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ABSTRACT 
A new technique for simulating engine pressure waves 

consisting of linking pressure response and mass flow rate 
excitation in the frequency domain has been presented. This is 
achieved on the so-called “dynamic flow bench”. With this new 
approach, precise, fast and robust results can be obtained while 
taking into account all the phenomena inherent to compressible 
unsteady flows. The method exhibited promising results when 
it was incorporated in a GT-Power/Simulink coupled simulation 
of a naturally aspirated engine. 

However, today’s downsized turbocharged engines come 
with more stringent simulation necessities, where 
discontinuities such as the charge air cooler (CAC) must be 
correctly modeled. Simulating such engines with the transfer 
function methodology is quite difficult because it requires 
mounting the entire intake line on the bench. Modeling wave 
action for these engines requires an understanding in the 
frequency domain of the flow’s characteristics through the 
different elements that make up the intake line. This leads us to 
study the acoustic transfer matrices.  

In order to split the intake line into separate elements, a 
straight duct of 185mm length is chosen as a first reference. It 
is mounted on the dynamic flow bench and pressure response is 
measured after an impulse mass flow excitation. Transfer 
functions of relative pressure and mass flow rate are then 
identified at given points upstream and downstream of this 
reference tube. These functions produce the desired transfer 
matrix poles.  

The resulting matrix is validated by inserting the tube in 
the intake lines of two four-cylinder engines which are modeled 
in GT-Power. Pressure and mass flow are registered at the 
measurement points of the tube from the simulation. The time 

series data upstream of the tube is treated in the frequency 
domain and the transfer matrix is used to calculate the 
corresponding downstream values. Measured values from the 
native simulation and those calculated using the transfer matrix 
propagation are then compared.  

Finally, the experimental technique for identifying transfer 
matrices of more complex elements using two versions of the 
previous tube is presented. 

INTRODUCTION 
It has long been realized that the design of the intake and 

exhaust lines has a large effect on the performance of an 
internal combustion engine [1]. This explains the growing need 
for engine simulation tools able to provide fast and accurate 
results. At the moment, the most popular technique for engine 
simulation is based on one-dimensional gas dynamics schemes 
that solve the 1D Euler equations in an iterative manner over a 
number of pipes and junctions that make up the intake and 
exhaust systems [2]. The disadvantage of such techniques is 
that they remain rather time consuming and require 
considerable computing power. In fact the flows in the 
induction and exhaust processes are highly compressible, 
unsteady and depending on engine speed, in herein the 
difficulty of simulation. This is due to the nature of operation of 
a reciprocating engine. The second disadvantage or limitation 
of these codes is the difficulty to correctly model complex 
geometry and take into account all the different aspects of the 
flow. 

The usage of acoustic theory for internal combustion 
engine applications was the interest of many authors  but it was 
notably for the treatment of orifice noise and the predictive 
acoustic modeling in the intake and exhaust lines [3] [4] [5]. 
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The linear theory of gas dynamics can be extended to study the 
impact of wave action and frequency response on the filling 
and emptying of an internal combustion engine (ICE). The 
cycling operation of intake and exhaust valves leads to a series 
of pulses that enters the geometry at one end and causes the 
trapped air mass to vibrate and reflect at the other end. This is 
known as the natural frequency of the system whose value can 
be calculated using acoustic theory and plane wave 
decomposition, [6] [7]. Desmet [8] employed impedance 
calculations to study the influence of the intake geometry on 
the characteristic performance of a diesel engine. Acoustic 
theory has also been used from a simulation point of view 
rather than just a tool to describe and study wave action. 
Harrison et al. [9] used the calculated impedance and 
volumetric flow rate through the intake valve to obtain time 
domain pressure data. They concluded that the inertial ram 
effect was necessary to model especially at high speeds in order 
to obtain good results. However they employed corrections in 
the form of complex wave numbers and Mach number [4] to 
take into account effects of mean flow. This was done by 
considering a constant air speed through the intake valve when 
it is opened and a zero mean air speed when it is closed. Thus 
decoupling acoustic source from response, meaning that the 
unsteady source causes wave action but the latter cannot be the 
origin of unsteady air fluctuations [9].  Recently, Chalet et al. 
[10] proposed a new frequency based approach; it is based on a 
transfer function [11] linking pressure and mass flow rate 
excitation. This transfer function is characteristic of a given 
intake line and it incorporates inertial mass phenomena. Once 
its parameters were identified on the dynamic flow bench [12] 
it was coupled to a GT-Power time domain simulation via 
Simulink. The method exhibited promising results.  

