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ABSTRACT 

The assumption of one-dimensional unsteady flows in the inlet and 
exhaust systems of turbocharged diesel engines is widely used although 

multi-dimensional simulations using fluid dynamics are also possible. 

However, difficulties persist concerning the boundary conditions, 
particularly at the pipe ends (inflow or outflow) and at the intra-pipe 
boundary conditions (sudden or gradual area changes, bends, junctions, 

etc.). This paper focuses on the two first steps leading to a ID flow 

simulation code: the selection of a numerical scheme and the study of 
an open end boundary condition. The first section compares several 
numerical algorithms, including Lax-Wendoff, Flux-Corrected
Transport methods (FCT), and Harten-Lax-Leer (Riemann solver), 

extended to the second order. The selection criterion is the best 
compromise between numerical instabilities and computational time. A 
numerical study using the Fluent CFD code is then presented on a 

constant area duct in order to determine some characteristics at the pipe 
end, specifically the dead zone length and the throat area. Finally, a 
model parameterized by the pressure ratio between inlet and outlet is 
proposed. 

NOMENCLATURE 

Variable Unit Description 
a! s·2 law coefficient 
az s·2 law coefficient 
a, m/s speed of sound 
a si rnls speed of sound at point i 

as out mls outside speed of sound 
bl s·' law coefficient 
bz s·l law coefficient 
c rnls velocity of shock 

C! - law coefficient 
CFL - criterion of Courant, Friedrichs, and Lewy 

D m diameter of tube 
e J/kg specific internal energy 

F flux vector 
Ft mz throat area 

Ftube mz cross section area 
G rnls2 friction term 
Lt m dead zone length 

kube m tube length 
M a Mach number 
p Pa Pressure 

Pi nit Pa initial tube pressure 
Pi Pa pressure at point i 

Pout Pa outside pressure 
q J/kg heat transfer term 
s source vector 

Time 
tJ analytical solution time 
tz s analytical solution time 
Ti K temperature at point i 
u rnls axial velocity 
Ui rnls axial velocity at point i 
w flow state vector 
X m axial coordinate 

Xsensor m sensor position 
y m radial coordinate 
y ratio of speciftc heats 

<I>(fld Flux limiter 

f)i ratio of consecutive gradients 

p kg/m3 density 

Pi kg/m3 density at point i 

INTRODUCTION 

For several decades, the inlet and exhaust systems of internal 

combustion engines have been the focus of numerous studies involving 
gas dynamics. The dimensions of these systems have a direct influence 

on the cylinder filling and emptying (in terms of average value and 

distribution among the cylinders), and thus on the combustion process, 
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the overall engine performance and the pollutant emissions at the 
engine exhaust. 

The first flow simulations were performed using the method of 
characteristics (Benson 1982). The ever-increasing performance of 
computers allowed for the advent of new resolution techniques 
resulting in numerous new algorithms (Chen and al. 1992, Corbenin 
and al. 1995, Vandervoorde and al. 2000, Winterbone and al. 2000). 

However, the modeling of the various singularities presented by the 
inlet and exhaust systems of internal combustion engines still remains 
challenging. In particular, the pressure losses associated with these 
singularities have been evaluated at steady state (Blair 1995) to 
simplify both the computations and experimental measurements. 
Although this technique brings satisfactory results, it does not take into 
account the wave distortion resulting from the unsteady nature of the 
t1ow through the singularity (for example, the change in position of the 
dead zones as a function of time). 

The final objective of this study is to create a 1 D simulation code 
dedicated to Internal Combustion Engine. The first step is the choice of 
a numerical scheme to solve the gas dynamics equations for different 
types of pipe junctions (parts 1 and 2). The second step is the study of 
various singularities in unsteady flow conditions using the Fluent CFD 
as a numerical test bench. In this paper, the study is presented for a 
fully open end boundary condition (part 3). A same study will be, in 
the future, conducted for each type of singularity and (as a further 
development) then integrated in a lD simulation code. 

