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ABSTRACT
Ground vehicles travelling on the road are often subjected

to unsteady flows. The yaw angle increases with stronger wind

conditions such as gusty cross winds caused by unsteady atmo-

spheric conditions, tunnels, bridges or trucks passing. Separa-

tions appear on the leeward side of the body, interact with the

base flow and cause unsteady vehicle loading. These aerody-

namic elements, added to dynamic properties of the suspension,

springing and tires are finally the factors of its dynamic stability

and of the safe manoeuvrability appreciated by the driver. With

an unsteady separation, it is difficult to have a mesh adapted to

the flow. For improved accuracy, automatic adaptive grid refine-

ment is a technique for optimising the grid in the simulation of

fluid flow, by adapting the grid to the flow. This is done by locally

dividing cells into smaller cells, or if necessary, by merging small

cells backs into larger cells in order to undo earlier refinement.

The present work aims to explore the flow physics in which

the vehicle is exposed to steady wind, but with continuous

changes in the yaw angle. For this purpose, the unsteady numer-

ical technique with a sliding grid approach is used in the flow

solver ISIS-CFD, developed by the Laboratory of research in

Hydrodynamics, Energetics, and Atmospheric Environment, ex-

Fluids Mechanics Laboratory of the Ecole Centrale de Nantes.

The CFD simulation is carried out with the Explicit Algebraic

Reynolds Stress Model (EARSM) turbulence model.

The numerical simulations are performed on the square-

back Willy model. The Reynolds number is Re = 900,000 and

the yaw motion of the model is close to a sinusoidal motion with

an amplitude of oscillation ∆β = 10◦ and a frequency f = 2Hz.

The numerical solution is compared with numerical results

obtained in static positions. The pressure on the model is also

compared with experimental data.
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INTRODUCTION
Ground vehicles traveling on the road are often subjected

to unsteady flows. The yaw angle increases with stronger wind

conditions such as gusty cross winds caused by unsteady atmo-

spheric conditions, tunnels, bridges or trucks passing. Separa-

tions appear on the leeward side of the body, interact with the

base flow and cause unsteady vehicle loading. These aerody-

namic elements, added to dynamic properties of the suspension,

springing and tires are finally the factors of its dynamic stability

and of the safe manoeuvrability appreciated by the driver [1].

Unsteady flow conditions are much more difficult to simu-

late than steady flow conditions in the controlled conditions of a

wind tunnel. The most common approach is to evaluate the aero-

dynamic performance using static conditions where, for exam-

ple, the yaw angle of a vehicle or its relative position to another

vehicle is changed discontinuously. The experiment or the sim-

ulation is then made for one position at a time. This approach

is called quasi-steady or quasi-static as it is performed over a

range of fixed positions of the vehicle, e.g. a fixed yaw angle.

Although the positions from maximal positive to maximal neg-

ative yaw angle can be investigated with a small increment be-

tween two angle positions, this kind of investigation uses steady

flow conditions and the resulting flow is different from the one

in which continuous changes of yaw angle are made. These dif-

ferences in the prediction of aerodynamic forces were observed

by Garry and Cooper [2], who studied simple rectangular prisms

rotating about their vertical axis in a uniform flow. They con-

cluded that the difference in flows between steady and transient

flow conditions is due to a lag in the response of the flow to con-

tinuous changes in the position of the vehicle when transient flow

conditions are applied.

¿From a numerical point of view, this type of simulation re-

quires a mesh with areas where a large number of points have

been placed in advance in order to properly capture all the vor-

tices. Another strategy is to have a mesh adapted to the flow. So,

an automatic adaptive mesh is a good solution to follow the flow.

Automatic adaptive grid refinement is a technique for optimising

the grid in the simulation of fluid flow.

In order to study numerically an oscillating body, a first op-

tion is to oscillate the whole computational domain [3]. However

this approach does not reflect the experimental setup. Another

possibility is to deform the mesh in the vicinity of the model [4].

But again, the setup is not exactly the same as the experimental

conditions as some cells outside the position of the turntable are

deformed. The solution chosen for this study is to cut the mesh

into two parts: a fixed part and a second corresponding to the

plateau and will oscillate. The combination of these two meshes

will be done by a sliding grid approach.

