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ABSTRACT

Spectral unmixing is one of the most important and studied
topics in hyperspectral image analysis. By means of spectral
unmixing it is possible to decompose a hyperspectral im-
age in its spectral components, the so-called endmembers,
and their respective fractional spatial distributions, so-called
abundance maps. New hyperspectral missions will allow to
acquire hyperspectral images in new ways, for instance, in
temporal series or in multi-angular acquisitions. Working
with these incoming huge databases of multi-way hyperspec-
tral images will raise new challenges to the hyperspectral
community. Here, we propose the use of compression-based
non-negative tensor canonical polyadic (CP) decompositions
to analyze this kind of datasets. Furthermore, we show that
the non-negative CP decomposition could be understood as
a multi-linear spectral unmixing technique. We evaluate the
proposed approach by means of Mars synthetic datasets built
upon multi-angular in-lab hyperspectral acquisitions.

Index Terms— Multilinear spectral unmixing, hyper-
spectral multiangle images, multiway analysis, Canonical
Polyadic, nonnegative tensor decomposition.

1. INTRODUCTION

Imaging spectroscopy [1] (a.k.a. hyperspectral imaging) is
concerned with the measurement, analysis, and interpretation
of spectra acquired from a given scene or object [2]. Hy-
perspectral images (HSI) are usually stored in a non-negative
matrix form, X ∈ RN×D

+ , where N denotes the number of
pixels in the image and D denotes the number of spectral
bands. Furthermore, new missions and sensor developments
will collect time series of hyperspectral data, e.g. MODIS
mission1, and multiangle images, e.g. CRISM mission2. The
huge amount of hyperspectral data that will be delivered in the
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near future will pose new challenges to hyperspectral image
analysis.

Here, we propose to use tensor analysis [3] (a.k.a. mul-
tiway or multiarray analysis) to face this challenge. Time
series or multi-angle hyperspectral big data could be under-
stood as non-negative tensors, X ∈ RN×D×T

+ , where N ,
D and T denote the dimensionality of the spatial, spectral
and time/angle ways, respectively. One of the most suc-
cessful techniques to decompose tensors in low-rank terms
is the Canonical Polyadic decomposition (CP) [4], some-
times coined Candecomp/Parafac [5]. The CP decomposition
could be understood as an extension of the linear unmixing
of 2-way (spatial and spectral) hyperspectral data [6] to the
multi-linear unmixing of multi-way (more than two) hyper-
spectral tensors.

Conventional spectral unmixing aims to decompose a
hyperspectral image, X , into the spectral signatures of the
materials present in the image and their spatial distributions,
known respectively as endmembers and fractional abun-
dances. Following the widely used linear mixing model [7]:

X = AE> + Ξ, (1)

where E ∈ RD×P denotes the matrix of endmembers, with
each of the P columns representing the spectral signature of
a given macroscopic material; A ∈ RN×P denotes the ma-
trix of fractional abundances corresponding to each of the P
endmembers, and Ξ ∈ RN×D denotes additive noise.

The non-negative CP decomposition allows to decompose
the data tensor, X , into a multi-linear composition of R non-
negative factor matrices A, B and C, of size N ×R, D ×R
and T×R, respectively, and a diagonal tensor of non-negative
scaling factors, L, of size R×R×R:

Xijk =

R∑
r=1

AirBjrCkrλr, (2)

where λr denotes the diagonal scaling factors of L. The rank
of tensor X is defined as the minimal number R of terms
necessary for the equality above to hold exactly. In practice,
the data tensor is subject to modelling errors or measurement
noise, and it is convenient to find its best rank-R approxima-



tion by minimizing the following objective function

Υ(A,B,C,L) = ‖X − (A,B,C) ·L‖, (3)

for some well chosen norm, instead of attempting to compute
the exact CP decomposition (2). It is now known that tensors
of order 3 or larger do not always admit a rank-R approxi-
mate, when R > 1, especially in R or C. But fortunately, it
has been shown in [8] that this obstacle does no longer holds
for nonnegative tensors, and that the problem is well-posed in
R+: best lower nonnegative rank approximates always exist.

