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We show that solutions to a class of nonlinear degenerate parabolic initial-boundary value problems exhibit uniform temporal stability when the coefficients and data are perturbed. The class of equations encompasses the Richards model of groundwater flow, the Stefan problem and the parabolic p-Laplace equation (or, more generally, parabolic Leray-Lions operators). Beginning with a proof of temporally-uniform, spatially-weak stability, we strengthen the latter by relating the unknown to an underlying convex structure that emerges naturally from energy estimates on the solution. We do not assume uniqueness or additional regularity of the solution. The double degeneracy -shown to be equivalent to a maximal monotone operator framework -is handled with techniques inspired by a classical monotonicity argument and a simple variant of the compensated compactness phenomenon.

Introduction

Consider the class of doubly nonlinear parabolic problems (P)

     ∂ t β(u) -div [a(x, ν(u), ∇ζ(u))] = f
in Ω × (0, T ), In applications one may have only approximate knowledge of the data (β, ζ, ν, a, f, u ini ), and one is interested in the value of the solution at a particular instant in time. The main result of this article is that weak solutions to (P) are uniformly temporally stable with respect to perturbations of the data. We establish this stability without assuming uniqueness or additional regularity of the solution.

β(u)(x, 0) = β(u ini )(x) in Ω,
Instances of (P) arise in various contexts, but we focus our attention upon three models in particular: the Richards equation, the Stefan problem, and the parabolic p-Laplace equation. By taking ζ to be the identity, ν = β and a(x, ν(u), ∇ζ(u)) = K(x, β(u))∇u, we recover the first of these, which describes the flow of water in an unsaturated porous medium [START_REF] Merz | Strong solutions to the Richards equation in the unsaturated zone[END_REF][START_REF] Richards | Capillary conduction of liquids through porous mediums[END_REF]. The quantity of interest is the pressure-dependent saturation β(u), with K(x, β(u)) the mobility. A model of 1,3 School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 Australia 2 Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, UMR 8050, 5 boule-the Stefan problem [START_REF] Bertsch | Degenerate diffusion and the Stefan problem[END_REF] of heat diffusion in a medium undergoing phase transition is realised by taking β to be the identity, ν = ζ and a(x, ν(u), ∇ζ(u)) = K(x, ζ(u))∇ζ(u). Here we are interested in the enthalpy-dependent temperature ζ(u), with K(x, ζ(u)) representing the thermal conductivity. To recover the parabolic p-Laplace equation, take each of β, ζ and ν to be the identity and a(x, ν(u), ∇ζ(u)) = |∇u| p-2 ∇u. The parabolic p-Laplace equation features in, for example, the theory of non-Newtonian filtration; see E. DiBenedetto's monograph [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF] and the references therein.

In each of these examples the quantity of practical interest is ν(u); more specifically, it is the value of ν(u) at a particular instant in time, say t = T . Pragmatically speaking, it is therefore critical that ν(u)(T ) is stable to perturbations of the data. This is precisely the novelty established in our main theorem, which is to say that ν(u) is stable in C([0, T ]; L 2 (Ω)).

The existence and uniqueness of weak solutions to (P) with ζ = Id is studied in the seminal article of H.W. Alt and S. Luckhaus [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF]. F. Otto [START_REF] Otto | L 1 -contraction and uniqueness for quasilinear elliptic-parabolic equations[END_REF] subsequently improved their uniqueness result by removing a linearity assumption on the diffusion operator. On the question of stability, however, to our knowledge there are no existence and uniform temporal-strong spatial stability results for parabolic equations with as many nonlinearities and degeneracies as (P). Uniform temporal and strong spatial stability of solutions to the Cauchy problem for ∂ t u -∆ϕ(u) = 0 on the whole space was established by P. Bénilan and M.G. Crandall [START_REF] Bénilan | The continuous dependence on ϕ of solutions of ut -∆ϕ(u) = 0[END_REF]. Using techniques from nonlinear semigroup theory, they showed that solutions are stable in C([0, T ]; L 1 (R d )) with respect to pointwise perturbations of ϕ and L 1 (R d )-perturbations of the initial datum. D. Blanchard and A. Porretta [START_REF] Blanchard | Stefan problems with nonlinear diffusion and convection[END_REF] demonstrate the L ∞ (0, T ; L 1 (Ω))-stability of renormalized solutions to the initial-boundary value problem for ∂ t b(u) -div(a(x, u, ∇u)) + div(Φ(u)) = f , under L 1 -perturbations of the source and initial datum. The authors assume that b is a maximal monotone graph on R, b -1 ∈ C(R) and a is a Leray-Lions operator. We refer the reader to Section 3 for further comparisons of our work to this reference.

Stability for other notions of solution to degenerate parabolic problems has also been considered. In the framework of entropy solutions, B. Andreianov et al. [START_REF] Andreianov | Well-posedness results for triply nonlinear degenerate parabolic equations[END_REF] demonstrate the stability in L 1 (Ω × (0, T )) of solutions to (P) with additional convection and reaction terms, but with slightly restrictive assumptions on the monotonicity of ζ. Viscosity solutions to the Richards equation are shown to be stable by I.C. Kim and N. Požár [START_REF] Kim | Nonlinear elliptic-parabolic problems[END_REF]. One can also consider stability of solutions to the parabolic p-Laplace equation with respect to perturbations of p. To this end, we refer the reader to the work of J. Kinnunen and M. Parviainen [START_REF] Kinnunen | Stability for degenerate parabolic equations[END_REF] and subsequently T. Lukkari and Parviainen [START_REF] Lukkari | Stability of degenerate parabolic Cauchy problems[END_REF].

Our main result establishes the stability of ν(u) in C([0, T ]; L 2 (Ω)) with respect to perturbations of (β, ζ, ν, a, f, u ini ). Note that this stability cannot be deduced by mere interpolation from the uniform-in-time L 1 (Ω) stability results in the previous references, since the best uniform-in-time bound that we can obtain for ν(u) is in L 2 (Ω). From the viewpoint of uniform-in-time estimates, establishing a convergence result in this "limit" space L 2 (Ω) therefore requires new ideas. The first step is the uniform-[0, T ], weak-L 2 (Ω) stability of β(u). A key ingredient of the proof of this fact, and indeed much of our paper, is the function B defined below in (2.4). The importance of B was previously observed in [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF] when ζ = Id. It enables energy estimates on the solution via an integration-by-parts formula for the action of ∂ t β(u) on ζ(u). These estimates are sufficient for us to deduce the aforementioned stability of β(u) thanks to Proposition 4.9, a uniform-in-time, weakin-space analogue of the Aubin-Simon compactness theorem. The spatial compactness is weak here since (P) does not provide any information on the gradient of β(u). The convexity of B yields lower semi-continuity of certain integral functionals, that when combined with the energy equality satisfied by the limit solution, enables us to prove the uniform convergence of Ω B(β(u)(x, •)) dx on [0, T ]. A uniform convexity property of B connects the convergence of these integrals to that of ν(u) in L 2 (Ω), thus enhancing the stability of ν(u) to prove our main result, Theorem 2.3.

We anticipate that these ideas for obtaining uniform-temporal, strong-L 2 spatial dependence of solutions upon the data may generalise to systems of equations as in [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF], and to convectiondiffusion-reaction equations of the form studied in [START_REF] Andreianov | Well-posedness results for triply nonlinear degenerate parabolic equations[END_REF], but in the variational setting.

We obtain the existence of solutions to (P) as a straightforward corollary to Theorem 2.3. We do not, however, address uniqueness or regularity. Indeed, with the nonlinearities in (P) and the irregularities in the data seen in the applications described above, one cannot expect to obtain such properties in these instances.

Since β and ζ may share common plateaux, one of the challenges in studying compactness properties of solutions to (P) is identifying weak limits. Our method handles this difficulty principally using a monotonicity argument. However, the double degeneracy necessitates the use of a compensated compactness lemma (see Remark 5.1), which in our setting is actually a direct consequence of the Aubin-Simon theorem.

These tools enable us to generalise some aspects of [START_REF] Blanchard | Stefan problems with nonlinear diffusion and convection[END_REF], at least when the regularity index p is not too small; see the concluding remarks to Section 3 for additional discussion on this point. The first two authors of the current article use similar techniques in the forthcoming paper [START_REF] Droniou | Uniform-in-time convergence result of numerical methods for non-linear parabolic equations[END_REF] for the convergence analysis of numerical approximations of (P). Discrete compensated compactness was recently employed by B. Andreianov, C. Cancès and A. Moussa [START_REF] Andreianov | A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs[END_REF] to identify the limits of numerical schemes in the framework of maximal monotone operators.

The article is organised as follows. In Section 2 we list the hypotheses on the model (P) and state our main result, Theorem 2.3. In Section 3 we state a stability result that holds when the problem is recast in the framework of maximal monotone operators. In Section 4.1 we state some technical properties of the function B. To focus attention on the stability problem, some of these results are stated without proof. For proofs, the reader should consult the forthcoming paper [START_REF] Droniou | Uniform-in-time convergence result of numerical methods for non-linear parabolic equations[END_REF]. We establish all of our required estimates in Section 4.2. Section 4.3 presents two lemmas that play an important role in the proof of Theorem 2.3, and which may be of independent interest. Our temporally-uniform, spatially-weak analogue of the Aubin-Simon compactness theorem occupies Section 4.4. Section 5 is the proof of the stability results, which includes the uniform-in-time strongin-space convergence result (Theorem 2.3). Appendix A lists several minor convergence lemmas that we employ throughout the article. Aubin-Simon compactness appears again in Appendix B, where we use it to prove a compensated compactness lemma adapted for our current setting.