WILLY MODEL
The numerical simulations are performed on the square-back

Willy model, which is similar to a van-type vehicle. A complete

definition of the model is given by Guilmineau & Chometon [5].

The overall length of the model is L = 675 mm, the width W

= 240 mm, the maximum height H = 192 mm and its surface

reference is the maximum cross section Sre f = 41791 mm2. The

ground clearance is G = 29 mm and the diameter of the four

feet is 20 mm, see Fig. 1 All other dimensions are defined by

Guilmineau & Chometon [5]. The origin of the Lilienthal axes

(X,Y,Z), linked to the model, lies at the point O located on the

floor of the model. This point is also the centre of rotation of the

model. Another coordinates system (Xo,Yo,Z) is linked to the

wind tunnel. The value of the yaw angle β is positive when the

right side of the model is to windward.

Experimental data are available for this model with an oscil-

lating motion [3]. The Reynolds number based on the upstream

velocity Vo and the length L of the model is Re = 0.9 × 106. The

model in the experiments was placed on a turntable that allowed

the model to oscillate with amplitude ∆β around the vertical axis.

This turntable is actuated with a push-rod and a crankshaft [3].

The yaw angle versus the time is the physical root of

a tan2

(

β

2

)

+ b tan

(

β

2

)

+ c = 0 (1)

(a) SIDE VIEW.

(b) BOTTOM VIEW.

FIGURE 1. WILLY DEFINITION.
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where

a = A + B

(

cos∆β +
cosα

sin∆β

)

(2)

b = B

(

2 l sin∆β

r
− 2 sin∆β sinα

)

(3)

c = A − B(cos∆β + sin∆β cosα) (4)

A = B (1 + 0.5sin(2∆β )cosα) − 2r l sinα (5)

B =
2r2

sin2
∆β

(6)

where r = 0.0255 m, l = 0.3264 m, and α = ωt where ω = 2πf

is an angular velocity and t the time. For additional details of

the experimental set-up and experimental equipment, we refer to

Guilmineau & Chometon [3]. In this paper, ∆β = 10◦ was simu-

lated. Only the oscillation at a frequency of f = 2 Hz correspond-

ing to Strouhal number St = f L/U∞ = 0.068 was investigated in

the present study. Fig. 2 shows the evolution of the yaw angle

versus the time. The choice of this frequency was made on the

basis of the study of Watkins & Saunders [6] who found that the

range of frequencies of importance in cross-wind studies is 0.2 -

2.0 Hz, corresponding to St = 0.09 - 0.9.

FLOW SOLVER DESCRIPTION
Governing Equations

The ISIS-CFD flow solver, developed by the Numerical

Modelling Group at the Fluid Mechanics Laboratory of the

Ecole Centrale de Nantes, resolves the incompressible unsteady

Reynolds-Averaged Navier-Stokes equations in two-fluid formu-

lation. The conservation laws for momentum, total mass, and

FIGURE 2. YAW ANGLE VERSUS TIME.

mass of each fluid, are written as follows:

δ

δ t

∫

V

ρ
−→
U dV +

∮

S

ρ
−→
U (

−→
U −

−→
Ud)·

−→n dS =
∫

V

(ρ−→g −
−→
∇ p)dV +

∮

S

(T+Tt)·
−→n dS , (7)

∮

S

−→
U ·

−→n dS = 0 , (8)

where V is a volume, bounded by the closed surface S

moving at the velocity
−→
U d with a unit normal vector −→n directed

outward. ~U and p represent, respectively, the velocity and pres-

sure fields. T and Tt refer to the viscous and Reynolds stress

tensors, whereas −→g is the gravity vector. The time derivative fol-

lowing the moving grid is written δ /δ t. While Tt is determined

according to the turbulence model used, T follows the classical

relation of Newtonian fluid for incompressible flows. In the case

of turbulent flows, additional transport equations for modelled

variables are solved in a form similar to the momentum equa-

tions and they are discretized and solved using the same princi-

ples. Most closures based on a linear viscosity such as the k−ω
SST model [7] are implemented. Two other more complex clo-

sures are also integrated in the flow solver ISIS-CFD: a model

with the explicit algebraic Reynolds stress (EARSM) [8] and a

Reynolds stress transport model (RSM) [9].