However, the transfer function approach as presented in 
[10][12] depicts certain limitations. The most pressing would 
be the difficulty to implement such as technique for a 
turbocharged engine, that would require mounting the entire air 
intake line on the dynamic flow bench. This is problematic 
because a turbocharged engine application comes with thermal 
discontinuities and unknown boundary conditions: charge air 
cooler and compressor. The solution would be to split the air 
intake line into separate elements or blocks and thus 
introducing transfer matrix notions into engine flow simulation. 
Transfer matrices are nothing new, they are a linearization of 
the pressure and velocity fluctuations in the frequency domain 
while assuming a 1-D plane wave action. For this hypothesis to 
be valid the frequency range must stay below the cutoff 
frequency of the first diametric mode. This is the case for the 
frequencies of interest for engine filling even for typical 
maximum transverse dimensions of intake elements [3].  

To et al. [13] derived analytical transfer matrices for 
simple acoustic elements (tubes and expansion chambers), and 
also described an experimental transient technique for 
determining the matrix parameters of more complex elements. 
Munjal [3] presents an excellent reference for calculation of 
impedance and transfer matrices of various elements and 
discontinuities. It is important to note that these transfer 

matrices are dedicated to relative pressure and acoustic particle 
velocity fluctuations. The wave action in an internal 
combustion engine is different from conventional acoustic 
flows because the relative pressure and mass flow fluctuations 
take place with a relatively high mean flow which is never 
constant but unsteady, dependant on engine speed and on the 
wave action of the geometry itself. Furthermore, a moving 
medium will make acoustic measurements more difficult and 
will introduce instabilities particularly to regions with variable 
cross section. According to Munjal et al. [14], the problems 
related to a moving medium are accentuated when large 
gradients of pressure and velocity appear and the presence of a 
mean flow mainly affects the low frequency range and creates 
random noise patterns. 

In this work, the transfer function model identified on the 
dynamic flow bench for a 185mm tube is extended to a four 
pole model linking pressure and mass flow rate upstream and 
downstream of the tube at designated measurements points. A 
transfer matrix is thus obtained. The tube is placed in a GT-
Power code of a four cylinder engine, and the corresponding 
matrix is validated by checking that it is capable of correctly 
transmitting pressure and mass flow information.  

Finally the experimental technique for identifying transfer 
matrices of a more complex system, such as a CAC, is 
introduced. The perspectives of such a method and the 
versatility of such a matrix are explained. 

NOMENCLATURE 

Resultant relative static pressure (mbar) 

Initial relative pressure at rest (mbar) 

Steady state pressure drop (mbar) 

Unsteady pressure fluctuations (mbar) 

Abscissa along the tube (m) 

Time (sec) 

Laplace variable 

Instantaneous relative pressure (mbar) 

Instantaneous mass flow (Kg/h) 

Fluid velocity (m/s) 

Steady state loss coefficient (mbar.h/Kg) 

Mass flow excitation profile (Kg/h) 

Initial steady mass flow on bench (Kg/h) 

Mean flow (Kg/h) 

Pressure in the frequency domain (mbar) ( ) 

Excitation in the frequency domain (Kg/h) ( ) 

Speed of sound at rest (m/s) 

Angular frequency of the ith mode (rad/s) 
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Damping coefficient for the ith mode 

Weight coefficient of the ith mode 

Resonating frequency for the ith mode 

Ram effect parameter 

Pressure transfer function at point 

Pressure transfer functions at point , 

Mass flow transfer functions at point , 
Wave number for the ith mode 

Length of the discussed geometry (m) 

Characteristic pipe impedance (m-1.s-1) 

Pipe cross section (m2) 

“Adequate” excitation for transfer matrix (Kg/h) 

Transfer matrix of the tube 

Transfer matrix pressure variable (mbar) 