The proposed solutions aim at increasing the capabilities of the 
SELENDIA simulation code that has been developed by the authors 
for a decade (Hetet and al. 1994, Hetet and al. 2000) by adding the 
modeling of pressure wave propagation. 

1. GOVERNING EQUATIONS 

The flow through the pipes joining the various singularities is 
assumed to be quasi one-dimensional. Although unsteady flows are 
rarely one-dimensional, experience shows that a one-dimensional 
approach is sufficient in most cases (Benson 1982). This assumption 
results in the longitudinal variation of the pipe cross section area. The 
properties of the flow through this pipe are uniform in each cross 
section (Esfandiari 1985). 

The gas dynamics of one-dimensional flows are described by the 
following three equations: the continuity equation, the momentum 
equation and the energy conservation equation. This system of three 
equations can take the following form, known as "conservative:" 

Where: 

W= 
p 

pu 

(1.) 

(2.) 

pu 
F(W)= P+pu 2 ( e+ u

2
2 +� }pu 

-�.dFtube 
Ftube dx 

S = 
- pu 2 

. dFtube - pG 
Ftube dx 

- p-+P- ·---+pq ( U 2 Y l U dFtube 
2 y -1 Ftubc dx 

2. SELECTION OF A NUMERICAL SCHEME 

(3.) 

(4.) 

The modeling presented in this section supposes a perfect and non 
viscous fluid inside a constant section duct. The flow is assumed to be 
adiabatic. These assumptions presuppose that the S vector is null. 

Although analytical solutions can be established in some specific 
cases, solving equation (1.) requires the use of discretization methods. 
The proposed solution was obtained from an investigation performed 
on a 2 meter long pipe (with 1000 cells) assumed to be initially either 
depressurized (at .8 bar) or pressurized (at 1.5 bar). The various 
numerical schemes were compared with the analytical solution shown 
in Appendix A (derived at mid length of the pipe) with respect to 
precision and then among each other with respect to computational 
time. 

Historically, the first technique that was used was the method of 
characteristics. It is based on the possibility to transform the set of 
equations with partial derivative terms into a set of equations with full 
derivative terms. However, even though this method allows for easy 
visualization of the pressure wave propagation, its major disadvantage 
relies in the fact that it can hardly be applied to the occurrence of a 
shock. As a result, this technique was not implemented by the authors. 

The increasing performance of computers allowed for the use of 
techniques based on the resolution of finite differences with a second 
order precision. This led to the schemes of Lax-Wendroff (LW2), Mac 
Cormack (MCO et MCI) and Rubin & Burstein (RB) (Peyret 1977). 
However, implementation on our test case regarding an expansion 
wave with an initial pipe pressure of 1.5 bar as depicted in Figure 1 
shows that this type of resolution brings numerical oscillations. This is 
due to the diffusive property of discretization errors. The results also 
show that the method of Mac Cormack is not suitable for this type of 
problem since the direction of the discretization (right or left) results 
in a better resolution for a given direction of the flow. Similar results 
are obtained in the case of shock waves, thus leading to the non 
selection of these methods by the authors. 
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Figure 1. Comparison of resolution methods for the 

propagation of an expansion wave (CFL = 1.0) with an initial 
pressure of 1.5 bar 

A first method was proposed to deal with numerical oscillations: the 
addition of an artificial viscosity in steady schemes (Peyret 1977). The 
anticipated objectives are a diffusive effect while preserving the 
precision, targeting zones with high gradients and preventing the 
shocks from spreading to a large number of points. The results are 
illustrated by Figure 2 in the case of shock waves. Similar results were 
obtained for each type of wave that was investigated. They show that 
this kind of model does not properly damp numerical oscillations. 
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Figure 2. Influence of artificial viscosity on the resolution of a 
shock wave propagation (CFL = 1.0) with an initial pressure of 

.8 bar 

The addition of a diffusive term in the equations of the gas dynamics, 
rather than in the scheme itself, may also diminish numerical 
oscillations. This principle is known as artificial compression (Harten 
1978). However, although this technique provides satisfactory results 
for basic flows, it is not suitable for complex flows such as those 
encountered inside pipes with variable sections (Bulaty and al. 1985). 