Hypotheses and main result

We assume that T > 0, Ω is a bounded open subset of R d (d ∈ N), and (2.1c) For all s ∈ R, ν(s) = s 0 ζ (q)β (q) dq.

Fix p ∈ (1, ∞) and denote by p = p p-1 its Hölder conjugate. We assume that a : Ω × R × R d → R d is Carathéodory, and that there are constants a, µ > 0 and a function a ∈ L p (Ω) such that for almost every x ∈ Ω, every s ∈ R and for all ξ, χ ∈ R d ,

(2.1d) a(x, s, ξ) • ξ ≥ a|ξ| p , (2.1e) |a(x, s, ξ)| ≤ a(x) + µ|ξ| p-1 , (2.1f) (a(x, s, ξ) -a(x, s, χ)) • (ξ -χ) ≥ 0.
The source term and initial trace satisfy

(2.1g) f ∈ L p (0, T ; W -1,p (Ω)), u ini ∈ L 2 (Ω).
Due to the double degeneracy (from β and ζ), identifying weak limits obtained by compactness results is challenging and requires monotonicity and compensated compactness techniques. To prove that weak limits of sequences of solutions to (P) are also solutions to (P), we consider three separate cases for p:

(2.2) with Θ ∈ L 1 (Ω), and |a(x, s, ξ)| ≤ a(x) + µ|s| q + µ|ξ| p-1 with q < max(2/p , p -1).

                         (I) p ≥ 2, or (II) 
(iii) The condition p > 2d d+2 in (2.2) is equivalent to p * > 2, where p * is the Sobolev exponent of p; i.e., p * = dp d-p if p < d and p * = +∞ if p ≥ d. (iv) Since the basic energy estimates on (P) provide strong compactness for ν(u) (see (5.5)), we can just as easily handle source terms of the form f (x, t, ν(u)) as in [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF].

Denote by R β the range of β and for s ∈ R β define the right inverse β r : R β → R of β by

(2.3) β r (s) =      inf{t ∈ R | β(t) = s} if s > 0, 0 if s = 0, sup{t ∈ R | β(t) = s} if s < 0.
That is, β r (s) is the closest t to 0 such that β(t) = s. Since β(0) = 0, note that β r is nondecreasing, nonnegative on R β ∩ R + and nonpositive on R β ∩ R -. We can therefore extend β r as a function

R β → [-∞, ∞]. We then define B : R β → [0, ∞] by (2.4) B(z) = z 0 ζ(β r (s)) ds.
The signs of ζ and β r ensure that B is nonnegative on R β , nondecreasing on R β ∩ R + and nonincreasing on R β ∩ R -. Moreover, since ζ and β r are non-decreasing, B is convex on R β . This calls for extending B as a function R → [0, +∞] by setting B = +∞ outside R β . This function is still nondecreasing on R + and nonincreasing on R -. Our notion of solution to (P) is as follows.

Definition 2.2. Under Hypotheses (2.1), a solution to (P) is a function u satisfying

(2.5)                                    u : Ω × (0, T ) → R is measurable, ζ(u) ∈ L p (0, T ; W 1,p 0 (Ω)), B(β(u)) ∈ L ∞ (0, T ; L 1 (Ω)), β(u) ∈ C([0, T ]; L 2 (Ω)-w), ∂ t β(u) ∈ L p (0, T ; W -1,p (Ω)), β(u)(•, 0) = β(u ini ) in L 2 (Ω), T 0 ∂ t β(u)(•, t), v(•, t) W -1,p ,W 1,p 0 dt + T 0 Ω a(x, ν(u(x, t)), ∇ζ(u)(x, t)) • ∇v(x, t) dx dt = T 0 f (•, t), v(•, t) W -1,p ,W 1,p 0 dt ∀v ∈ L p (0, T ; W 1,p 0 (Ω)).
Here C([0, T ]; L 2 (Ω)-w) denotes the space of continuous functions from [0, T ] into L 2 (Ω), where the latter is equipped with the weak topology. This notion of continuity for β(u) can be understood as a natural consequence of the integrability of β(u) and the PDE itself. Fix ϕ ∈ C ∞ c (Ω) and consider the map L ϕ : [0, T ] → R, t → β(u)(t), ϕ L 2 (Ω) . One can show, using the PDE in the sense of distributions and the fact that β(u) ∈ L ∞ (0, T ; L 2 (Ω)) (see Estimate (4.5) below), that

L ϕ ∈ W 1,1 (0, T ) ⊂ C([0, T ]). From the density of C ∞ c (Ω) in L 2 (Ω) one deduces that for every ϕ ∈ L 2 (Ω), L ϕ ∈ C([0, T ]). That is, β(u) : [0, T ] → L 2 (Ω)-w is continuous.
The main result of this paper is the following stability theorem for solutions to (P).

Theorem 2.3. Let (β n , ζ n , ν n , a n , f n , u ini n ) n∈N be a sequence converging to (β, ζ, ν, a, f, u ini ) in the following sense:

(2.6)     
β n , ζ n and ν n converge locally uniformly on R to β, ζ and ν, respectively;

for almost every x ∈ Ω, a n (x, •, •) → a(x, •, •) locally uniformly on R × R d ; f n → f in L p (0, T ; W -1,p (Ω)) and u ini n → u ini in L 2 (Ω). Assume that (β, ζ, ν, a, f, u ini ) and (β n , ζ n , ν n , a n , f n , u ini n ) (for every n ∈ N) satisfy (2.1) and (2.
2), and that the constants L β , L ζ , M 1 , M 2 , M 3 , M 4 , a, µ and the function a are independent of n. Let u n be a solution to

(P) with (β, ζ, ν, a, f, u ini ) replaced with (β n , ζ n , ν n , a n , f n , u ini n ).
Then there is a solution u of (P) such that, up to a subsequence,

(2.7)      β n (u n ) → β(u) in C([0, T ]; L 2 (Ω)-w), ν n (u n ) → ν(u) in C([0, T ]; L 2 (Ω)), and ζ n (u n ) ζ(u) weakly in L p (0, T ; W 1,p 0 (Ω)).
If in addition we assume that a is strictly monotone, that is, the inequality in (2.1f) with χ = ξ is strict, then χ weak- * in L ∞ (R) for some bounded χ : R → R. Then as n → ∞,

(2.8) ζ n (u n ) → ζ(u) strongly in L p (0, T ; W
β n (s) = s 0 β n (q) dq → s 0 χ(q) dq.
But β n (s) → β(s) for every s ∈ R, so it must be that χ = β almost everywhere on R and therefore that β n β weak- * in L ∞ (R). One can then pass to the limit as n → ∞ in the definition of ν n , using dominated convergence on the sequence (ζ n ) n∈N , to obtain the local uniform convergence towards ν.

Remark 2.6. Observe that in the case 1 < p ≤ 2d d+2 in (2.2), we do not need the strict monotonicity of each β n ; we only require that the limit β does not have any plateaux.

As a by-product of this stability result, we obtain an existence result for (P).

Corollary 2.7. Under Hypotheses (2.1) and (2.2), there exists a solution to (P).

Proof. Theorem 2.3 shows that we only need to establish the existence of a solution for perturbed problems (P). Upon replacing β and ζ by β +δ Id and ζ +δ Id for some small δ > 0, we can therefore assume that β ≥ δ and ζ ≥ δ on R.

In particular, these perturbed β and ζ are bi-Lipschitz homeomorphisms, and we define (2.9)

a 0 (x, s, ξ) = a(x, ν(β -1 (s)), (ζ • β -1 ) (s)ξ),
where for some ρ > 0, (ζ • β -1 ) (s) ∈ [ρ, ρ -1 ] for all s ∈ R. The function a 0 satisfies (2.1d)-(2.1f). J.-L. Lions showed [START_REF] Lions | Sur certaines équations paraboliques non linéaires[END_REF] that there exists a solution to (2.10)

     ∂ t v -div (a 0 (x, v, ∇v)) = f in Ω × (0, T ), v(x, 0) = β(u ini )(x) in Ω, v = 0 on ∂Ω × (0, T ) in the sense that v ∈ L p (0, T ; W 1,p 0 (Ω)) ∩ C([0, T ]; L 2 (Ω)), ∂ t v ∈ L p (0, T ; W -1,p (Ω)), v(•, 0) = β(u ini )
, and the equation is satisfied against any test function in L p (0, T ; W 1,p 0 (Ω)). We then set

v = β(u). Then ζ(u) = (ζ • β -1 )(v) with ζ • β -1 Lipschitz continuous, and thus ζ(u) ∈ L p (0, T ; W 1,p 0 (Ω)). We have β(u) = v ∈ C([0, T ]; L 2 (Ω)), β(u)(•, 0) = v(•, 0) = β(u ini ), and ∂ t β(u) = ∂ t v ∈ L p (0, T ; W -1,p (Ω)
). The definition (2.9) of a 0 shows that

a 0 (x, v, ∇v) = a(x, ν(β -1 (v)), (ζ • β -1 ) (v)∇v) = a(x, ν(u), ∇ζ(u))
and thus the integral equation in (2.5) follows from writing the equation (2.10) against test functions in L p (0, T ; W 1,p 0 (Ω)). Finally, since B • β grows quadratically (see (4.1d) below) and u = β -1 (v) ∈ C([0, T ]; L 2 (Ω)), we have B(β(u)) ∈ L ∞ (0, T ; L 1 (Ω)). Thus u is a solution to (P).