Transfer matrix mass flow variable (Kg/h) 

Transfer matrix poles 

GT-Power relative pressure (mbar) ( ) 

GT-Power mass flow (Kg/h) ( ) 

DYNAMIC FLOW BENCH – SIMPLE TUBE 

A 185mm tube along with its adaptation part is mounted on 
the impulse generator of the dynamic flow bench as shown in 
figure (1). A nominal steady mass flow rate is aspirated 
through the geometry and once the flow stabilizes it is abruptly 
eliminated in 0.5ms using a guillotine system. The result is a 
mechanical nearly impulse excitation of the air column in the 
tube. Kistler 4005AA2R pressure transducers are mounted 
against the wall at designated locations as shown in figure (1). 
They allow for time series data of pressure to be registered. The 
absolute pressure inside the tube can be thought of as a linear 
superposition of three main components: 

(1) 

Where  in equation (1) is the pressure value of the ambient 
air at rest before any excitation,  is the mean pressure loss 
which is conventionally expressed as a function of the square of 
the steady fluid velocity . The pressure drop is due to the 
initial nominal mean flow  and it can be written as a 
function of that flow. So for the specific geometry of figure (1) 
it is possible to express  as: 

(2) 

can be measured, it has a value of 
. Finally the term  in equation (1) refers 

to the relative pressure fluctuation due to wave action inside the 
pipe. It is given in the frequency domain  by equation (3) 

(3) 

FIGURE 1 – SCHEMATIC OF THE ENTIRE GEOMETRY MOUNTED ON 
THE FLOW BENCH 

Where  is the corresponding transfer function and depends 
on the geometry and  is the mass flow rate excitation that 
initiated the wave action. 

The transfer function  at point 1 which is the closest 
practical point to our excitation is written as follows: 

(4) 

The transfer function of equation (4) is a modal decomposition 
[15] of the pressure response. In theory, there are an infinite 
number of resonant frequencies that are excited by the impulse 
mass flow. However in practice we only identify a limited 
number, the energy associated to higher modes become 
increasingly small when compared to the fundamental 
frequency [16].  
The transfer function is measured from experiments on the 
bench. A number of impulses are carried out for a given 
geometry and the pressure responses are compared each time in 
order to validate linearity between the tests. Following the 
registration of time series data of pressure and a specific 
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frequency treatment, the complex value of the sampled transfer 
function is calculated. Equation (4) attempts to model the 
transfer function using a second order Laplace function for each 
resonance.  
The first parameter of the transfer function  is the angular 
frequency  where  is the frequency of the  mode. 
It is given directly from measurements by the characteristic 
frequencies of the peaks of the modulus of the measured , 
otherwise known as the Bode diagram given by figure (2).  

FIGURE 2 – MEASURED AND MODELED  MODULUS OF PRESSURE 

FLUCTUATIONS AT POINT 1. 

 is known as the inertial ram effect parameter, it is 
proportional to the amplitudes of the peaks and is a global 
energy parameter independent of each mode. The damping 
coefficients  are given in percentage; they are calculated also 
from measurements and model the dissipation and losses in the 
unsteady pressure waves. Finally, in order to limit the model to 
a certain number of resonance frequencies, the frequency 
window 0-1000 Hz is only modeled. This is well sufficient for 
an engine filling and emptying application. Therefore, only 

 resonant frequencies are identified, the energy associated 
to each mode is calculated via weight coefficients  that must 
validate  in the frequency range in question. For the 
geometry of figure (2), two frequencies were identified. The 
corresponding parameters are given by table 1.  

TABLE 1 – IDENTIFIED PARAMETERS OF TRANSFER FUNCTION 

Transfer Function 

310 938 

2.55 1.24 

95.5 5.5 

7.382e4 

PRESSURE PROPAGATION 

When the tube is subjected to the impulse excitation, the 
air column inside the tube vibrates with its proper frequencies. 
This system of fluctuations is in fact the superposition of 
elementary sinusoidal vibrations whose corresponding 
frequencies are multiple of each other. These vibrations are 
characterized with maxima and minima of pressure and 
velocity that occupy fixed positions along the length of the 
tube. The resonant frequencies depend on the length and 
termination of the tube. After excitation a distribution of quarter 
wave length is established inside the tube.  