The ISIS-CFD flow solver can manage the three-

dimensional motions of an arbitrary number of non-deformable

bodies but also deformable bodies with an imposed deformation.

In this case, the body shape is imposed over time. The degrees of

freedom (DOF) for each body can either be resolved, or be im-

posed by giving explicitly the law of variation of the parameter.

The meshes are body-fitted grids, it is necessary to manage the

motion, over time, of the nodes of the mesh representing each

body [10]. In our case, we use a solid motion of the rotating

mesh.

Discretisation
The flow equations of the previous subsection are discretised

in a finite-volume framework. Pressure-velocity coupling is ob-

tained through a Rhie & Chow SIMPLE-type method [11]: in

each time step, the velocity updates come from the momentum

equations, Eqn. (7), and the pressure is given by the mass con-

servation law, Eqn. (8), transformed into a pressure equation.

The discretisation is face-based. While all unknown state

variables are cell-centered, the systems of equations used in the

implicit time stepping procedure are built face by face. Fluxes

are computed in a loop over the faces and the contribution of

each face is then added to the two cells next to the face. This

technique poses no specific requirements on the topology of the

cells. Therefore, the grids can be completely unstructured, cells

with an arbitrary number of arbitrarily-shaped faces are accepted.
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SLIDING GRID
The primary objective of the sliding grid approach devel-

oped is to keep and to extend the actual capabilities of the flow

solver to deal with non-matching sub-grids. The generalisation

to multiple domains inside a single grid representation is done

by colouring the cells, the nodes and the faces belonging to each

sub-domain. A new boundary condition is introduced, called

Non Matching Interface (NMI) on the physical boundary lim-

iting the sub-domains. Although located on a physical boundary

of a sub-domain, a coloured NMI face will be considered as a

fluid face analogous to an inner face in the fluid or to a commu-

nication face on the boundary of a partition of the grid.

The sliding interfaces for fully unstructured grids are far

more complex than for structured grid topologies. This is due

to the explicit data structure required to address the connectivity,

so that interpolation is not as relatively easy as it can be with the

implicit addressing of a structural grid. As reported in the litera-

ture [12], various techniques have been developed to use sliding

interfaces. Global flux conservation across the interface can be

obtained but with constraints so that the flexibility to handle com-

plex geometries is lost. In the context of the finite volume method

with cell-centered schemes, it is possible to ensure a strict global

mass conservation by replacing the faces of the control volumes

by a set of a new faces built from the intersections of the sliding

faces from each sub-domain sharing the sliding interface bound-

ary. The main drawback is the limiting choice of the shape of the

sliding boundary. It also results in a significant extra computa-

tional cost to build the new faces. Even for connecting dissimilar

hexahedral meshes, the task is challenging in computational me-

chanics [13].

To compute the fluxes over the sliding interface, we need

to establish connections between cells on the two sides of the

interface. The procedure to connect these cells is performed at

each time step in order to account for the rotation of the two sub-

domains with respect to each other. This procedure is chosen to

remain as close as possible to what is done for standard cells.

Thus, no specific interpolations are used. Instead, for a cell and

face on the interface, we search the cell centre (in the other sub-

domain) which best matches the face.

The matching neighbour steps are searched in three steps,

see Fig. 3.

1. A temporary ghost point is constructed on the outside of

each sliding face. This point is the mirror image of the in-

side neighbour cell centre, except near sharp corners of the

sliding interface where the normal vector to the face is used.

Ghost points are constructed on each side of the interface,

for the two sub-domains. The ghost points are not used

for interpolation, only for the remainder of the search, see

Fig. 3(a).

2. The current position of the sliding faces is gathered over all

partitions to form a global table. Then, in each partition, a

(a) CONSTRUCTION

OF GHOST POINTS.

(b) SEARCHING THE

GLOBAL FACES.

(c) NEW NEIGH-

BOUR CELL.

FIGURE 3. SLIDING INTERFACES.

search algorithm is used to find the global sliding face clos-

est to each local ghost point, see Fig. 3(b).