A maximal monotone operator viewpoint

This section demonstrates that our setting covers problems defined by sublinear maximal monotone operators. We begin with a lemma. Lemma 3.1 (Maximal monotone operator). Let T : R → P(R) be a multi-valued operator. Then the following are equivalent:

(i) T is a maximal monotone operator with domain R, 0 ∈ T (0) and T is sublinear in the sense that there exist T 1 , T 2 ≥ 0 such that, for all x ∈ R and all y ∈ T (x), |y| ≤ T 1 |x| + T 2 ; (ii) There exist ζ and β satisfying (2.1b) and (2.1a) such that the graph of T is given by Gr(T ) = {(ζ(s), β(s)), s ∈ R}.

Proof. (ii)⇒(i). Clearly 0 = (ζ(0), β(0)) ∈ T (0). The monotonicity of T follows from the fact that ζ and β are nondecreasing. We prove that T is maximal, that is if x, y satisfy (ζ(s)-x)(β(s)-y) ≥ 0 for all s ∈ R then (x, y) ∈ Gr(T ). By (2.1a) and (2.1b) the mapping β + ζ : R → R is surjective, so there exists w ∈ R such that 

(3.1) β(w) + ζ(w) = x + y. Then ζ(w) -x = y -β(w) and therefore 0 ≤ (ζ(w) -x)(β(w) -y) = -(β(w) -y) 2 . This implies β(w) = y and, combined with (3.1), ζ(w) = x. Hence (x, y) ∈ Gr(T ). The sub-linearity of T follows from |β(w)| ≤ L β |w| ≤ L β (|ζ(w)| + M 2 )/M 1 . (i)⇒(ii). Recall that the resolvent R(T ) = (Id +T ) -1 of the maximal monotone operator T is a single-valued function R → R that
(x, y) ∈ Gr(T ) ⇔ (x, x + y) ∈ Gr(Id +T ) ⇔ (x + y, x) ∈ Gr(ζ) ⇔ x = ζ(x + y). Since β = Id -ζ, setting s = x + y shows that (x, y) ∈ Gr(T ) is equivalent to (x, y) = (ζ(s), β(s)). Since 0 ∈ T (0) this gives β(0) = ζ(0) = 0. Finally, the existence of M 1 and M 2 in (2.1b) follows from the sublinearity of T . If (x, y) ∈ Gr(T ) then |y| ≤ T 1 |x| + T 2 and x = ζ(x + y), which gives |x + y| ≤ ((1 + T 1 )|ζ(x + y)| + T 2 ).
Using this lemma, we recast (P) as

(PM)      ∂ t T (z) -div (a(x, ν(z + T (z)), ∇z)) = f in Ω × (0, T ), T (z)(•, 0) = b ini in Ω, z = 0 on ∂Ω × (0, T ).
Hypotheses (2.1a) and (2.1b) translate into

(3.2)
T is a maximal monotone operator with domain R, 0 ∈ T (0) and T is sublinear in the sense that there exist T 1 , T 2 ≥ 0 such that, for all x ∈ R and all y ∈ T (x),

|y| ≤ T 1 |x| + T 2 .
Hypothesis (2.2) becomes 

(3.3)                          (I) p ≥ 2, or ( 
(β r (s)) in (2.4) can be computed in terms of T -1 : ζ(β r (s)) = inf T -1 (s) if s > 0, ζ(β r (0)) = 0, and ζ(β r (s)) = sup T -1 (s) if s < 0. We then see that, for all s in the domain of T -1 , T -1 (s) is the convex sub-differential ∂B(s) of B at s. Definition 3.2. Under Hypotheses (3.2) and (2.1d)-(2.1g), take a measurable function b ini satis- fying b ini (x) ∈ T (u ini (x)) for a.e. x ∈ Ω. A solution to (PM) is a pair of functions (z, b) satisfying                          z ∈ L p (0, T ; W 1,p 0 (Ω)) , b(x, t) ∈ T (z(x, t)) for a.e. (x, t) ∈ Ω × (0, T ), B(b) ∈ L ∞ (0, T ; L 1 (Ω)), b ∈ C([0, T ]; L 2 (Ω)-w), ∂ t b ∈ L p (0, T ; W -1,p (Ω)), b(•, 0) = b ini in L 2 (Ω), T 0 ∂ t b(•, t), v(•, t) W -1,p ,W 1,p 0 dt + T 0 Ω a(x, ν((b + z)(x, t)), ∇z(x, t)) • ∇v(x, t) dx dt = T 0 f (•, t), v(•, t) W -1,p ,W 1,p 0 dt ∀v ∈ L p (0, T ; W 1,p 0 (Ω)). Remark 3.3. The sublinearity of T ensures that b ini ∈ L 2 (Ω) since u ini ∈ L 2 (Ω).
The following theorem is an immediate consequence of Theorem 2. Moreover, let (T n , a n , f n , u ini n ) n∈N be a sequence that converges to (T , a, f, u ini ) in the following sense:

     R(T n ) and ν n converge locally uniformly on R to R(T ) and ν respectively; for almost every x ∈ Ω, a n (x, •, •) → a(x, •, •) locally uniformly on R × R d ; f n → f in L p (0, T ; W -1,p (Ω)) and u ini n → u ini in L 2 (Ω).
Assume that (T , a, f, u ini ) and (T n , a n , f n , u ini n ) (for every n ∈ N) satisfy (3.2) and (2.1d)-(2.1g), and that the constants T 1 , T 2 , T 3 , T 4 , a, µ and the function a are independent of n.

Let (z n , b n ) be a solution of (PM) with (T , a, f, u ini ) replaced with (T n , a n , f n , u ini n ).
Then there is a solution (z, b) of (PM) such that, up to a subsequence,

     b n → b in C([0, T ]; L 2 (Ω)-w), ν n (b n + z n ) → ν(b + z) in C([0, T ]; L 2 (Ω)), and 
z n z weakly in L p (0, T ; W 1,p 0 (Ω))
. If in addition we assume that a is strictly monotone, that is, the inequality in (2.1f) with χ = ξ is strict, then z n → z strongly in L p (0, T ; W 1,p 0 (Ω)). Remark 3.5. Blanchard and Porretta [START_REF] Blanchard | Stefan problems with nonlinear diffusion and convection[END_REF] prove the L ∞ (0, T ; L 1 (Ω))-stability of renormalised solutions to

     ∂ t T (u) -div (a(x, u, ∇u)) + div (Φ(u)) = f in Ω × (0, T ), T (u)(x, 0) = b 0 (x) in Ω, u = 0 on ∂Ω × (0, T ), with f ∈ L 1 (Ω × (0, T )) and b 0 ∈ L 1 (Ω). They assume that T is a maximal monotone graph on R, T -1 ∈ C(R)
and a is a Leray-Lions operator. Although the continuity assumption on T -1 -which prevents T from having plateaux -is not required for the stability result, it is necessary in their existence theorem for identifying u as the pointwise limit of solutions to regularised problems using compactness arguments. If p > 2d d+2 we overcome this assumption on T in the variational setting by using monotonicity and compensated compactness arguments; see Section 5.2. Indeed, it may be interesting to determine whether similar arguments may be used in the setting of renormalised solutions in [START_REF] Blanchard | Stefan problems with nonlinear diffusion and convection[END_REF]. If p is 'too small' -that is, in case (III) of Hypothesis (3.3) -we must also assume that T (respectively β outside the present section) does not have any plateaux, but we still identify weak limits by montony and compensated compactness arguments rather than by pointwise convergence.

Preliminaries

Properties of B.

We recall here two lemmas proved in [START_REF] Droniou | Uniform-in-time convergence result of numerical methods for non-linear parabolic equations[END_REF]. Lemma 4.1 states some properties of the functions ν and B. The uniform convexity property (4.1e) plays a critical role in our proof of the uniform temporal stability of ν(u). Lemma 4.2 brings together two identities -an integrationby-parts formula and an energy equality -and some continuity properties of the solution. Although the integration-by-parts formula (4.2) apparently follows from the formal relation

ζ(u)∂ t (β(u)) = ζ(u)β (u)∂ t u = (B • β) (u)∂ t u = ∂ t (B(β(u))
, its rigorous justification is quite technical, owing to the lack of regularity properties on u. 