The non-negative CP decomposition could be understood
as an extension of the linear unmixing of 2-way (spatial
and spectral) hyperspectral data [6] to the multi-linear un-
mixing of multi-way (more than two) hyperspectral tensors,
where rank-one factors are expected to be related to spatial
abundances, spectral signatures and changes in time/angle.
Furthermore, the CP decomposition is a blind technique in
the sense that no a priori information is needed, i.e., when the
spectral signatures of the materials in the image are unknown.
Recently, authors in [9] have proposed a compression-based
nonnegative CP decomposition of large tensors. We propose
to make use of this compression-based technique to perform
the nonnegative CP decomposition of the multi-angular hy-
perspectral images and interpret the results in terms of a
multi-linear spectral unmixing.

The remainder of the paper is as follows. Sec. 2 describes
the ProCo-ALS compression-based nonegative CP decompo-
sition introduced in [9]. In Sec. 3 we provide the case study
with multi-angle in-lab acquisition of Martian alike hyper-
spectral synthetic images. Finally, we provide some conclu-
sions and discuss on further work in Sec. 4.

2. COMPRESSION-BASED NONNEGATIVE CP
DECOMPOSITION

2.1. Non-negative CP approximation

It is well known in the optimization community that comput-
ing the nonnegative CP decomposition of a positive tensor is
a difficult problem. Given a multiway data set X , we want to
solve the following minimization problem:

argmin ‖X − (A,B,C) ·L‖2F
w.r.t. A,B,C

s.t. A � 0,B � 0,C � 0
(4)

which is highly non-convex. Yet many algorithms provide
rather precise but costly computation, and these algorithms
can be divided into two main classes:
• All-at-once gradient-based descent, e.g. [10]: all CP pa-

rameters are updated at the same time using a gradient
scheme (standard or conjugate gradient) and nonnegativ-
ity constraints are assimilated through barriers or soft pe-
nalizations.

• Alternating minimization: the cost function is minimized
in an alternating way for each factor (A, B or C) while

the others are fixed. The most commonly used method for
nonnegative CP decomposition is alternating nonnegative
least squares (ANLS), e.g. [11].

2.2. Compression-based CP decomposition

Large tensors decomposition is actually a hot topic in the ten-
sor decomposition area, especially when constraints are in-
cluded in the optimization problem. An approach to handle
large tensor decomposition is through the use of compres-
sion. The general idea is that the original data array X can
be equivalently represented by one or a few arrays X c with
reduced dimensions Nc×Dc×Tc. The compressed tensor is
then decomposed by solving

argmin Υ = ‖X c − (Ac,Bc,Cc) ‖2F
w.r.t. Ac,Bc,Cc,

(5)

where Ac, Bc, Cc are compressed versions of the original
factor matrices, with reduced number of rowsNc, Dc, Tc, but
the same number of columns R. For simplification purposes
the diagonal matrix of scalings is absorbed in Cc. Note that,
after the compressed factors are obtained, a decompression
operation is carried out to recover the factors in the original
dimensions.

A common approach [12, p. 92] is through an approx-
imation of the High Order Singular Value Decomposition
(HOSVD). The HOSVD [13] approximates the original data
in the following way

X ijk ≈
Nc,Dc,Tc∑

lmn

U ilV jmW kn [X c]ijk , (6)

or using the same notation as in the CP model

X ≈ (U ,V ,W )X c, (7)

where U , V and W are matrices with orthogonal unit-norm
columns. In practice, these matrices are obtained by trun-
cating the first Nc, Dc and Tc left singular vectors of the 3
unfoldings of X (unfoldings are different concatenations of
matrix slices of the tensor, see e.g [3] and references therein).
Note that, in this case, the compressed and uncompressed fac-
tors are related in the following way:

A ≈ UAc, B ≈ V Bc, C ≈WCc, (8)

which shows that U , V and W can be seen as decompression
operators.