3. The inside neighbour cells of the faces found are used as

outside neighbours for the local sliding faces. If the neigh-

bour is on another processor, an MPI communication is es-

tablished just like the one for the normal domain decompo-

sition. If the two cells are on the same processor, the com-

munication is performed locally. As opposed to the normal

domain decomposition, a cell on a sliding interface may be

a neighbour for more than one cell, or for none at all, see

Fig. 3(c).

GRID REFINEMENT PROCEDURE
The grid refinement procedure developed for ISIS-CFD is

integrated completely in the flow solver. The method is entirely

parallelised, including automatic redistribution of grid over the

processors.

During a flow computation, the refinement procedure is

called repeatedly. In such a call, first the refinement criterion

is calculated, then in a separate step of the procedure the grid is

refined based on this criterion.

Anisotropic refinement
Anisotropic refinement is essential for our type of grid re-

finement. Isotropic refinement is very costly in three dimensions,

since each refinement means a division in eight (for a hexahe-

dron). Thus, creating very fine cells to accurately resolve a local

flow phenomenon becomes almost impossible. However, by ap-

plying anisotropic refinement for flow features that need a fine

grid in only one direction (for example a water surface), the total

number of cells required can be greatly reduced or much finer

flow details can be resolved.

Also, in unstructured hexahedral original grids, cells of com-

pletely different aspect ratios lie side by side. Therefore, when

refining, we need to control the size of the fine cells in all

their directions independently, otherwise refined grids may have

smoothly varying sizes in one direction, but repeated changes
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from fine to coarse and back to fine in another. Isotropic refine-

ment is not enough to prevent this. Therefore, directional refine-

ment is the mandatory choice.

Tensor refinement criteria
For directional refinement, a way is needed to specify dif-

ferent cell sizes in different directions. The use of metric ten-

sors as refinement criteria is such a way. This technique was

first developed for the generation and refinement of unstructured

tetrahedral meshes [14, 15]. It is also an extremely useful and

flexible framework for the refinement of unstructured hexahedral

meshes.

For tensor-based refinement, the refinement criterion in each

cell is a 3x3 symmetric positive definite matrix Ci. The refine-

ment of the cells is decided as follows. Let the criterion tensors

Ci in each cell be known (they are computed from the flow solu-

tion). In each hexahedral cell, the cell size vectors d j,i (j=1· · ·3),

which are the vectors between the opposing face centres in the

three cell directions, are determined. Next, the modified sizes

are computed as:

d̃ j,i = Ci d j,i (9)

Finally, a cell is refined in the direction j when the modified

size exceeds a given, constant threshold value Tr:

d̃ j,i ≥ Tr (10)

Refinement criteria
The refinement criterion is an important part of the algo-

rithm, as it controls the location of the refinement and the shape

of the refined cells. The refinement criterion has to be carefully

chosen depending on the flow problem that is simulated. In this

paper, only the refinement criterion based on Hessian matrices

is introduced. Other criteria, see [16], are available in the ISIS-

CFD flow solver and used for hydrodynamic problems [17].

The Hessian matrix of second spatial derivatives of the solu-

tion is a common choice as a refinement criterion. We base this

criterion on the pressure field, so it reacts to pressure induced

flow features on the model, but not directly to the presence of

boundary layers. The Hessian matrix is defined as

Hi =





(pi)xx (pi)xy (pi)xz

(pi)xy (pi)yy (pi)yz

(pi)xz (pi)yz (pi)zz



 (11)

The major difficulty in using the Hessian tensor as a refine-

ment criterion is the accurate evaluation of the second deriva-

tives, independent of the mesh. If the criterion computation is

perturbed by local grid refinement, it may react more to existing

grid refinement than to the pressure field. To prevent this unde-

sired effect, numerical errors in the computed second derivatives

must be significantly smaller than the derivatives themselves in

all cells.

A particular problem, associated with unstructured hexahe-

dral meshes, is that the grid remains irregular when it is refined.

For structured grids, and even for most unstructured tetrahedral

meshes, when the grid is refined the cells get more and more

the same shape and size as their neighbours. On unstructured

hexahedral meshes however, there will always be cells that are

two times smaller than their direct neighbours. This means that

numerical schemes which rely on mesh regularity to get good

accuracy are not suited for these meshes; a useful scheme must

give sufficient accuracy for arbitrary cell configurations.