(4.1b) [ν(a) -ν(b)] 2 ≤ L β L ζ [ζ(a) -ζ(b)][β(a) -β(b)].
The functions B : R β → [0, ∞] and B • β : R → [0, ∞) are continuous, and for all s ∈ R,

(4.1c) B(β(s)) = s 0 ζ(q)β (q) dq.
There are positive constants K 1 , K 2 and K 3 , depending only upon L β , L ζ and the constants M 1 , M 2 in (2.1b), such that for all s ∈ R,

(4.1d) K 1 β(s) 2 -K 2 ≤ B(β(s)) ≤ K 3 s 2 .
Finally, for every a, b ∈ R,

(4.1e) [ν(a) -ν(b)] 2 ≤ 4L β L ζ B(β(a)) + B(β(b)) -2B β(a) + β(b) 2 .
Before stating the next lemma, a few remarks on notation are necessary. The discussion following Definition 2.2 concerning the continuity of β(u) neglects a subtlety that one must account for in order to give meaning to the convergences (2.7). Indeed, by the statement β(u) ∈ C([0, T ]; L 2 (Ω)-w), one understands that the mapping (x, t) → β(u(x, t)) is equal almost everywhere on Ω × (0, T ) to a function Z that is continuous as a map from [0, T ] to L 2 (Ω)-w. We henceforth write β(u) for Z; similarly ν(u) for the continuous in time almost-everywhere representative of (x, t) → ν(u(x, t)) (see part (ii) of the following lemma). This distinction is essential in the present context, where we are frequently concerned with the values of these functions at a particular point in time. The composition β(u(•, •)) is only defined up to null sets in Ω × (0, T ), so for a particular t ∈ [0, T ] the expression β(u(•, t)) is ill-defined. The expression β(u)(•, t) is, however, well-defined, and we take care to use the notation β(u) (without the bar) only when this quantity is used in an average sense. Nonetheless, for the sake of clarity Theorem 2.3 is stated without this distinction.

Lemma 4.2. Let (2.1) hold. (i) If v is a measurable function on Ω × (0, T ) such that ζ(v) ∈ L p (0, T ; W 1,p 0 (Ω)), B(β(v)) ∈ L ∞ (0, T ; L 1 (Ω)), β(v) ∈ C([0, T ]; L 2 (Ω)-w) and ∂ t β(v) ∈ L p (0, T ; W -1,p (Ω)) then the map- ping [0, T ] t → Ω B(β(v)(x, t)) dx ∈ [0, ∞) is continuous and bounded, and for all T 0 ∈ [0, T ], (4.2) T0 0 ∂ t β(v)(•, t), ζ(v(•, t)) W -1,p ,W 1,p 0 dt = Ω B(β(v)(x, T 0 )) dx - Ω B(β(v)(x, 0)) dx.
(ii) If u is a solution to (P) then for all T 0 ∈ [0, T ],

(4.3) Ω B(β(u)(x, T 0 )) dx + T0 0 Ω a(x, ν(u), ∇ζ(u)) • ∇ζ(u) dx dt = Ω B(β(u ini (x))) dx + T0 0 f (•, t), ζ(u)(•, t) W -1,p ,W 1,p 0 dt and the function ν(u) is continuous from [0, T ] into L 2 (Ω).
Since B plays such a critical role to our main result, we highlight its stability properties in the following lemma. 

B n (β n (s)) = s 0 ζ n (q)β n (q) dq → s 0 ζ(q)β (q) dq = B(β(s)) as n → ∞,
and the proof of (ii) is complete.

(iii) Without loss of generality, we can assume that (B n (z n )) n∈N converges in [0, ∞], otherwise we extract a subsequence that converges to the inferior limit. We study four distinct cases.

Case A: z n ∈ R βn for an infinite number of n. Then the corresponding B n (z n ) are equal to +∞ and therefore lim n→∞ B n (z n ) = +∞ ≥ B(z).

Case B: z n ∈ R βn for n large, and

z ∈ R β . Assume that z > sup R β (the case z < inf R β is similar). Take Z ∈ (sup R β , z) ⊂ (0, ∞).
For n sufficiently large, z n > Z and z n ∈ R βn . Then use the definition (2.4) of B n , Hypothesis (2.1b) and the fact that β r n is nondecreasing to see that

(4.4) B n (z n ) = zn 0 ζ n (β r n (s)) ds ≥ zn Z ζ n (β r n (s)) ds ≥ zn Z (M 1 β r n (s) -M 2 ) ds ≥ (z n -Z)(M 1 β r n (Z) -M 2 ).
We prove by contradiction that (β r n (Z)) n∈N is not bounded. Otherwise, upon extraction of a subsequence it converges to some m ∈ R. Then, by local uniform convergence of

β n , Z = β n (β r n (Z)) → β(m) ∈ R β . But Z > sup R β , which is a contradiction. Hence, β r n (Z) → +∞ as n → ∞. Since z n -Z → z -Z > 0, passing to the limit in (4.4) gives lim n→∞ B n (z n ) = +∞ ≥ B(z). Case C: z n ∈ R βn for n large, z ∈ R β and (β r n (z n )) n∈N is bounded in R. Let s n = β r n (z n ), which gives z n = β n (s n ). Since (s n ) n∈N is bounded, up to extraction of a subsequence we have s n → s ∈ R and thus, by (ii), B n (z n ) = B n • β n (s n ) → B • β(s). The local uniform convergence of (β n ) n∈N gives z n = β n (s n ) → β(s), which means that β(s) = z. Hence B n (z n ) → B(β(s)) = B(z)
and the proof is complete.

Case D:

z n ∈ R βn for n large, z ∈ R β and (β r n (z n )) n∈N is unbounded. Again, let s n = β r n (z n ) ∈ [-∞, +∞].
The function B n is continuous (with values in [0, +∞]) at the endpoints of R βn . Since these endpoints correspond to lim s→±∞ β n (s), applying the monotone convergence theorem to (4.1c) then shows that this formula also holds if s = ±∞. Hence, for any n,

B n (z n ) = B n (β n (s n )) = sn 0 ζ n (q)β n (q) dq.
The sequence (s n ) n∈N contains a subsequence that goes to ±∞. Say, without explicitly denoting the subsequence, that s n → +∞ (the case s n → -∞ is similar). Let M ≥ 0 and for n sufficiently large, since ζ n ≥ 0 on R + and β n ≥ 0, write

B n (z n ) = sn 0 ζ n (q)β n (q) dq ≥ R 1 [0,M ] (q)ζ n (q)β n (q) dq.
By the reasoning in Remark 2.5,

β n → β in L ∞ (R) weak- * . Since ζ n → ζ uniformly on [0, M ], we can conclude that lim n→∞ B n (z n ) ≥ R 1 [0,M ] (q)ζ(q)β (q) dq.
Take the limit inferior as M → ∞ using Fatou's lemma to deduce that

lim n→∞ B n (z n ) ≥ ∞ 0 ζ(q)β (q) dq.
Since z ≥ 0 (because for n large enough, each

z n = β n (s n ) is nonnegative), s = β r (z) ∈ [0, ∞] and thus lim n→∞ B n (z n ) ≥ s 0 ζ(q)β (q) dq.
We already saw that (4.1c) is valid for any s ∈ [-∞, ∞], and we infer that lim n→∞ B n (z n ) ≥ B(β(s)) = B(z) as required.

4.2.

Estimates. The results of the previous section allow us to prove the energy estimates, the subject of our next lemma. Note that none of the estimates we prove in this section require Hypothesis (2.2).

Lemma 4.4. Let (β n , ζ n , ν n , a n , f n , u ini n )
n∈N be a sequence of data that satisfies the hypotheses of Theorem 2.3, and let u n be a solution to the corresponding problem (P). Then there exists C 1 > 0 independent of n such that the following quantities are bounded above by C 1 :

(4.5) sup t∈[0,T ] B n (β n (u n )(•, t)) L 1 (Ω) , ζ n (u n ) L p (0,T ;W 1,p 0 (Ω)) , sup t∈[0,T ] β n (u n )(•, t) L 2 (Ω) , ∂ t β n (u n ) L p (0,T ;W -1,p (Ω)) .
Proof. By hypothesis, (β n , ζ n , ν n , a n , f n , u ini n ) (for every n ∈ N) satisfies an identity analogous to (4.3). From this identity, the quadratic growth (4.1d) of B n • β n , the uniform coercivity of (a n ) n∈N and Young's inequality, (4.6)

Ω B n (β n (u n )(x, T 0 )) dx + a T0 0 Ω |∇ζ n (u n )| p dx dt ≤ K 3 u ini n 2 L 2 (Ω) + a 2 ∇ζ n (u n ) p L p (0,T0;L p (Ω) d ) + 1 p 2 ap p /p f n p L p (0,T0;W -1,p (Ω)) .
Taking T 0 = T shows that

∇ζ n (u n ) p L p (0,T ;L p (Ω) d ) ≤ 2 a K 3 u ini n 2 L 2 (Ω) + 1 p 2 ap p /p f n p L p (0,T ;W -1,p (Ω)) .
With the assumed convergence properties of (u ini n ) n∈N and (f n ) n∈N , substituting the previous inequality into (4.6) gives the first two estimates in (4.5). The estimate on (β n (u n )) n∈N follows from that on (B n (β n (u n ))) n∈N and (4.1d). To prove the estimate on

∂ t β n (u n ), let v ∈ L p (0, T ; W 1,p 0 (Ω)) and deduce from (2.5) that T 0 ∂ t β n (u n )(•, t), v(•, t) W -1,p ,W 1,p 0 dt ≤ v L p (0,T ;W 1,p 0 (Ω)) a L p (Ω) + µ ∇ζ n (u n ) p-1 L p (0,T ;L p (Ω) d ) + f n L p (0,T ;W -1,p (Ω)) .
Take the supremum over v in the unit ball of L p (0, T ; W 1,p 0 (Ω)) and use the bound on (ζ n (u n )) n∈N in L p (0, T ; W 1,p 0 (Ω)) to complete the proof.