The flux-corrected transport method (FCT) was then developed 
(Niessner and al. 1981). The methods based on this technique take 
advantage of first order schemes (monotone) as well as second order 

schemes (accurate). They rely on a weighted average of these two 
solutions. Investigation on shock and expansion waves by the authors 
shows that these resolution algorithms provide very satisfactory results. 
However, they lack the conservative properties used for the schemes of 
the Rubin & Burstein class (Yandervoorde 2000). Consequently, they 
still generate a few numerical oscillations. 

A solution that combines the use of the characteristic information 
with a conservative formulation was proposed by Godunov (Chen and 
al. 1992) in order to solve the problem by properly eliminating 
numerical instabilities. Instead of considering the characteristics at 
time n+ I, Godunov suggested to solve Riemann's problems based on 
the characteristics at time n. The approximated solution can then take 
the following form (while the source terms are still null): 

(5.) 

Various numerical resolution schemes were then developed, 
particularly the scheme of Roe and the scheme of Harten-Lax-Leer, 
labeled HLL throughout this paper (Harten 1983). Roe's method 
consists of a local linearization at the i + Y2 interface followed by a full 
resolution of the problem. The considered element is weighted by 
density related terms starting from its boundaries (Roe's average) 
whereas the HLL technique uses an arithmetic average in conjunction 
with an explicit scheme of the first order, easily attainable. 

� e 
!:! ::s 
� 0. 
$l 
.a 0 1l 
< 
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-- Analytic 
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1.01 

0· 9�l:;.3:---'---74.L;- 4--'--4.,.l.5-:;-----io.-....,4,L .6,..--'--..J4.�:- 7--'-
--,J

4.8 
Time(ms) 

Figure 3. Comparison of resolution methods for the 
propagation of an expansion wave (CFL = 1.0) with an initial 

pressure of 1.5 bar 

Figure 3, obtained from a comparative study involving an expansion 
wave, shows that numerical oscillations are no longer present; 
however, the convergence requires more time. As a result, this class of 
schemes is not as attractive as the class of Rubin & Burstein due to the 
fact that Riemann's solvers are of the first order in terms of both time 
and space. The same conclusions can be drawn in the case of the 
propagation of a shock wave. 

It thus appears that investigating higher orders of resolution becomes 
necessary. A total variation diminishing flux limiter algorithm (TVD) 
was used in this objective. 
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The nux limiter cl>(0) of the numerical scheme can be selected 
among the following forms (Vandervoorde and al. 1998) where 8 
represents the ratio of consecutive gradients: 

8· 
= 

wi -wi-1 

I wi+I-wi 
Minmod: ct>(8) = max(O, min(8,1)) 
Superbee: ct>(8) = max(O, min(28,1), min(8,2)) 

Van-Leer: ct>(8)= 18 1+
1
8

1 1+ 8 

82 +8 Van-Albada: ct>(8)= --2 1+ 8 

0.98 
� e 
!3 0.96 � 
.Y " 

� 0.94 
..: 

0.92 

-=" " .. B 

--
- - ilo - -
-·-·8 ·-·-
----<>-
--9--

(6.) 

(7.) 
(8.)  

(9.) 

( 10.) 

� 8 .. 

Anulyticul 
Minmod 
Superi)Ce 
Vuu Albada 
V nu Leer 

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 
Time(ms) 

Figure 4. Selection of the flux limiter for the resolution of a 
shock wave propagation (CFL = 1.0) with an initial pressure of 

.8 bar 

Figure 4 presents some results for the various nux limiters in the case 
of a shock wave propagation. It shows that the nux of Minmod and 
Van Albada are not as efficient as the nux of Van Leer. 

Superbee's nux limiter shows a tendency to generate oscillations that 
do not diminish over time in the case of a shock wave. A sensitivity 
analysis of the CFL coefficient confirmed this trend. For this reason, 
the nux limiter of Van Leer provides the best results as far as solving 
the equations of the gas dynamics for the problem being investigated. 