For the computation of second derivatives, we use a least-

squares method based on third-order polynomials. In each cell,

the polynomial is computed that best fits the pressure in the cell,

its neighbours and its neighbours neighbours, in the least-squares

sense. The approximated Hessian is constructed from the second

derivatives of this polynomial. The least-squares procedure guar-

antees that the difference between the approximating polynomial

and the real pressure is not in the space of third-order polynomi-

als; therefore, it is at least fourth-order. Hence, the approximated

second derivatives are second-order accurate, independent of the

mesh geometry. For simpler methods like the well-known Gauss

integration, this cannot be guaranteed.

To compute the refinement criterion, the Hessian is modified

with a power law:

CH,i = (Hi)
p (12)

where (Hi)
p has the same eigenvectors as Hi and eigenvalues

that are those of Hi (in absolute value) to the power p. In general,

we use p = 1
2
.

NUMERICAL SETUP
The computational domain starts 4×L in front of the model

and extends to 5.4×L behind the model. The width of the domain

is 3×L and the height is 1.5×L. The computational domain is

represented in Fig. 4. The mesh is generated by the unstructured

mesh generator Hexpress. This software generates meshes only

containing hexaedrals. The mesh is composed of about 6.3 mil-

lion nodes, 6.0 million cells with approximatively 94,500 faces

on the model. The boundary conditions used for this computa-

tional domain are no slip walls for the Willy body geometry and a

wall function for the floor of the computational domain, while the

roof and the side walls of the computational domain are treated

with Dirichlet conditions. At the inlet, the uniform velocity Vo is

imposed while at the outlet, the pressure is imposed. Sliding in-

terfaces are used at the end of the turntable. Thus, only the mesh
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FIGURE 4. COMPUTATIONAL DOMAIN AND BOUNDARY

CONDITIONS.

attached to the model oscillates, while the other part of the mesh

remains fixed. With this approach the numerical model follows

closely the experimental set-up, rather than the approach used in

the previous numerical simulation [3] where the entire mesh had

the same motion as the body.

The turbulence model used is the EARSM model which is

the most reliable statistical turbulence modeling for predicting

three-dimensional flows such as ship flows when intense longi-

tudinal vortices spread out the aft part of the ship [18]. Usually,

the CPU cost of this turbulence model is 30% higher than the

k−ω turbulence model. The time step used for the simulation is

0.001 s that means 500 time steps are necessary to describe one

oscillation period of the model.

For the simulations with a static position, the grid refinement

procedure is called every 25 time steps while for the simulations

with a dynamic position, this procedure is called every two time

steps.

RESULTS
Before giving the results obtained when the car model oscil-

lates, we present the numerical results for various yaw angles in

static position.

Static positions
For the various static positions, we only rotate the mesh at-

tached to the turntable.

The forces in the body reference frame are plotted versus the

yaw angle β in Fig. 5. The numerical results obtained with the

initial mesh and the refined mesh are compared with experimen-

tal data. With the adaptive grid refinement, the number of added

cells goes from 1.15 million cells at β = 0◦ to 3.00 million cells

at β = 10◦. Thus for the yaw angle β = 0◦, the number of cells

is 7.15 millions and for the yaw angle β = 10◦ 9.0 millions. The

(a) DRAG COEFFICIENT.

(b) SIDE FORCE COEFFICIENT.

(c) YAWING MOMENT.

FIGURE 5. FORCE AND MOMENT COEFFICIENTS (STATIC

POSITION).

drag coefficient is presented in Fig. 5(a). We can see that the

results obtained with the adaptive grid refinement are in better

agreement than the results obtained with the initial mesh. For all

yaw angles, the numerical results obtained with the initial mesh

overestimate the drag. The drag increases up to the yaw angle
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β = 20◦. After this angle, the drag decreases. This behaviour

is typical of a square-back model [1]. For the side force, see

Fig. 5(b), and the yawing moment, see Fig. 5(c), the results of

both simulations are very similar. The side force and the yaw-

ing moment rise linearly with the yaw angle. This linearity is a

typical characteristic of real vehicles [1].

The difference of the drag coefficient between the simula-

tion with and without automatic grid refinement can be clearly

detected from a section-by-section analysis of the forces. The

forces by section distributions in the Eiffel reference frame are

obtained from the integration of the forces over the Willy model

(a) β = 0◦.