The following lemma, applied to F n = ζ n , G n = β n and u n the solution to (P), provides us with crucial estimates of the time translates of ν n (u n ). Nevertheless we state it in a generic setting, as it will also be applied with different functions. Lemma 4.5. For every n ∈ N, let F n : R → R and G n : R → R be nondecreasing and Lipschitz continuous, uniformly with respect to n. Suppose also that F n (0) = 0. Define H n (s) := s 0 F n (q)G n (q) dq. Take p ≥ 1 and (u n ) n∈N a sequence of measurable functions on Ω × (0, T ) such that

(F n (u n )) n∈N is bounded in L p (0, T ; W 1,p 0 (Ω)), (G n (u n )) n∈N is bounded in L ∞ (0, T ; L 2 (Ω)) and (∂ t (G n (u n ))) n∈N is bounded in L p (0, T ; W -1,p (Ω)).
Then there exists C 2 > 0 independent of n such that, for all 2 ≤ r < ∞ and all τ > 0, (4.7)

H n (u n )(•, • + τ ) -H n (u n ) L r (R;L 2 (Ω))) ≤ C 2 τ 1/r ,
where H n (u n ) is extended by zero outside Ω × (0, T ).

Proof. Denote by L F and L G the uniform Lipschitz constants of (F n ) n∈N and (G n ) n∈N , respectively. We introduce the truncations T k : R → R at level k > 0, defined by T k (s) := max(-k, min(s, k)), and the functions

F k n (s) := T k (F n (s)) and H k n (s) := s 0 (F k n ) (q)G n (q) dq. Then F k n (u n ), H k n (u n ) ∈ L 2 (0, T ; L 2 (Ω)), the latter coming from (4.8) |H k n (u n )| ≤ L F |G n (u n )|. Now let τ ∈ (0, T ). Inequality (4.1b) with (F k n , G n , H k n ) in place of (ζ, β, ν) yields T -τ 0 Ω H k n (u n )(x, t + τ ) -H k n (u n )(x, t) 2 dx dt ≤ L F L G T -τ 0 Ω (G n (u n )(x, t + τ ) -G n (u n )(x, t)) F k n (u n )(x, t + τ ) -F k n (u n )(x, t) dx dt = L F L G T -τ 0 G n (u n )(•, t + τ ) -G n (u n )(•, t), F k n (u n )(•, t + τ ) -F k n (u n )(•, t) W -1,p ,W 1,p 0 dt = L F L G T -τ 0 t+τ t ∂ t G n (u n )(•, s) ds, F k n (u n )(•, t + τ ) -F k n (u n )(•, t) W -1,p ,W 1,p 0 dt = L F L G T -τ 0 t+τ t ∂ t G n (u n )(•, s), F k n (u n )(•, t + τ ) -F k n (u n )(•, t) W -1,p ,W 1,p 0 ds dt,
where the first equality holds since

G n (u n )(•, t) ∈ L 2 (Ω) ∩ W -1,p (Ω) and F k n (u n )(•, t) ∈ L 2 (Ω) ∩ W 1,p 0 (Ω) for a.e. t ∈ (0, T ). Note that obtaining this L 2 integrability of F k n (u n ) is the only reason for introducing the truncations; if p ≥ 2 then the truncations are redundant. As k → ∞, H k n (u n ) → H n (u n
) almost everywhere on Ω × (0, T ) and therefore also in L 2 (0, T ; L 2 (Ω)) by dominated convergence with (4.8). Thanks to G. Stampacchia's important result [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF], we can write

∇F k n (u n ) = T k (F n (u n ))∇F n (u n ) = 1 {|Fn(un)|≤k} ∇F n (u n ), which converges in L p (0, T ; L p (Ω) d ) to ∇F n (u n ) as k → ∞. So F k n (u n ) → F n (u n ) in L p (0, T ; W 1,p 0 (Ω)). Let k → ∞ on both sides of the above inequality to obtain T -τ 0 Ω (H n (u n )(x, t + τ ) -H n (u n )(x, t)) 2 dx dt ≤ L F L G T -τ 0 t+τ t ∂ t G n (u n )(•, s), F n (u n )(•, t + τ ) -F n (u n )(•, t) W -1,p ,W 1,p 0 ds dt ≤ L F L G T -τ 0 t+τ t ∂ t G n (u n )(•, s) W -1,p (Ω) F n (u n )(•, t + τ ) -F n (u n )(•, t) W 1,p 0 ds dt
Apply Young's inequality and interchange the order of integration in s and t where appropriate to obtain (4.9)

H n (u n )(•, • + τ ) -H n (u n )(•, •) 2 L 2 (Ω×(0,T -τ )) ≤ L F L G τ 1 p ∂ t G n (u n ) p L p (0,T ;W -1,p (Ω)) + 2 p F n (u n ) p L p (0,T ;W 1,p 0 (Ω)) ≤ C 3 τ
where C 3 does not depend on n or τ . From the definition of H n we have

|H n (u n )| ≤ L F |G n (u n )|. Hence, (H n (u n )) n∈N is bounded in L ∞ (0, T ; L 2 (Ω)
). This enables us to estimate the time translates on (0, τ ) and (T -τ, T ) and, combined with (4.9) we deduce that (4.7) holds for r = 2. The conclusion for a generic r ∈ [2, ∞) follows by interpolation (Hölder's inequality), using the bound of (H n n )) n∈N in L ∞ (0, T ; L 2 (Ω)).

4.3.

Two lemmas: convexity and monotonicity. Lemma 4.6 is a general result on the uniform weak lower semi-continuity of sequences of convex functions.

Lemma 4.6. Let Ψ, Ψ n : R → [0, ∞] be convex lower semi-continuous functions such that for every n ∈ N, Ψ n (0) = Ψ(0) = 0. Assume that for any z ∈ R and any sequence (z n ) n∈N converging to z,

Ψ(z) ≤ lim inf n→∞ Ψ n (z n ). If (v n ) n∈N ⊂ L 2 (Ω) converges weakly to v in L 2 (Ω) then Ω Ψ(v(x)) dx ≤ lim inf n→∞ Ω Ψ n (v n (x)) dx.
Proof. For x ∈ Ω, r > 0 and n ∈ N, extend v n by zero outside Ω and write

[v n ] r (x) := - B(x,r) v n (y) dy = 1 |B(x, r)| B(x,r)
v n (y) dy for the mean value of v n over the closed ball of radius r centred at x.

Since v n v in L 2 (Ω) as n → ∞, for every x ∈ Ω, [v n ] r (x) → - B(x,r) v(y) dy =: [v] r (x).
We have extended v by 0 outside Ω. Hence for every

x ∈ Ω, Ψ([v] r (x)) ≤ lim inf n→∞ Ψ n ([v n ] r (x)).
We can apply Fatou's lemma and Jensen's inequality to obtain

Ω Ψ([v] r (x)) dx ≤ lim inf n→∞ Ω Ψ n ([v n ] r (x)) dx ≤ lim inf n→∞ Ω - B(x,r)
Ψ n (v n (y)) dy dx.

Use Fubini-Tonelli and the fact that Ψ n (v n ) = 0 outside Ω to write

Ω - B(x,r) Ψ n (v n (y)) dy dx = Ω Ψ n (v n (y)) dy. Thus (4.10) Ω Ψ([v] r (x)) dx ≤ lim inf n→∞ Ω Ψ n (v n (y)) dy.
Almost every x ∈ Ω is a Lebesgue point of v and, for those, we have lim r→0 [v] r (x) = v(x). Then from the lower semi-continuity of Ψ, another application of Fatou's lemma and (4.10), we deduce that

Ω Ψ(v(x)) dx ≤ Ω lim inf r→0 Ψ([v] r (x)) dx ≤ lim inf r→0 Ω Ψ([v] r (x)) dx ≤ lim inf r→0 lim inf n→∞ Ω Ψ n (v n (y)) dy = lim inf n→∞ Ω Ψ n (v n (x)) dx.
We employ the next result to identify weak nonlinear limits in Section 5.2.

Lemma 4.7. Let V be a measurable subset of R d . Take sequences (χ n ) n∈N , (ψ n ) n∈N ⊂ C(R) of nondecreasing functions satisfying χ n (0) = ψ n (0) = 0 for every n ∈ N and such that χ n → χ and ψ n → ψ, both pointwise on R. Assume there is a sequence (v n ) n∈N of measurable functions on V and two functions χ, ψ ∈ L 2 (V ) such that

(i) χ n (v n ) χ and ψ n (v n ) ψ, both weakly in L 2 (V ); (ii) there exists an almost-everywhere strictly positive function ϕ ∈ L ∞ (V ) such that lim n→∞ V ϕ(z)χ n (v n (z))ψ n (v n (z)) dz = V ϕ(z) χ(z) ψ(z) dz.
Then for all measurable functions v satisfying (χ + ψ)(v) = χ + ψ almost everywhere in V , χ = χ(v) and ψ = ψ(v) almost everywhere in V.

