tuning range of λ was from 10−4 to 10−3 with a step size
of 2 × 10−5; the tuning range of γ was from −1 to 1 with
a step size of 0.001.

A. Experimental results

At the beginning, we directly perform evaluation on the
300-d whitened feature vectors, i.e., computing cosine simi-
larity score using CS(x, y, I), where I is the identity matrix.



TABLE I
FACE VERIFICATION ACCURACY (±STANDARD ERROR OF THE MEAN) ON LFW-A UNDER THE RESTRICTED CONFIGURATION USING FIVE DIFFERENT

METHODS: WCCN, CSML-I, CSML-WCCN, TSML-I, TSML-WCCN. DIMENSION OF THE WHITENED FEATURE VECTORS IS 300.

Method LBP OCLBP SIFT Gabor
original square root original square root original square root original square root

Baseline 77.17±0.49 79.73±0.38 80.43±0.25 81.55±0.44 76.88±0.42 77.52±0.49 75.28±0.45 77.25±0.32
WCCN 80.40±0.39 84.23±0.33 83.75±0.51 86.83±0.37 82.72±0.39 84.17±0.25 78.68±0.62 81.52±0.65
CSML-I 83.18±0.71 85.17±0.60 85.27±0.60 87.03±0.50 84.73±0.51 85.95±0.37 81.45±0.54 83.53±0.42

CSML-WCCN 82.88±0.74 85.17±0.61 85.15±0.76 87.18±0.46 85.00±0.53 85.82±0.32 81.62±0.61 83.58±0.52
TSML-I 82.63±0.68 85.40±0.52 85.27±0.73 87.02±0.40 84.50±0.67 86.08±0.44 80.63±0.54 83.00±0.47

TSML-WCCN 82.40±0.80 85.58±0.58 84.98±0.75 87.10±0.43 84.83±0.58 85.70±0.43 80.82±0.52 83.35±0.57

TABLE II
TIME COST (±STANDARD ERROR OF THE MEAN) IN MILLISECONDS OF CSML-I AND TSML-I ON LFW-A UNDER THE RESTRICTED CONFIGURATION.

Method LBP OCLBP SIFT Gabor
original square root original square root original square root original square root

CSML-I 91.38±1.23 92.46±1.40 92.26±0.76 93.71±1.11 91.42±0.62 93.30±1.03 92.13±0.70 90.96±0.78
TSML-I 73.41±0.71 73.79±0.62 74.74±1.03 74.77±0.79 74.69±0.44 74.75±0.64 74.64±0.86 74.45±0.72

Relative Improvement 19.67% 20.19% 18.99% 20.21% 18.30% 19.88% 18.98% 18.15%

We consider this evaluation as the baseline. Tables I sum-
marizes the experimental results of the baseline and the five
methods. In general, the proposed linear methods, TSML-I
and TSML-WCCN, achieve competitive performance on all
the different descriptors. For example, TSML-WCCN obtains
the highest accuracy of 85.58% on whitened LBP.

Especially, we implemented state-of-the-art methods
WCCN [18], [9] and CSML [15] in our experiments (Ta-
ble I). Readers are referred to [15], [18], [9] to confirm that
results of our implementation are consistent with the original
versions.

B. Effectiveness of TSML

From Table I, comparing the first two rows, we can see that
using WCCN significantly improves the performance on face
verification. For instance, WCCN allows an improvement
from 79.73% to 84.23% over the baseline on the square-
rooted LBP. This phenomenon has also been reported in
both [9] and [18]. Moreover, compared with WCCN, metric
learning methods CSML-I, CSML-WCCN, TSML-I and
TSML-WCCN further improve the decision accuracy. For
example, TSML-WCCN gets 85.58%, which outperforms the
84.23% of WCCN on the square-rooted LBP.

Interestingly, comparing the two different kinds of initial-
ization (Table I: CSML-I vs. CSML-WCCN, TSML-I vs.
TSML-WCCN), we observe that all of them obtain similar
results. Remind that TSML-I takes the identity matrix as
initialization and TSML-WCCN takes the WCCN matrix as
initialization. We deduce that either of the two initialization
matrices is acceptable for the linear metric learning methods.
The difference is that different initializations imply different
lower bounds: for example, TSML-I sets the results of the
baseline as the lower bound, and TSML-WCCN sets the re-
sults of WCCN as the lower bound. However, though the two
initializations set different lower bounds for learning, they
may have comparable upper bounds, so we have observed
similar results.