(b) β = 10◦.

FIGURE 6. FORCE BY SECTION IN THE EIFFEL AXIS (STATIC

POSITION).

surface, divided in a number of sections. In this study, 150 equi-

distributed sections are used. Fig. 6 shows this distribution for

two yaw angles. In both cases, the distribution is identical be-

tween the results obtained with the initial mesh and the results

obtained with the refined mesh. Thus this drag difference is due

to the base drag, as shown in Fig. 6(b) for X above 0.32.

Dynamic position

Fig. 7 shows the evolution of the number of mesh cells ver-

sus time. The evolution of the drag coefficient versus the time

is also represented. After the first, transitional oscillation period,

the signal becomes periodic. The number of cells varies from

6.34 million to 6.51 million. We notice that the number of cells

is related to the evolution of the drag coefficient. When it is min-

imal, the number of cells is minimal and when Cx is maximal,

the number of cells is maximal. The maximum number of cells

is different from that obtained for the static calculations because

the minimum size of the cells for the automatic grid refinement

was higher in dynamic simulations than in static simulations.

Fig. 8 shows a comparison between the initial mesh and the

refined mesh in the wake at X/L = 0.475. The refinement pro-

cedure creates cells in the wake in the shear zones and where

vortices exist.

The forces in the body axes are plotted versus the yaw an-

gle β in Figure 9. The results obtained in static position are also

given. The drag coefficient is presented in Fig. 9(a). As for the

static positions, the result obtained with the adaptive grid refine-

ment is lower than the result obtained with the initial mesh. For

the yaw angle β = 10◦, the values obtained with the unsteady and

the steady approach are similar. However, for the yaw angle β =

0◦, the drag obtained with the unsteady approach is larger than

the drag obtained with the steady approach. The side force coef-

ficient is given in Fig. 9(b) and the yawing moment in Fig. 9(c).

Again, as for the static case, the differences between both simu-

lations are low. In the prediction of forces, we observe fluctua-

tions. These are probably due to the procedure of interpolation

on the non-matching interface. The comparison with the previ-

FIGURE 7. EVOLUTION OF THE NUMBER OF MESH CELLS.
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(a) INITIAL MESH.

(b) REFINED MESH.

FIGURE 8. COMPARISON OF THE MESH AT Xo/L=0.475.

ous simulations [3] show that these results are very similar to

those obtained with the refined mesh.

The comparison between the experimental and calculated

wall pressure is given in Figure 10 for two pressure taps noted

P1 and P2 located on the left side of the model and a third tap P3

located on its base. This pressure tap is not located in the symme-

try plane of the model. The agreement of the numerical results

with the experimental data is good for pressure taps P1 and P2.

For the pressure P3, the numerical simulation produces higher

CP values. This phenomenon is also observed with LES predic-

tion [4]. For a “quasi-static” simulation, the pressure on the base

is very difficult to obtain, even with a DES approach [19]. Thus,

this can explain why the agreement for the pressure tap P3 is not

so good. The pressure for these three pressure taps is also com-

pared with the numerical results obtained in the previous simu-

lation [3]. For the both tap located on the side of the model, the

results are very similar. For the tap located on the base of the

model, the result is different from those obtained with the sliding

grid approach.

The unsteadiness and temporal variation of the wake during

a cycle from β = +10◦ to β = −10◦ and then from β = −10◦ to β
= +10◦ are described in Figure 11 for several yaw angles. When

examining these results, it must be taken into account that the

(a) DRAG COEFFICIENT.

(b) SIDE FORCE COEFFICIENT.

(c) YAWING MOMENT.

FIGURE 9. FORCE AND MOMENT COEFFICIENTS.

vortices which appear at X/L = 0.70 are shed at the level of the

base located at X/L = 0.51. In frame 11(a) where β = +9.59◦, the

right side of the model is to windward and the model is moving

from the yaw angle β = +10◦ to β = −10◦. The pair of vortices

observed in frame 11(a) is identical to the pair of vortices shed

by a square-back body placed in a cross flow in a steady wind.
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(a) Pressure tap P1

(b) Pressure tap P2

(c) Pressure tap P3

FIGURE 10. COMPARISON OF PRESSURE ON THE WILLY

MODEL.