Proof. Observe that χ(v), ψ(v) ∈ L 2 (V ) since by hypothesis they have the same sign, so that k,s)) be the truncation at level k. Since χ n and ψ n are nondecreasing, for the function ϕ in (ii), write

|χ(v)| + |ψ(v)| = |(χ + ψ)(v)| = | χ + ψ| ∈ L 2 (V ). Let T k (s) = min(k, max(-
(4.11) V ϕ(z) χ n (v n (z)) -χ n (T k (v(z))) ψ n (v n (z)) -ψ n (T k (v(z))) dz ≥ 0.
By their monotonicity and sign properties, the functions χ n and ψ n are bounded on [-k, k] by max(|χ n (±k)|, |ψ n (±k)|), which is uniformly bounded with respect to n since χ n and ψ n converge pointwise. Hence, by the dominated convergence theorem,

χ n (T k (v)) → χ(T k (v)) and ψ n (T k (v)) → ψ(T k (v)) in L 2 (V ) as n → ∞.
Using (i) and (ii), we can therefore pass to the limit n → ∞ in (4.11) and we find (4.12)

V ϕ(z) χ(z) -χ(T k (v(z))) ψ(z) -ψ(T k (v(z))) dz ≥ 0.
The monotonicity and sign properties of χ and ψ ensure that

|χ(T k (v))| ≤ |χ(v)| and |ψ(T k (v))| ≤ |ψ(v)|. Since χ(v) and ψ(v) belong to L 2 (V ), we deduce that as k → ∞, χ(T k (v)) → χ(v) and ψ(T k (v)) → ψ(v)
, both in L 2 (V ). Passing to the limit in (4.12), we obtain

(4.13) V ϕ(z)[ χ(z) -χ(v(z))][ ψ(z) -ψ(v(z))] dz ≥ 0. The identity χ(v) + ψ(v) = χ + ψ gives χ(z) -χ(v(z)) = -( ψ(z) -ψ(v(z)
)), which after substitution into (4.13) yields

- V ϕ(z) [ χ(z) -χ(v(z))] 2 dz = - V ϕ(z) ψ(z) -ψ(v(z)) 2 dz ≥ 0.
From the positivity of ϕ we conclude that χ(z) = χ(v(z)) and ψ(z) = ψ(v(z)) for almost every z ∈ V .

4.4. Uniform-temporal, weak-spatial compactness. The classical Aubin-Simon compactness theorem -an amalgamation of the work of J.-P. Aubin [START_REF] Aubin | Un théorème de compacité[END_REF] and J. Simon [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] -does ensure uniform temporal compactness in Lebesgue spaces (for the norm topology), provided that a spatial compactness estimate is available in such spaces. This usually requires control of the gradients in Lebesgue spaces. Since we lack such estimates on the gradient of β(u), we must forfeit (at least initially) strong compactness in the spatial variable. We first recall a basic definition.

Definition 4.8. A sequence of continuous functions v n : [0, T ] → L 2 (Ω)-w converges in the space C([0, T ]; L 2 (Ω)-w) to a function v : [0, T ] → L 2 (Ω) if for all ϕ ∈ L 2 (Ω), the sequence of functions [0, T ] t → v n (t), ϕ L 2 (Ω) converges uniformly on [0, T ] to [0, T ] t → v(t), ϕ L 2 (Ω) as n → ∞.
Note that v is then necessarily an element of C([0, T ]; L 2 (Ω)-w).

Proposition 4.9. Let (v n ) n∈N be a sequence of real-valued measurable functions on Ω × (0, T ).

Suppose that there exists q > 1 and R > 0 such that for every n ∈ N,

(4.14) sup t∈[0,T ] v n (•, t) L 2 (Ω) ≤ R, ∂ t v n L q (0,T ;W -1,1 (Ω)) ≤ R. Then (v n ) n∈N is relatively compact in C([0, T ]; L 2 (Ω)-w);
that is, there is a subsequence of (v n ) n∈N that converges in the sense of Definition 4.8.

Remark 4.10. The space W -1,1 (Ω) has been chosen by convenience, but it could be replaced with the dual space of any Banach space in which C ∞ c (Ω) is dense. Proof. Denote by E the ball of radius R in L 2 (Ω), endowed with the weak topology. Take (ϕ l ) l∈N ⊂ C ∞ c (Ω) a dense sequence in L 2 (Ω) and equip E with the metric

d E (v, w) = l∈N min(1, | v -w, ϕ l L 2 (Ω) |) 2 l .
The L 2 (Ω) weak topology on E is the topology induced by this metric. The set E is metric compact and therefore complete. The first bound in (4.14) ensures that every v n takes values in E. It remains to estimate d E (v n (s), v n (s )). To this end,

v n (s ) -v n (s), ϕ l L 2 (Ω) = Ω (v n (x, s ) -v n (x, s))ϕ l (x) dx = v n (•, s ) -v n (•, s), ϕ l W -1,1 ,W 1,∞ 0 = s s ∂ t v n (•, t), ϕ l W -1,1 ,W 1,∞ 0 dt ≤ ∂ t v n L q (0,T ;W -1,1 (Ω)) 1 L q (s,s ) ϕ l W 1,∞ 0 (Ω) ≤ R|s -s | 1/q ϕ l W 1,∞ 0 (Ω) . Then d E (v n (s), v n (s )) ≤ l∈N 2 -l min 1, R|s -s | 1/q ϕ l W 1,∞ 0 (Ω) =: ω(s, s ).
Dominated convergence for series then implies that ω(s, s ) → 0 as |s -s | → 0. Hence, (v n ) n∈N belongs to C([0, T ]; E) and is equi-continuous in that space. Invoking the Arzelà-Ascoli theorem and the compactness of E in L 2 (Ω)-w completes the proof.

Proof of the main result

We prove Theorem 2.3 in five steps. In Step 1 we obtain compactness of the sequences of interest, and in Step 2 we identify the limits of these sequences. In Step 3 we pass to the limit in (2.5). Step 4 improves the temporal convergence of (ν n (u n )) n∈N to establish (2.7). We conclude by establishing the strong convergence (2.8) in Step 5.

5.1.

Step 1: compactness results. Apply Proposition 4.9 using Estimates (4.5) on (β n (u n )) n∈N and (∂ t β n (u n )) n∈N , and Lemma A.1 with

H n = β n , v n = u ini n to deduce the existence of β ∈ C([0, T ]; L 2 (Ω)-w) satisfying β(•, 0) = β(u ini ) in L 2
(Ω) and such that up to a subsequence, (5.1)

β n (u n ) β in C([0, T ]; L 2 (Ω)-w).
From (4.5), up to a subsequence, (5.2)

ζ n (u n ) ζ weakly in L p (0, T ; W 1,p 0 (Ω)) for some function ζ ∈ L p (0, T ; W 1,p 0 (Ω)).
Next we obtain strong compactness of the sequence (ν n (u n )) n∈N by demonstrating that the translates in space and time vanish. Recalling (4.1a) and using a classical translate estimate in W 1,p 0 (Ω), for ξ ∈ R d and q < p * , (5.3)

ν n (u n )(• + ξ, •) -ν n (u n ) L p (0,T ;L q (Ω)) ≤ L β ζ n (u n )(• + ξ, •) -ζ n (u n ) L p (0,T ;L q (Ω)) ≤ C 4 ∇ζ n (u n ) L p (Ω×(0,T )) d |ξ| θ ≤ C 4 C 1 |ξ| θ ,
where θ > 0 and C 4 do not depend on ξ or n, and ν n (u n ) and ζ n (u n ) are extended by zero on the complement of Ω. But

|ν n (u n )| ≤ L ζ |β n (u n )| and (ν n (u n )) n∈N is therefore bounded in L ∞ (0, T ; L 2 (Ω)
). Interpolated with (5.3), this shows that, for all r < +∞,

(5.4)

ν n (u n )(• + ξ, •) -ν n (u n ) L r (0,T ;L min(2,q) (Ω)) ≤ C 5 |ξ| θr
where θ r > 0 and C 5 do not depend on ξ or n. By the energy estimates (4.5), Lemma 4.5 applied with F n = ζ n and G n = β n shows that the time translates of ν n (u n ) converge uniformly to zero in L r (0, T ; L 2 (Ω)) for all r < +∞. Combined with (5.4) and the Kolmogorov-M.Riesz-Fréchet compactness theorem, this establishes that, up to a subsequence, (5.5)

ν n (u n ) → ν in L r (0, T ; L min(2,q) (Ω)
) for all r < +∞ and all q < p * .

From the uniform growth of the sequence (a n ) n∈N and (4.5), we assert the existence of a ∈ L p (Ω × (0, T )) d such that, up to a subsequence,

(5.6) a n (•, ν n (u n ), ∇ζ n (u n )) a weakly in L p (Ω × (0, T )) d .

5.2.

Step 2: identifying nonlinear weak limits. We show that there exists a measurable u such that β = β(u), ζ = ζ(u) and ν = ν(u). Three separate analyses are required, depending on the case in Hypothesis (2.2).

Case

(I): p ≥ 2. Define µ = β + ζ, µ n = β n + ζ n and µ = β + ζ.
Fix a measurable function u such that (µ + ν)(u) = µ + ν. Such a u exists since the hypotheses on β and ζ ensure that the range of µ + ν is all of R and therefore the domain of the right inverse (µ + ν) r of (µ + ν) (defined analogously to (2.3)) is R. One possible choice for u is then u = (µ + ν) r ( µ + ν). We now demonstrate that for such a u, β = β(u), ζ = ζ(u) and ν = ν(u).