The theoretical pressure distribution of the air column 
along the axis of the geometry after choosing the closed end as 
a reference section for a resonant frequency at any given 
instant and abscissa can be written as: 

(5) 

Where  in equation (5) is the wave number given by: 

(6) 

 is the local speed of sound supposed to be constant for an 
ambient temperature of  . A real wave number instead of 
a complex one like usually employed in acoustics [3][4] is 
chosen. This is because the dissipative effects are not meant to 
be incorporated in this term. It is rather a term for propagation 
and phase shift, losses along propagation will be introduced in 
specific damping coefficients for each resonance at any 
abscissa. Equation (5) can be written in the frequency domain 
after normalizing with  for pressures at points  and  of 
figure (1) as follows: 

(7) 

(8) 

Equations (7) and (8) are the transfer functions of pressure at 
points  and  respectively: 

And 

The resonant frequencies, ram effect parameter and weight 
coefficients are independent of propagation. Whereas the 
damping parameters of each resonance will change with 
propagation, they integrate losses due to propagation as stated 
before. 
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TABLE 2 – DAMPING COEFFICIENTS WITH PROPAGATION 

The damping coefficients for the transfer functions  and 
 are calculated after registering the pressure response at 

abscissa  and  and checking peak modulus. They are given in 
table 2.  

Figure (3) compares measured and modeled modulus of 
. Two frequencies were modeled: the main resonant 

frequency at 310 Hz and its first harmonic at 938 Hz. The 
middle peak at 622 Hz corresponds to half wave resonance. It is 
not taken into consideration in this paper. Its effects are 
attributed for the time being to a non-linearity at the opened 
end. This non-linearity is thought to be caused by the large 
pressure amplitudes inside the pipe that are reflected at the 
opened end. For this reason, this frequency was not integrated 
into the model and by inspecting figure (4) it is clear that this 
frequency has little influence on the global signal, which is 
logical since the resonant energy is primary dedicated to quarter 
wave resonance. 

The transfer functions  and  were calculated 
because they allow access to the linear information. In fact, the 
impulse excitation on the dynamic flow bench gives the most 
elementary response that can be measured. This dynamic 
response is accessed via the transfer functions. Later this 
concept of elementary response will be used to excite the 
transfer functions with a “suitable” mass flow. This will be one 
for transfer matrix computations. 

FIGURE 3 – MEASURED AND MODELED  MODULUS OF PRESSURE 

FLUCTUATIONS AT POINT 3. 

The idea behind exciting this “adequate” mass flow excitation 
is to obtain reliable pressure data which can be used in FFT 
calculations. 

Figure (4) compares time domain pressure response at 
point . This is obtained by exciting  with the same 
transient impulse profile as the one used on the experimental 
bench. An inverse Laplace is then carried out for all the 
resonant frequencies.  

FIGURE 4 – MEASURED AND MODELED PRESSURE RESPONSE AT 
POINT 2. 

Good agreement is obtained, and functions  and  are 
capable of faithfully reproducing the reality of the dynamic 
flow bench.  

MASS FLOW PROPAGATION 

The linearized continuity and momentum equations [16] 
can be written for a uniform tube of section  in terms of 
fluctuating pressure  and mass flow 

(9) 

And 

(10) 

Where  is the pipe characteristic impedance: . 
Writing equations (9) and (10) in the Laplace domain and 
eliminating the variable , equation (11) is obtained 

(11) 

Knowing pressure distributions at points  and  from the 
transfer functions given by equations (7) and (8) it is then 
possible to find the mass flow variations at these points both in 
the frequency and time domains by solving equation (11). 
Because the values of the damping parameters are not known as 
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a function of  but are computed from each measurement point, 
approximate values of the mass flow variations are to be 
obtained. Consequently two additional transfer functions are 
defined as 

and 

 and  have the same structure as the pressure functions. 
The corresponding parameters were calculated. 

FIGURE 5 – GT-POWER AND MODELED MASS FLOW RESPONSE AT 

POINT 2. 