2.3. ProCo-ALS compression-based non-negative CP de-
composition

Adapted instances of the two main classes of algorithms for
nonnegative CP decomposition are proposed in [9] to include
the compression step. In the all-at-once gradient descent set-
ting, the Compressed Conjugate Gradient (CCG) algorithm is



proposed, while a modification of ANLS, Projected and Com-
pressed ALS (ProCo-ALS), is presented in the alternating set-
ting. In this work, we make use of the later only.

The idea of ProCo-ALS is to carry out an approximate
projection of the unconstrained least squares (LS) solution on
the set of feasible solutions. This approximate projection is
given in three steps: first the factor is decompressed (D), then
the decompressed factor is projected onto the nonnegative or-
thant (P), and, finally, the result of the projection is recom-
pressed (R). The four steps of each ProCo ALS iteration to
update the factor Ac, denoted here Âk+1

pc , are detailed below:

LS: Âk+1
c = X(1)

c

(
Ĉk

pc � B̂k
pc

)†
Approx. proj.


D: Âk+1 = UÂk+1

c

P:
[
Âk+1

]
+

:= max
(
0, Âk+1

)
R: Âk+1

pc = U>
[
Âk+1

]
+

(9)
where� denotes the Khatri-Rao product, † indicates the pseu-
doinverse, X(1)

c is the unfolding in the first way of X c and
max (·, ·) denotes the element wise maximum. To obtain the
updates B̂k+1

pc and Ĉk+1
pc , the same procedure is applied with

the appropriate unfolding of X c and decompression opera-
tors.

3. STUDY CASE

Here, we provide experimental evidence of the validity of
the proposed multilinear spectral unmixing, by means of
compression-based nonnegative CP decomposition, using
synthetic data generated to simulate multiangle acquisitions
of the Martian surface. First, we introduce the methodology
employed to generate the synthetic datasets. Then, we ex-
plain the experimental methodology and finally we provide
the results.

3.1. Dataset

To synthesize the multiangle datasets we have made use of
in-lab acquisitions of three different materials that present
similar properties to the materials found in Martian surface
(coal in graphite composites, natural coal and basalt) for
10 emergence angles: −60◦, −50◦, −40◦, −30◦, −20◦,
20◦, 30◦, 40◦, 50◦ and 60◦. Objects reflectance changes
according to light incidence and emergence angles. Intro-
ducing these aspects into the hyperspectral analysis could
help to better identify the materials on the sensed scenes.
Fig. 1 depicts the spectra of the three materials for each of
the ten angular acquisitions. The spatial abundances have
been simulated to mimic natural surfaces. For each pixel, xj ,
the abundances sum-up-to-one, that is,

∑3
i=1 aij = 1, ∀j.

Also, a pixel purity constraint is imposed to the abundances,
that is, the maximum value that an abundance can take is
bounded: aij ≤ p, ∀i, j, where p ∈ (0.33, 1] denotes the
purity value. We have considered five different pixel purity
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Fig. 1. Endmembers.
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Fig. 2. Abundances.

values: p ∈ {0.95, 0.9, 0.85, 0.8, 0.75}. Lower values of p
indicate a highly mixed data. Fig. 2 shows examples of abun-
dances generated for three endmembers and the five selected
pixel purity values. For each pixel purity value we have
generated 10 independent sets of abundances for a total of
50 multiangle images. Each multiangle image is built using
the linear mixing model in (1) where the corresponding end-
members are used according to the emergence angle. Finally,
we also composed a second dataset by incorporating additive
noise of 40dB to the synthetic images.