Using p ≥ 2, the convergences (5.2) and (5.5) ensure that

ζ n (u n ) ζ weakly in L 2 (Ω × (0, T )), and that ν n (u n ) → ν strongly in L 2 (Ω × (0, T )). We deduce that µ n (u n ) = β n (u n ) + ζ n (u n ) β + ζ = µ weakly in L 2 (Ω × (0, T )) and that Ω×(0,T ) µ n (u n )(x, t)ν n (u n )(x, t) dx dt → Ω×(0,T ) µ(x, t) ν(x, t) dx dt.
We can thus apply Lemma 4.7 with ϕ ≡ 1, v n = u n , v = u, χ n = µ n and ψ n = ν n to deduce that ν = ν(u) and µ = µ(u) almost everywhere on Ω × (0, T ), the latter of which states that

(β + ζ)(u) = β + ζ.
Since p ≥ 2, Estimates (4.5) ensure that (ζ n (u n )) n∈N and (β n (u n )) n∈N satisfy the hypotheses of Lemma B.1, and so

β n (u n )ζ n (u n ) β ζ in (C(Ω × [0, T ])) . Now as (β + ζ)(u) = β + ζ, we apply Lemma 4.7 again with ϕ ≡ 1, v n = u n , v = u, χ n = β n and ψ n = ζ n to conclude that β = β(u) and ζ = ζ(u) almost everywhere on Ω × (0, T ). 5.2.2. Case (II): 2d d+2 < p < 2 and |β n (s)| ≥ M 3 |s| -M 4 . Since (β n (u n )) n∈N is bounded in L ∞ (0, T ; L 2 (Ω)
), the assumption on β n shows that (u n ) n∈N is bounded in the same space. By the uniform Lipschitz continuity of ζ n , we infer that (ζ n (u n )) n∈N is also bounded in L ∞ (0, T ; L 2 (Ω)). Hence, as in the previous case the convergence (5.2) also holds weakly in L 2 (Ω×(0, T )). Since p * > 2, (5.5) gives the strong convergence of ν n (u n ) in L 2 (Ω×(0, T )).

We proceed as in the previous case to see that with u = (µ+ν) r As in Case (II), the coercivity assumption on β n ensures that (ζ n (u n )) n∈N converges weakly in L 2 (Ω × (0, T )). However, we can no longer ensure the strong convergence of ν n (u n ) in L 2 . We must therefore truncate

ζ n first. Let ζ k n = T k (ζ n ), where T k (s) = min(k, max(-k, s))
is the truncation at level k. Up to a subsequence, for some

ζ k ∈ L 2 (Ω × (0, T )), ζ k n (u n ) ζ k weakly in L 2 (Ω × (0, T )). Set ν k n (s) = s 0 β n (q)(ζ k n ) (q) dq. Note that (∇ζ k n (u n )) n∈N = (1 {|ζn(un)|≤k} ∇ζ n (u n )) n∈N is bounded in L p (Ω×(0, T )) d .
Hence, following the reasoning in (5.3) and using an interpolation in space between p and ∞ (we have

|ζ k n | ≤ k), ν k n (u n )(• + ξ, •) -ν k n (u n ) L p (0,T ;L 2 (Ω)) ≤ L β ζ k n (u n )(• + ξ, •) -ζ k n (u n ) L p (0,T ;L 2 (Ω)) ≤ L β (2k) 1-p 2 ζ k n (u n )(• + ξ, •) -ζ k n (u n ) p 2 L p (0,T ;L p (Ω)) ≤ C 6 ∇ζ k n (u n ) p 2 L p (Ω×(0,T )) d |ξ| p 2 ≤ C 7 |ξ| p 2 ,
where C 6 and C 7 depend on k but not on n or ξ. Use the bound on (ν k n (u n )) n∈N in L ∞ (0, T ; L 2 (Ω)) to infer that the space translates of these functions vanish uniformly with respect to n in L r (0, T ; L 2 (Ω)) for all r < +∞. Lemma 4.5 applied to F n = ζ k n and G n = β n shows that the time translates of ν k n (u n ) vanish uniformly with respect to n in L r (0, T ; L 2 (Ω)) for all r < +∞. Hence, (ν k n (u n )) n∈N strongly converges, up to a subsequence, to some ν k in L 2 (Ω × (0, T )).

We can then work as in the previous cases with β n , ζ k n and ν k n . We define

ζ k = T k (ζ) and ν k (s) = s 0 β (q)(ζ k ) (q) dq
, and we let µ k = β + ζ k . By coercivity of β, the mapping µ k + ν k is onto and we can define

u k = (µ k + ν k ) r ( µ k + ν k ), where µ k = β + ζ k is the weak limit in L 2 (Ω × (0, T )) of β n + ζ k n . By strong convergence in L 2 (Ω × (0, T )) of (ν k n (u n )) n∈N we can apply Lemma 4.7 to see that ν k = ν k (u k ) and
(5.7)

β + ζ k = β(u k ) + ζ k (u k ).
We now apply Lemma B.

1 to (ζ k n (u n )) n∈N and (β n (u n )) n∈N . Indeed, (ζ k n (u n )) n∈N is bounded in L ∞ (Ω × (0, T )). We therefore obtain β n (u n )ζ k n (u n ) β ζ k weakly in C(Ω × [0, T ]
) . Use Lemma 4.7 and (5.7) to deduce that

ζ k = ζ k (u k ) and β = β(u k ).
Since β does not have any plateaux and β does not depend on k, the latter relation shows that

u k does not depend on k. Write u = u k . Then β = β(u), ζ k = T k (ζ(u)) and ν k = ν k (u). If we can show that ζ k → ζ and ν k → ν in D (Ω × (0, T )) as k → ∞,
then we can pass to the limit in the previous equalities to get ζ = ζ(u) and ν = ν(u), as required.

Begin with the convergence of ζ k . This function is the weak limit in

L 2 (Ω×(0, T )) of (ζ k n (u n )) n∈N . By Tchebycheff's inequality, uniform Lipschitz continuity of ζ k n and the bound of (u n ) n∈N in L ∞ (0, T ; L 2 (Ω)) (from the coercivity of β n ), (5.8) meas({|ζ k n (u n )| ≥ k}) ≤ C 8 k with C 8 not depending on k or n. Let ϕ ∈ C ∞ c (Ω × (0, T )). Then (5.9) 
Ω×(0,T )

[ ζ k -ζ(x, t)]ϕ(x, t) dx dt ≤ Ω×(0,T ) [ ζ k -ζ k n (u n )](x, t)ϕ(x, t) dx dt + Ω×(0,T ) [ζ k n (u n ) -ζ n (u n )](x, t)ϕ(x, t) dx dt + Ω×(0,T ) [ζ n (u n ) -ζ](x, t)ϕ(x, t) dx dt .
By (5.2), the last term tends to 0 as n → ∞. The first term also vanishes as n → ∞. Estimate the second term using

|ζ k n (u n ) -ζ n (u n )| ≤ 1 {|ζn(un)|≥k} |ζ n (u n )|,
Hölder's inequality, the energy estimate (4.5) and the inequality (5.8). Taking the limit superior as n → ∞ of (5.9) yields

Ω×(0,T ) [ ζ k -ζ(x, t)]ϕ(x, t) dx dt ≤ C 1 ||ϕ|| L ∞ (Ω×(0,T )) C 8 k 1/p . Letting k → ∞ concludes the proof that ζ k → ζ in the sense of distributions.
The proof that ν k converges as k → ∞ to ν in the sense of distributions is similar. The functions ν k and ν are the weak limits in L 2 (Ω × (0, T )) of (ν k n (u n )) n∈N and (ν n (u n )) n∈N (note that since the latter sequence is bounded in L ∞ (0, T ; L 2 (Ω)), the convergence (5.5) also holds weakly in this space). Moreover

ν k n (u n ) -ν n (u n ) = un 0 β n (q) (T k (ζ n ) -ζ n ) (q) dq = 0 if |u n | ≤ k.
We can therefore reproduce the same reasoning as for the convergence of ( ζ k ) k→∞ to see that

ν k → ν in the sense of distributions as k → ∞. Remark 5.1. If β n = Id (resp. ζ n = Id), then ν n = ζ n (resp. ν n = β n )
and the strong convergence of ν n (u n ) enables us to pass to the limit in Ω×(0,T ) β n (u n )ζ n (u n ) (or the truncated version if p is small). We only need the compensated compactness lemma to identify this limit in the case of two genuine degeneracies, that is β n = Id and ζ n = Id.

5.3.

Step 3: the function u is a solution to (P). We know that

ζ(u) = ζ ∈ L p (0, T ; W 1,p 0 (Ω)), β(u) = β ∈ C([0, T ]; L 2 (Ω)-w) (with an abuse of notation), β(u)(•, 0) = β(•, 0) = β(u ini ). Since (∂ t β n (u n )) n∈N is bounded in L p (0, T ; W -1,p (Ω)), we infer that ∂ t β n (u n ) ∂ t β(u)
weakly in this space. Lemma 4.3 shows that Ψ = B and Ψ n = B n satisfy the assumptions of Lemma 4.6. Let

T 0 ∈ [0, T ]. By (5.1), β n (u n )(•, T 0 ) β(u)(•, T 0 ) weakly in L 2 (Ω). Hence by Lemma 4.6, (5.10 
)

Ω B(β(u)(x, T 0 )) dx ≤ lim inf n→∞ Ω B n (β n (u n )(x, T 0 )) dx.
Combined with (4.5), this shows that B(β(u)) ∈ L ∞ (0, T ; L 1 (Ω)).