C. Efficiency of TSML

Due to our aim of performing efficient similarity met-
ric learning, we carry out a runtime comparison between
CSML [15] and the proposed TSML. Comparing their
performance on face verification, we find that the TSML
methods achieve almost the same performance with the
CSML methods (Table I). For example, on the square-
rooted OCLBP descriptor, CSML-I, CSML-WCCN, TSML-
I and TSML-WCCN obtain 87.03%, 87.18%, 87.02% and
87.10%, respectively. However, our proposed linear TSML
(Equation 10) is theoretically more efficient than CSML.

We perform the efficiency comparison on all the 300-d
whitened features: with fixed regularization parameter λ = 0,
we calculate the gradient of CSML-I and TSML-I on the
training set for only once and record their time consumption,
respectively. Like the reported accuracy on face verification,
we report the average time (±standard error of the mean)
spent for 10 repetitions. This comparison is performed on a
machine with a 4-core CPU, 8 GB RAM and 64-bit operating
system. Table II summarizes the time cost on each feature
in milliseconds. Generally, TSML relatively improves the
efficiency by about 20% over CSML. For example, on the
square-rooted OCLBP, calculating the gradient of CSML-
I for once averagely costs 93.71 milliseconds, in contrast,
calculating the gradient of TSML-I averagely costs only
74.77 milliseconds.

D. Comparison with the state-of-the-art

Fusion on different descriptors generally leads to perfor-
mance gain [15], [9], [18], [30], [31]. Therefore we perform
fusion on the similarity scores of the proposed TSML meth-
ods and compare with the state-of-the-art methods (table III).

After learning a linear model, one can produce similarity
scores for all the pairs of vectors on all possible descriptors.
For each pair of vectors, all the corresponding similarity
scores compose a new short vector which can be used to
predict the final decision: a pair of vectors are similar or



TABLE III
FACE VERIFICATION ACCURACY (±STANDARD ERROR OF THE MEAN)

ON LFW-A UNDER THE RESTRICTED CONFIGURATION USING DIFFERENT

METHODS.

Method Accuracy
DML-eig-fusion [30] 85.65±0.56

CSML-fusion [15] 88.00±0.37
PAF [33] 87.77±0.51

WCCN-fusion [9] 91.10±0.59
Sub-SML-fusion [18] 89.73±0.38

DDML-fusion [31] 90.68±1.41
LM3L [34] 89.57±1.53

TSML-fusion (this work) 89.80±0.47

not. We consider it as a two-class classification problem
and employ a linear support vector machine (SVM) [32] to
perform the classification.

Since LBP is a subpart of OCLBP [9], we abandon LBP
and collect similarity scores on the other three descriptors
and their square roots for fusion. Both of the two meth-
ods, TSML-I and TSML-WCCN, are used to produce the
similarity scores. Thus we have totally 12 similarity scores
for each pair. After that, we train an SVM model on the
validation set and make prediction on the test set. The fusion
result of the proposed methods is 89.80%, which occupies
the third position among the state-of-the-art methods under
the restricted configuration (Table III and Fig. 2). Available
ROC curves of more approaches are present in the result
page of the LFW data set 2.

Other methods that perform well on the face verification
problem (Table III), for example WCCN, rely on a fusion
of high-dimensional features (i.e., the 96520-d Scattering
descriptor in WCCN-fusion), or they are naturally slower be-
cause they perform more complex optimization, e.g., DDML-
fusion [31] integrates deep neural network with distance
metric learning. Apart from fusion on multiple features,
employing advanced processing steps specific to face verifi-
cation can also produce promising results, such as the facial
landmark extraction and 3D model fitting in PAF [33].

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an efficient linear TSML
method for face verification. We illustrated a geometrical
interpretation of our cost and gradient functions. By com-
paring TSML with CSML [15], we found that less matrix
multiplication makes our method more efficient than CSML.
In terms of effectiveness, our methods achieves comparable
performance with the state-of-the-art methods on face veri-
fication.