In order to validate the new model, a GT-Power model of 
the dynamic flow bench was constructed with the same 
geometry as figure (1). The 1D model was calibrated in order to 
give good results in terms of pressure variations at all the 
measurement points. Once the GT-Power model gave good 
results for pressure, it should also give correct values for the 
mass flow. Figure (5) compares the mass flow rate from the 
GT-Power model against that obtained with the transfer 
function model . Quarter wave length resonance is verified 
as being the preponderant system for the stationary wave 
action. Good agreement is shown and the linear approximation 
of equation (11) is sufficient for the dynamic flow bench.  

TRANSFER MATRIX IDENTIFICATION 

Considering the geometry of figure (1), the idea behind a 
transfer matrix is that pressure and mass flow fluctuations at 
point  are linearly dependent on their counterparts at point . 
This linear relationship exists in the frequency domain and it 
depends on the geometry and conditions that exists between the 
two points. This can be written as: 

(12) 

The pressure and mass flow rate in equation (12) are 
information in the frequency domain as follows: 

(13) 

(14) 

Where  and  at abscissa are 
obtained by exciting the corresponding transfer functions 
and  with an “adequate” mass flow rate: 

(15) 

Thus the variables at points  and  of equation (12) were 
computed using the transfer functions for pressure and mass 
flow calculated earlier. These functions were excited artificially 
with  as a mass flow excitation thus insuring the 
required energy level of each resonance mode in the frequency 
range of the engine were the tube will be placed later on. 
Writing the transfer matrix  as 

And introducing reciprocal and symmetric properties [17] for 
the piping between sensor  and  one can write 

(16) 

The properties of equation (16) were verified by inverting the 
185mm tube of figure (1) and repeating the experiment with the 
same initial excitation .  

SIMULATION IN GT-POWER 

In order to validate the transfer matrix  of the 185 mm 
tube, the latter was modeled in GT-Power and placed in the 
intake line of two four cylinder engines. The tube was equipped 
with mass flow and pressure sensors at the same locations 
shown in figure (1). The virtual sensors registered time series 
data during the engine’s simulation run. The validation of the 
transfer matrix is done in the following manner: time series 
data of pressure and mass flow rate  and  at point 2 were 
measured during the run. Then a FFT treatment is used to get 
information in the frequency domain:  and ; next the 
frequency vectors were convoluted by the transfer matrix . 
Thus values of pressure and mass flow rate at point 3 are 
calculated from the transfer matrix  and obtained in the 
frequency domain:  and  . An Inverse Fourier 
Transform analysis is performed on the previous signals and the 
time domain response is calculated:  and . 
Finally  and  are compared against and 

 measured with the GT-Power sensors. The engine models 
existed a priori in GT-Power, and were calibrated and compared 
to experimental measurements. Equations (17) and (18) 
summarize the procedure just described: 
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(17) 

(18) 

The first engine is a four cylinder 1.6l petrol engine 
simulated at 3000 RPM. A tubular piece of one of the main 
runners was replaced in GT-Power with the 185mm tube as 
shown in figure (6). 

FIGURE 6 – SNAPSHOT IN GT-POWER OF THE 185MM TUBE PLACED IN 
THE PRIMARY RUNNER OF THE PETROL ENGINE 

The idea behind these simulations is to verify that the transfer 
matrix of the tube is capable of correctly transmitting the 
information from point  to point  for different kinds of 
excitations, i.e. different positions in the intake line, different 
engine configurations and different speeds. This results in 
different frequency ranges for each application and different 
mean flows. The objective is to have a matrix that gives good 
results without having to calibrate or know in advance the 
instantaneous Mach number profile. 

FIGURE 7 – PRESSURE IN THE PRIMARY RUNER MEASURED FROM GT-
POWER AND CALCULATED USING EQUATION (17) 

Figure (7) compares pressure waves at point  obtained directly 
from GT-Power and the ones computed with the transfer matrix 
using the registered pressure and mass flow at point . In terms 
of mass flow response, figure (8) compares the results. The 
pressure is correctly transmitted with the transfer matrix. More 
important differences are noticed for the mass flow response 
where the damping is under estimated. These differences may 
be attributed to the approximation of equation (11) that models 
incorrectly the damping. But also, and more importantly, these 
discrepancies manifest according to engine speed, meaning 
they depend on the frequency of excitation. This means that is 
necessary to incorporate more information in the transfer 
matrix poles for these frequencies. 