Switching to a second order resolution definitely improves the 
results. This is especially true for expansion waves as shown in Figure 
3. The schemes of HLL and Roe are as accurate as the scheme of RB 
while presenting no numerical oscillations. 

Figure 5 shows a comparison among the schemes in terms of 
computational time, using the LW2 scheme for reference. It shows that 
Roe's scheme is very penalizing. As an example, the simulation of a 
100 ms expansion wave propagation was performed using a pipe that 
comprises I ,000 cells. The computational time on a personal computer 
equipped with an 853 MHz processor is 26.5 seconds for the Lax
Wendroff scheme whereas the Riemann solvers, of the second order in 
terms of both time and space, require 141.9 and 3 18. 1 seconds for 
Harten-Lax-Leer and Roe, respectively. 

Consequently, the method selected by the authors was the scheme of 
HLL with a second order reconstruction using a total variation 
diminishing Van Leer nux limiter algorithm. 
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Figure 5. Relative computational times 

3. INVESTIGATION AND MODELING OF THE PLAIN OPEN 

END BOUNDARY CONDITION 

3.1 Problem statement 

One-dimensional simulation must use adapted models since pipe 
innows are not isentropic. The study presented in this paper does not 
involve a steady now unlike most studies (Kirkpatrick 1994, Blair 
1995, Fleck and al. 1996), but an unsteady now to better characterize 
the plain open end boundary condition. 

As a matter of fact, considering a pipe innow from the atmosphere, it 
is possible to investigate the differences between the model selected by 
Kirpatrick (lD simulation) and the results given by Fluent and also by 
experimental measurements (see Figure 8). 

Figure 6. Flow penetrating from the outside 

A 20 axisymmetric simulation was conducted using the FLUENT 5 
CFD code in order to exhibit the losses generated by this type of 
singularity. Investigation of the inlet air boundary condition 
(considering a laminar viscous now) was performed on a pipe with a 
27 mm diameter and a 2.5 mm thickness. 
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Figure 7. Stream function for a pipe inflow with an initial pressure of .8 bar 
at t = .03 ms, t = .07 ms, t = .13 ms, t = .19 ms, t = .3 ms, t = .5 ms 

The pipe edges present a 90 degree angle as shown in Figure 6. The 
simulation process consists of allowing outside air to penetrate the pipe 
at t = 0 with an initial inner pressure of P,n,,· Outside conditions are 
assumed to be 1 bar and 300 K. 

The grid used to model the pipe (27976 cells) is irregular. It is 
composed of smaller cells near the pipe walls with a first cell of .01 

mm and a subsequent geometrical increase by a factor of 1. 1 until the 
cells reach I mm. The air intlow condition in Fluent assumes parallel 
streamlines. Actually, this assumption is not correct. The domain 
investigated is then the pipe itself and the atmospheric zone near the 
pipe entry using the same type of grid with 11096 cells (see Figure 6). 

,, 
;, 
;, 
;, 
;, 
(I 
,, 
;, 

I 
I 

-- Experin�ntntion 
- - - - Fluent 
-----·- lDsimu!Rtiou 

0 0.0005 0.001 0.0015 0.002 
Time(s) 

Figure 8. Comparison of pressure wave solutions near the 

plain open end boundary with an initial pressure of .8 bar 

The simulation of the pipe filling (creation of a shock wave inside 
the pipe) shows the emergence of dead zones. Figures 7 and 9 obtained 
with an initial pressure of .8 bar show that the dead zones are not 
stationary. Their evolution is rapid. Furthermore, they heavily depend 
on the compression ratio. 

One can also observe that the various geometrical characteristics of 
the dead zone are not constant. Figures 7 and 9 show that the fluid 
throat area Ft and the dead zone length Lt, defined in Figure 6, keep 
varying as long as the flow is unsteady in this zone. Next part presents 
the graphical studies of Ft and Lt based on the streamline. 