Extensive experiments were performed on the LFW-a data
set [1] under restricted configuration. We used WPCA to
reduce dimension of the original feature vectors to a treat-
able scale. Besides the identity matrix, we also introduced
the WCCN matrix for initialization of learning. We found
that either of the identity matrix or the WCCN matrix is

2http://vis-www.cs.umass.edu/lfw/results.html#ImageRestrictedLF
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Fig. 2. ROC curves of the proposed TSML-fusion method (red line) and
the other state-of-the-art methods on LFW under the restricted configuration
with label-free outside data (LFW-a).

acceptable, the only difference is that different initializations
imply different lower bounds of learning.

In addition, we have also confirmed the effectiveness of
our TSML method on another problem of kinship verification
in a recent evaluation [35]. In the future, we plan to extend
the linear similarity metric learning method to non-linear
case. We are interested in applying convolutional neural net-
works, that are able to automatically extract relevant features
from the images while performing non-linear projection [36].
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APPENDIX

Local Binary Patterns: Ojala et al. [37] proposed uniform
patterns of LBP for robust face recognition. The uniform
LBP is denoted as LBPu2

p,r, where u2 stands for ’uniform’,
(p, r) means to sample p points over a circle with a radius
r. The dimension of an uniform pattern is 59. In this work,
we followed the setting as in [15]. We use aligned images
of the LFW-a version [26]: the original 250 × 250 images
are aligned and cropped to subimages with size 150 × 80.
Each cropped image is divided into non-overlapping 10×10
blocks and uniform LBP patterns LBPu2

8,1 are extracted from
all the blocks. Finally, we catenate all the LBP patterns into
a feature vector, whose dimension is 7080 (15× 8× 59).

Over-complete Local Binary Patterns: We also used
a variant of LBP, OCLBP, to improve the overall per-
formance on face verification [9]. Unlike LBP, OCLBP
adopts overlapping to adjacent blocks. Formally, the con-
figuration of OCLBP is denoted as S : (a, b, v, h, p, r): an
image is divided into a × b blocks with vertical overlap
of v and horizontal overlap of h, and then uniform pat-
tern LBPu2

p,r are extracted from all the blocks. Moreover,
OCLBP is composed of several different configurations.
For example, Oren et al. [9] used three configurations:
S : (10, 10, 12 ,

1
2 , 8, 1), (14, 14,

1
2 ,

1
2 , 8, 2), (18, 18,

1
2 ,

1
2 , 8, 3).

The three configurations consider three block sizes: 10 ×
10, 14×14, 18×18, and half overlap rates along the vertical
and horizontal directions.

Concretely, they shift the images to produce overlaps.
For instance, a cropped 150 × 80 image is divided into
15 × 8 = 120 blocks with the size 10 × 10. Shifting the
image to the left by a step 10 × 1

2 = 5 also produces 120
blocks; and shifting downwards produces another 120 blocks.
Hence there are totally 360 blocks under the configuration
S : (10, 10, 12 ,

1
2 , 8, 1). Similarly, there are 198 blocks under

the configuration S : (14, 14, 12 ,
1
2 , 8, 2) and 135 blocks under

the configuration S : (18, 18, 12 ,
1
2 , 8, 3). In summary, the

dimension of their OCLBP vectors is 40, 887 ((360+198+
135)× 59).

In our work, we shift the block window to produce over-
laps. Taking the 10×10 block window for example, with the
shifting step 10× 1

2 = 5 to the left and downwards, the total
number of 10 × 10 blocks is ( 1505 − 1) × ( 805 − 1) = 435.
Similarly, shifting the 14× 14 window produces 231 blocks
and shifting the 18× 18 window produces 128 blocks. The
dimension of our OCLBP vectors is 46, 846 ((435 + 231 +
128)× 59).

Apparently, both the two forms of OCLBP contains LBP
as a subpart. Comparing the experimental results using the
two different OCLBP, we found no significant difference. For
example, WCCN gets 86.83% using our 46,846-d OCLBP,
which is very close to 87.23% in [9] using the 40,887-d
OCLBP.