FIGURE 8 – MASS FLOW IN THE PRIMARY RUNNER MEASURED FROM 
GT-POWER AND CALCULATED USING EQUATION (18) 

The second engine is a turbocharged diesel engine. This 
time the 185mm tube was placed downstream of the charge air 
cooler CAC. The engine speed was set to 4250 RPM. Figures 
(9) and (10) give the results for pressure and mass flow rate 
respectively. 

FIGURE 9 – PRESSURE DOWNSTREAM OF THE “CAC” MEASURED 
FROM GT-POWER AND CALCULATED USING EQUATION (17) 
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Using the same procedure, pressure and mass flow were 
computed at point .Overall agreement is good, but differences 
exist especially for the pressure response in this case. This 
confirms the necessity to make the matrix more robust, i.e. have 
a larger number of peaks in the frequency spectrum on the 
dynamic flow bench, in order to better characterize the matrix.  

FIGURE 10 – MASS FLOW DOWNSTREAM OF THE “CAC” MEASURED 
FROM GT-POWER AND CALCULATED USING EQUATION (18) 

CONCLUSIONS AND FUTURE WORK 

The transfer function technique on the dynamic flow bench 
was used for a simple element to characterize a transfer matrix 
across the tube written in terms of pressure and mass flow rate. 
This was done by measuring the dynamic pressure response 
experimentally and calculating an approximate mass flow using 
a known impedance charge: the quarter wave resonator. This 
allows the computation of four transfer functions, that, when 
excited correctly define the transfer matrix. GT-Power 
simulation code was used for validation by placing the tube in 
the intake line of two engines. The transition from the 
frequency domain to the time domain and back is necessary 
when the future aim is engine simulation. Good results were 
obtained, however differences in mass flow in the main runner 
when the intake valve closes, suggests an incomplete modeling 
of the damping when estimating the mass flow on the bench. 
On the other hand, some differences are noticed for pressure 
variations when the tube is placed downstream of a CAC. This 
may be explained by the fact that the matrix was identified at 
an ambient temperature different than the one present 
downstream of the CAC. Further investigations are necessary in 
order to determine temperature influence on wave action and 
linearity in the frequency domain. It is important to note 
however, that the computed transfer matrix can be employed in 
any mean flow conditions and for large gradients of pressure 
without having to calibrate the matrix at each time and without 
having to know the instantaneous Mach number profile a priori. 
Finally, it is clear that the matrix would give the best and most 
accurate results for excitations that are within the frequency 

band of the initial response on the bench. These excitation 
frequencies depend on the geometry (resonance modes) on the 
entire intake line and on engine speed. It is necessary to evolve 
the transfer matrix by incorporating more modeled frequencies. 

Future work will focus on modeling more frequencies for 
the same tube, thus obtaining a more robust transfer matrix. The 
objective is to make it precise enough for any configuration and 
engine speed. Once the transfer matrix for the tube is 
“optimized”, it is possible to use linear decomposition 
techniques to find the transfer matrix of a more complex 
element. In the case of a turbocharged engine, the CAC present 
a major thermal discontinuity. It will be placed between two 
identical versions of the previous tube and the entire 
configuration will be mounted on the bench to measure the 
dynamic response following an impulse excitation. The transfer 
matrix of the CAC is then identified. Another aspect is to 
understand the effect of such a thermal discontinuity on the 
propagation of the waves. The same configuration as before 
will be repeated but this time including heat transfer across the 
CAC. The characterized CAC with heat transfer will help the 
better evaluation of the influence of a temperature discontinuity 
on wave action in an ICE.  

REFERENCES 

1. BROOME D. – “Induction Ram - Part 2: Inertial aspect of
induction ram”. Automobile Engineer, p. 180-184, 1969.

2. WINTERBONE D.E., PEARSON R.J. – “Theory of Engine 
Manifold Design: Wave Action Methods for IC Engines”. 
Professional Engineering Publishing, 2000.