The following frames 11(b), 11(c), 11(d) show that this pair of

vortices vanishes at the yaw angle β = −5.35◦ in frame 11(d) and

is replaced in frame 11(e) by a new pair of vortices which rotate

(a) β = +9.59 deg. (b) β = +5.35 deg.

(c) β = -0.08 deg. (d) β = -5.35 deg.

(e) β = -9.61 deg. (f) β = -9.47 deg.

(g) β = -4.84 deg. (h) β = -0.07 deg.

(i) β = +5.32 deg. (j) β = +9.55 deg.

FIGURE 11. CROSS FLOW STREAMLINES FOR ONE CYCLE

AT Xo/L=0.475.

in a direction opposed to the vortices observed in frame 11(a).

The physics is the same for the frames from 11(f) to 11(j), and

the cross flow velocities are symmetric to the frames 11(a) to

11(e).

Fig. 12 presents isosurfaces of the non-dimensional second

invariant Q* = 100 for one cycle. In comparison to the previous

figures, we observe also that the flow looks different for the same

angle when the rotation of the body is in the direction of the

9



increasing or decreasing yaw angle. For example, Figs. 11(a) and

11(j) show the flow at position β = 10 deg. While in Fig. 11(j)

the body is finishing its rotation from β = -10 deg. to β= 10 deg.,

Fig. 11(a) shows the flow when the body is rotating from β =

10 deg. to β = -10 deg. The flow does not react instantaneously

to the solid body rotation of the model and it takes some time

before the wake adapts to the change in the body rotation.

Figs. 13 show a comparison of the flow structures in static

and in dynamic conditions for the yaw angle β = 0 deg. The flow

in Fig. 13(a) is the result of the oscillation of the body from β =

+10 deg. to β = -10 deg. while the flow in Fig. 13(b) is the result

going from β = -10 deg. to β = +10 deg. The result obtained in

the static position at β = 0 deg. is presented in Fig. 13(c). These

figures show that the wake for a position of the model depends

(a) β = +9.59 deg. (b) β = +5.35 deg.

(c) β = -0.08 deg. (d) β = -5.35 deg.

(e) β = -9.61 deg. (f) β = -9.47 deg.

(g) β = -4.84 deg. (h) β = -0.07 deg.

(i) β = +5.32 deg. (j) β = +9.55 deg.

FIGURE 12. ISOSURFACE OF THE SECOND INVARIANT Q* =

100 FOR ONE CYCLE.

(a) FROM β = +10 DEG. TO β = -10 DEG.

(b) FROM β = -10 DEG. TO β = +10 DEG.

(c) STATIC.

FIGURE 13. ISOSURFACE OF THE SECOND INVARIANT Q* =

100 FOR β = 0 deg. (AT LEFT TOP VIEW, AT RIGHT SIDE VIEW).

on the type of simulation. In the case of dynamic position, the

effect of the body rotation is not limited to the wake even at zero

yaw angle. The flow remembers that the body was yawed when

it arrives at this position.

CONCLUSIONS
Numerical simulations of an oscillating model were per-

formed to explore the difference between the quasi-steady and

dynamic flow conditions when used for an evaluation of the

cross-wind properties of vehicles.

To obtain these results, an automatic grid refinement method

has been applied. The numerical results show that without any

local adaptation method of grids the drag coefficient is overesti-

mated.

The results presented in this paper confirm that the memory

effects of the flow and the inertia of the flow are important.

To take into account the experimental setup, a sliding grid

approach has been used. This leads to new boundary conditions

where one interpolation procedure is used which carried out to

fluctuations. The reason for this increase in fluctuations is the

change of connection to the neighbouring cells of the sliding in-

terface. This change occurs from time to time between the ro-

tating cells and the fixed cells. Even if the interpolation is sec-

ond order, it seems as if the grid is changing between two time

steps when a connection changes between these two time steps.

One possible option is to have a smooth in time and still accu-

rate interpolation of the neighbouring cells independent of the

10



mesh. This has already been implemented for the computation

of the first and second order derivatives of the pressure for adap-

tive grid refinement [17], on the basis of third-order least-squares

approximations.
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