3.2 Determination of geometrical characteristics related to the 
flow 

The initial focus was put on the throat area Ft to be graphically 
determined from the streamlines. In this objective, several simulation 
runs with different initial inner pressures (.80, .85, .90 and .95 bar) 
were conducted for a flow coming from the outside and going inside 
the pipe. Figure 10 shows Ft as a function of time. 

The following model describes the variations of Ft as a function of 
time and initial pressure ratio: 

Where: 
a1= b1 · (1 - c1 ) 

(11.) 

(12.) 
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Figure 9. Stream function for a pipe inflow with an initial pressure of .95 bar 
at t = .03 ms, t = .07 ms, t = .13 ms, t = .19 ms, t = .3 ms, t = .5 ms 
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----- + 1 . 1  ( ]1.4 

�nit -1 
Pout 

C1 = 0.13 .( Pjnit ]8 

+ 0.444 l Pout 

(13.) 

( 14.) 

Figure 10 shows that some of the data points are not properly 
evaluated by this model. However, the difference between the model 
and the FLUENT computations remains minor. 

0.9 

� 
0.8 

a:: 0.7 

0.6 

0.50 10 
(t*asout)/0 

PO::: 0.80 hur (Fluent) 
-- P0=0.80hnr(Plnw) 

0 PO= 0.85 hnr (Fiut!nt) 
- - - - P0=0.85bar(lnw) 

0 PO= 0.90 bur (Fluent) 
-·-·-·- P0=0.90hnr(law) 

c. PO= 0.95 hnr (Fluent) 
-· ·-··-· ·- P0=0.95hur(law) 

30 

Figure 10. Comparison of the throat area Ft as a function of 
time and initial pressure 

The simulation results presented above may also be used to evaluate 
the dead zone length, Lt (Figure 1 1). The following model taking the 
form of a logarithmic equation can be proposed: 

Where: 
3.3 

a2 
= ( pinit ]4.6 

- 2 . 9 
l Pout 

b2 = 0.06 · ( Pjnit J- 0.038 l Pout 

The determination of Ft and Lt uses: 

(15.) 

(16.) 

(17 .) 

(18.) 

The results show that the throat area Ft and the dead zone length Lt 
are not time constant. While the throat area Ft varies, dead zones are 
created. The energy involved in this creation disturbs the pipe inflow. 
This energy is time dependant and as a consequence the loss 
coefficients used in boundary condition modeling are also time 
dependant. The knowledge of the length Lt leads us to locate where the 
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flow is not ID. Furthermore, it evaluates the energy necessary for the 
dead zones displacement after their occurrences. 

As a result, it appears that a pressure loss coefficient model based on 
simulation and steady state measurements is not accurate enough for 
this type of boundary condition with respect to the application being 
investigated. 

These results were established for a pipe identical to the pipe shown 
in Figure 6, i.e., with edges presenting a 90 degree angle. Further 
investigations are necessary to analyze the effect of curved edges to 
take into account the geometrical characteristics of the pipes that are 
typically used for the inlet and exhaust systems of internal combustion 
engines. Another area of further research includes investigating the 
influence of the pipe diameter and thickness on the various results. 

1.5 o PO= 0.80 hur (Fiu�ut) 

--- P0=0.80hnr(Fiuw) 
0 PO= 0.85 hur {Fluent) 

- - - - PO= 0.85 har (law) 
0 PO =0.90 hnr (Fluent) 

-· -·-·- P0=0.90hnr(law) 
A PO =0.95 bur (Fluent) 

-··-··-··- PO =0.95 bnr (Fluent) 

0.5 

10 20 30 
(t*asout)/D 

Figure 11. Comparison of the dead zone length Lt as a 
function of time and initial pressure 

4. CONCLUSION 

Modeling the propagation of pressure waves inside the piping 
systems of internal combustion engines first requires the selection of a 
numerical scheme to solve the equations of the gas dynamics. First 
order algorithms present the advantage of being monotone, simple and 
consequently cost effective in terms of computational time. Second 
order schemt;s in terms of both time and space are required to improve 
the model's accuracy. Using total variation diminishing flux limiter 
methods removes the oscillating nature of these algorithms. For the 
application being investigated, the best compromise with respect to 
accuracy and computational time is the scheme of Harten-Lax-Leer 
using a second order reconstruction by a total variation diminishing 
flux limiter method based on Van-Leer. 