3.2. Experimental methodology

For each of the 50 data images of the two, noise-free and
noisy, datasets, we performed 10 independent Monte Carlo
runs of the ProCo-ALS algorithm. Each of the ProCo-ALS
runs is initialized to random nonnegative factors. The origi-
nal tensors have dimensions [40000× 167× 10] correspond-
ing to the spatial, spectral and multiangular ways respectively.
The compressed tensor has dimensions [100× 25× 5]. The
rank is fixed toR = 3. The results were compared in terms of
average normalized root mean squared error ( ̂nRMSE), be-
tween the original tensor, X , and the tensor reconstructed



Fig. 3. Reconstruction error results data without noise.

from the CP factors, X̂ :

̂nRMSE
(
X , X̂

)
=

√√√√ 1

NDT

N∑
i=1

D∑
j=1

T∑
k=1

(
Xijk − X̂ijk

‖X‖F

)2

.

(10)
Each of the estimated spectral factors, b̂ ∈ B̂, were compared
to each of the actual spectra, b ∈ B, using the angular error,
θ̂:

θ̂
(
b, b̂

)
= arccos

(
b>b̂

‖b‖‖b̂‖

)
. (11)

3.3. Results

Fig. 3 shows the reconstruction results obtained for the noise-
free dataset. The ProCo-ALS nonnegative CP decomposition
achieves very small reconstruction errors for all the cases.
Similar results are obtained for the noisy dataset, see Fig. 4.
This is not surprising since the compression step will act as a
denoising filter making ProCo-ALS very robust to noise.

Fig. 4. Reconstruction error results data with noise.

Fig. 5 shows the average angular distances between the
actual endmembers and the estimated spectral factors in the
noisy dataset. For each run of the ProCo-ALS algorithm we

Fig. 5. Best angular errors.

compared each normalized actual endmember to each spectral
factor, and kept the best pair matches of the actual endmem-
bers. The results show that ProCo-ALS is able to estimate
spectral factors similar to the actual endmembers (angular dis-
tances lower than 10 degrees) in most cases, although as the
mixture contains less purity it is more difficult to retrieve an
accurate spectra of the coal (graphite). This is probably due
to the shape of the material. Being so plane, the role of the
graphite in the mixture with the other materials works mostly
as a scaling factor, which in the CP decomposition is incorpo-
rated in the diagonal matrix, L.

Fig. 6 depicts the spectral factors obtained by the best
(first row) and worst (second row) runs of the ProCo-ALS in
terms of reconstruction error for the noisy dataset. Since the
spatial factors are normalized, the scale does not correspond
to the scale of the actual endmembers. Even so, the shapes
of the spectral factors are very similar to the actual endmem-
bers, so we can claim that they are physically meaningful.
Finally, in Fig. 7, we show the average Pearson correlation
between the actual abundances and the estimated spatial fac-
tors for the noisy dataset. In all cases the correlation is very
high (greater than 0.8) for the three materials, showing that
the spatial factors are linearly correlated to the physical frac-
tional abundances, and thus, they retain their physical mean-
ing.

4. CONCLUSION

We have proposed the use of multiway analysis to analyze
hyperspectral multiway (more than two) images. In particu-
lar, we propose to use compression-based nonnegative CP de-
compositions. We have tested the proposed approach, making
use of the ProCo-ALS algorithm, to analyze multiangle syn-
thetic images of the Martian surface. We have given solid evi-
dence supporting the physical interpretability of the estimated
spectral and spatial factors in terms of conventional unmix-
ing. Thus, we argue that the nonnegative CP decomposition
of hyperspectral tensors could be interpreted as a multi-linear
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Fig. 6. Best and worst endmembers.
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Fig. 7. Correlation abundances.

spectral unmixing process. Further research will extend this
research avenue by incorporating physical constraints usually
employed in spectral unmixing, such as the abundances sum-
to-one constraint and spatial smoothness. Also, the spectral
variability issue, which is a well know source of errors in
spectral unmixing will be investigated, by incorporating topo-
logical and photometric information into the synthetic data.
Also, further research will devote to the analysis of real Mar-
tian multiangle images taken by the CHRISM sensor.
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