3. MUNJAL M. L. – “Acoustics of ducts and mufflers with 
application to exhaust and ventilation system design”. John 
Wiley & Sons, 1987.

4. DAVIES P.O.A.L. – “Practical flow duct acoustic”. Vol. 
124(1), pp. 91-115, 1988.

5. DAVIES P.O.A.L, HARRISON M.F. – “Predictive Acoustic 
modeling Applied to the Control of Intake/Exhaust Noise of 
Internal Combustion Engines”. Journal Of Sound and 
Vibration, Vol. 202(2), pp. 249-274, 1997.

6. OHATA A., ISHIDA Y. – “Dynamic Inlet Pressure and
Volumetric Efficiency of Four Cycle Cylinder Engine”. 
Society of Automotive Engineers, n. 820407. 1983.

7. MATSUMOTO I., OHATA A. – “Variable induction 
systems to improve volumetric efficiency at low and/or 
medium engine speeds”. SAE, p. 1511-1521, 1986. ISSN 
860100. 

8. DESMET B. –”Contribution à l’etude de l’influence du 
circuit d’aspiration sur le remplissage d’un moteur diesel”. 
PhD thesis, Université des Sciences et Techniques de Lille, 
1977. 

0.23 0.235 0.24 0.245 0.25 0.255 0.26

250

300

350

400

450

500

550

Time (sec)

M
as

s f
lo

w
 ra

te
 (K

g/
h)

GT-Power qm3
qm3[TM]

8



9. HARRISON M.F., DUNKLEY A. – “The acoustics of 
racing engine intake systems”. Journal of Sound and 
Vibration, Vol. 271(3), p. 959-984, DOI: 10.1016/S0022-
460X(03)00773-9, 2004.

10. CHALET D., MAHE A., HETET J.F., MIGAUD – “A new 
modeling approach of pressure waves at the inlet of internal 
combustion engines”. Journal of Thermal Science. Vol. 
20(2), pp. 181-188, DOI: 10.1007/s11630-011-0455-8, 
2011. 

11. FONTANA P., BERNHARD H. – “A new evaluation
method for the thermodynamic behavior of air intake 
systems”. SAE, n. 2005-01-1136, 2005.

12. CHALET D., MAHE A., MIGAUD J., HETET J.F. – “A 
frequency modeling of the pressure waves in the inlet 
manifold of internal combustion engine”. Applied Energy, 
Vol. 88(9), pp.2988-2994, DOI: 
10.1016/j.apenergy.2011.03.036, 2011

13. TO C.W.S, DOIGE A.G. – “A transient testing technique 
for the determination of martrix parameters of acoustic 
systems, I : Theory and principles”. Journal of Sound and 
Vibration, Vol. 62 (2), p. 207-222, 1979.

14. MUNJAL M.L., DOIGE A.G. – “Theory of a Two Source-
Location Method for Direct Experimental Evaluation of the 
Four-Pole Parameters of an Aeroacoustic Element”. Journal 
Of Sound And Vibration, pp. 323-333, Vol 141(2), 1990.

15. BRUNEAU M. – “Manuel d'acoustique fondamentale”, 
Paris: Hermes, 1998.

16. BOREL M. – “Les phénomènes d'ondes dans les moteurs”.
Publications de l'IFP, Editions TECHNIP, 2000.

17. MUNJAL M.L., DOIGE A.G. – “Symmetry of One-
Dimensional Dynamical Systems in Terms Of Transfer 
Matrix Parameters”. Journal Of Sound And Vibration, 
Academic Press Limited, Vol. 163(3), pp. 467- 475, 1990.

ACKNOWLEDGMENTS 

The author would like to thank the Internal Combustion 
Engine team at Ecole Centrale de Nantes and the Engine and 
Acoustic departments in the advanced development at Mann + 
Hummel France. The authors also thank OSEO Innovation and 
the Région des Pays de la Loire for their financial contributions 
in the research program Ocsygene6. 

CONTACT INFORMATION 

Haitham MEZHER 
Mechanical Engineer, PhD Student 
E-mail: haitham.mezher@mann-hummel.com 
E-mail: haitham.mezher@ec-nantes.fr  

9