In addition, the one-dimensional modeling of pipe inflows requires 
certain geometrical characteristics. The proposed model for the fluid 
throat area will allow for the determination of the actual mass flow at 
the pipe inlet and consequently the establishment of a proper model for 
the losses inherent to this type of singularity; however, further 
investigations of the geometry of this inlet air element are needed to 
corroborate the results with actual cases. 

A comparison with experimental results will be the subject of a 
follow-up project. An experimental setup is being developed. The 
objective will consist of investigating the effect of a pipe filling and 
emptying on the pipe inner pressure. Various geometrical 
configurations will be tested. The global results will then be integrated 
into the SELENDIA code for the simulation of turbocharged diesel 
engines. 
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APPENDIX A 

The initial objective is concerned with an analytical solution for the 
expansion wave propagation. It is assumed that there is no loss at the 
singularity. The method of characteristics provides the following 
direction equation and compatibility condition (Benson 1982): 

dx 
-=u-a 
dt 

s 

y-1 
a +--·u=a0 s 

2 
s 

(19.) 

(20.) 

The proposed analytical solution provides the time variations of the 
pressure at a given point of the pipe (x""'"). Equations (18.) and (19.) 

combined with the isentropic property of the flow lead to the following 
equation: 

[ Ltube -X sensor 2 J Y -1 
as = +-- ·aso ·--

t y-1 y + l 

[ a )�2 P=Po. _s 

a so 

(21.) 

(22.) 

These two equations are valid between time (t1) at which the wave 
starts passing through the sensor and time (t,) at which it ends. Their 
values are the following: 

t _ Ltube -X sensor 
1-

a so 

t z = (y _1). 
Ltube-X sensor (y + 1) · asout -2 ·a so 

(23.) 

(24.) 

A second objective is concerned with the shock wave propagation. 
The t1uid inside the pipe is assumed to be divided into the following 
three distinct zones as shown in Figure A I: 

• State 0: no fluid motion, initially in the pipe. 
• State 1: fluid in motion, initially in the pipe. 
• State 2: fluid in motion, initially outside. 

shock 

/ 
0 11 

Figure A 1. Fluid States 

2 

The shock wave separates the fluid into two entities whose 
thermodynamic variables are linked by the Rankine-Hugoniot relations 
as well as the shock continuity equation. It is assumed that there is no 
loss at the singularity, i.e., the flow is isentropic between the outside 
and the pipe inlet. This provides the energy conservation equation. The 
resulting equations combined with ·the definition of the shock 
propagation velocity, the sound celerity, and ideal gas state equation 
lead to the following set of equations: 

Pz =PI 

PI 2 · y ( 2 ) -=1+- · M -1 
Po y + 1 

a 

2 EQ_ 
= 1 

_ _ 2
_ . 

M a -1 

p1 y+1 M 2 
a 

PI - = r · T1 
PI 

a ;1 =y · r · T1 

2·Y 

[ J-as2 y-1 
Pz =Pout · --

asout 

2 y- 2 2 2 as2 +--·Uz = asout 
2 

u1 =Uz 
a ;2 =y·r·T2 

Pz -=r·T2 
Pz 

c = Ma ·a so 
PI c= --- ·u 1 

P1 -Po 

(25.) 

(26.) 

(27.) 

(28.) 

(29.) 

(30.) 

(31.) 

(32.) 

(33.) 

(34.) 

(35.) 

(36.) 

The resolution is performed based on an iterative procedure on PI. 
As an example, P0 = .8 bar leads to P1 = .9843 bar and a shock 
propagation velocity of 375.5 m.s·1. 
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