Passing to the limit as n → ∞ in (2.5) is then possible thanks to the convergence properties of

∂ t β n (u n ) and a n (•, ν n (u n ), ∇ζ n (u n )). We obtain (5.11) T 0 ∂ t β(u)(•, t), v(•, t) W -1,p ,W 1,p 0 dt + T 0 Ω a(x, t) • ∇v(x, t) dx dt = T 0 f (•, t), v(•, t) W -1,p ,W 1,p 0 dt ∀v ∈ L p (0, T ; W 1,p 0 (Ω)).
To complete Step 3, it remains to demonstrate that (5.12) a(x, t) = a(x, ν(u), ∇ζ(u))(x, t) for a.e. (x, t) ∈ Ω × (0, T ).

Let T 0 ∈ [0, T ] and consider the identity (4.3) with data (β n , ζ n , ν n , a n , f n , u ini n ). Take the limit superior and use (5.2) 

(recall that ζ = ζ(u)) to obtain (5.13) lim sup n→∞ T0 0 Ω a n (x, ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n ) dx dt ≤ lim sup n→∞ Ω B n (β n (u ini n (x))) dx + T0 0 f (•, t), ζ(u)(•, t) W -1,p ,W 1,p 0 dt -lim inf n→∞ Ω B n (β n (u n )(x, T 0 )) dx.
Part (ii) of Lemma 4.3 and (4.1d) show that B n • β n converges uniformly and has uniform quadratic growth. By applying Lemma A.1, the convergence

u ini n → u ini in L 2 (Ω) shows that (B n •β n )(u ini n ) → (B • β)(u ini ) in L 1 (Ω).
Together with the inequality (5.10), this gives (5.14) lim sup We now employ the classical Minty-Browder argument. For G ∈ L p (0, T ; L p (Ω) d ), the monotonicity of (a n ) n∈N gives (5.15)

n→∞ T0 0 Ω a n (x, ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n ) dx dt ≤ Ω B(β(u ini (x))) dx + T0 0 f (•, t), ζ(u)(•, t) W -1,p ,W 1,p 0 dt - Ω B(β(u)(x, T 0 )) dx =
T0 0 Ω [a n (x, ν n (u n ), ∇ζ n (u n )) -a n (x, ν n (u n ), G)] • [∇ζ n (u n ) -G] dx dt ≥ 0.
Together with the strong convergence in L 1 (Ω × (0, T )) of ν n (u n ) to ν(u), the assumptions on the sequence (a n ) n∈N ensure that a n (•, ν n (u n ), G) converges in L p (Ω × (0, T )) d to a(•, ν(u), G). Using this, (5.14) and the weak convergence (5.6), we pass to the limit superior on the expanded form of (5.15) with T 0 = T to see that

T0 0 Ω [ a(x, t) -a(x, ν(u(x, t)), G(x, t))] • [∇ζ(u)(x, t) -G(x, t)] dx dt ≥ 0.
Following G.J. Minty [START_REF] Minty | On a monotonicity method for the solution of non-linear equations in Banach spaces[END_REF], take G = ∇ζ(u) ± rϕ for ϕ ∈ L p (0, T ; L p (Ω) d ), divide by r > 0 and let r → 0 to obtain (5.12).

5.4.

Step 4: uniform temporal convergence of ν n (u n ) to ν(u). Take T ∞ ∈ [0, T ] and (T n ) n∈N ⊂ [0, T ] a sequence converging to T ∞ . Thanks to Lemma A.2, the convergence of (ν n (u n )) n∈N in C([0, T ]; L 2 (Ω)) follows if we can demonstrate that (5.16)

lim n→∞ ν n (u n )(•, T n ) -ν(u)(•, T ∞ ) L 2 (Ω) = 0.
Note the use of the continuous representatives [0, T ] → L 2 (Ω) of ν n (u n ) and ν(u) (whose existence is ensured by Lemma 4.2). Without loss of generality, we can assume that T n is such that (5.17)

β n (u n (•, T n )) = β n (u n )(•, T n ) and ν n (u n (•, T n )) = ν n (u n )(•, T n ) a.e. on Ω.
Indeed, by definition of the continuous representatives, there is

T n ∈ (T n -1/n, T n + 1/n) ∩ [0, T ]
such that (5.17) holds at T n and such that

ν n (u n )(•, T n ) -ν n (u n )(•, T n ) L 2 (Ω) ≤ 1 n , using ν n (u n ) ∈ C([0, T ]; L 2 (Ω))
. Proving (5.16) with T n instead of T n establishes it for T n also.

To estimate the quantity in (5.16), which involves a variation of ν n and u n with respect to n, our strategy is to freeze one of these variations using the triangle inequality with ν n (u)(•, T ∞ ) as an intermediate point. But ν n (u) may not be continuous in time, so its value at T ∞ is not well-defined.

Instead we use ν n (u)(•, s) and average over a small interval around T ∞ . To this end, let ε > 0 and define (5.17) and (4.1e) with ν n , B n and β n , write

I ε := [T ∞ -ε, T ∞ + ε] ∩ [0, T ]. Using
ν n (u n )(•, T n ) -ν(u)(•, T ∞ ) 2 L 2 (Ω) (5.18) ≤ 2 - Iε ν n (u n (•, T n )) -ν n (u(•, s)) 2 L 2 (Ω) ds + 2 - Iε ν n (u(•, s)) -ν(u)(•, T ∞ ) 2 L 2 (Ω) ds ≤ 8L β L ζ Ω B n (β n (u n (x, T n ))) dx + - Iε Ω B n (β n (u(x, s))) dx ds -2 - Iε Ω B n β n (u n (x, T n )) + β n (u(x, s)) 2 dx ds + 2 - Iε ν n (u(•, s)) -ν(u)(•, T ∞ ) 2 L 2 (Ω) ds =: 8L β L ζ [I 1 (n) + I 2 (n, ε) -2I 3 (n, ε)] + 2I 4 (n, ε).
To determine the convergence of I 1 , expand (5.15) with T 0 = T n , G = ∇ζ(u) and take the limit inferior of the resulting expression. Noting the identity (5.12), we obtain

(5.19) lim inf n→∞ Tn 0 Ω a n (x, ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n ) dx dt ≥ T∞ 0 Ω a(x, ν(u), ∇ζ(u)) • ∇ζ(u) dx dt.
Now in (4.3), replace (β, ζ, ν, a, f, u ini , T 0 ) with (β n , ζ n , ν n , a n , f n , u ini n , T n ) and using (5.17), (5.19) and the fact that u satisfies the energy equality (4.3), take the limit superior as n → ∞ to deduce that 

I 3 (n, ε) = - Iε Ω B n β n (u n (x, T n )) + β n (u(x, s)) 2 dx ds ≥ Ω B n β n (u n (x, T n )) + -Iε β n (u(x, s)) ds 2 dx.
The convergence in C([0, T ]; L 2 (Ω)-w) of β n (u n ) to β(u) and the continuity of the latter imply by Lemma A.2 that

β n (u n (•, T n )) = β n (u n )(•, T n ) β(u)(•, T ∞ ) weakly in L 2 (Ω). Since u ∈ L 2 (Ω × (0, T )) the assumptions on β n give β n (u) → β(u) = β(u) in L 2 (0, T ; L 2 (Ω))
, and so Since u ∈ L 2 (Ω × (0, T )), ν n (u) → ν(u) in L 2 (Ω × (0, T )) and so

- Iε β n (u(•, s)) ds → - Iε β(u)(•, s) ds in L 2 (Ω). Thus 1 2 (β n (u n (, •, T n )) + -Iε β n (u(•, s)) ds) 1 2 (β(u)(•, T ∞ ) + -Iε β(u)(•,
(5.23)

I 4 (n, ε) = 1 |I ε | ν n (u) -ν(u)(•, T ∞ ) 2 L 2 (Ω×Iε) → 1 |I ε | ν(u) -ν(u)(•, T ∞ ) 2 L 2 (Ω×Iε) = - Iε ν(u)(•, s) -ν(u)(•, T ∞ ) 2 L 2 (Ω)
ds.

Thanks to (5.20), (5.21) and (5.22), we may split the limit superior as n → ∞ of the right-hand side of (5.18), using (5.23) for the remaining term to obtain (5.24) lim sup

n→∞ ν n (u n )(•, T n ) -ν(u)(•, T ∞ ) 2 L 2 (Ω) ≤ 8L β L ζ Ω B(β(u)(x, T ∞ ) dx + - Iε Ω B(β(u)(x, s)) dx ds -2 Ω B β(u)(x, T ∞ ) + -Iε β(u)(x, s) ds 2 dx + 2 - Iε ν(u)(•, s) -ν(u)(•, T ∞ ) 2 L 2 (Ω)
ds.

To complete the proof it remains to take the superior limit as ε → 0. By the continuity of the mapping

[0, T ] s → Ω B(β(u)(x, s)) dx, lim ε→0 - Iε Ω B(β(u)(x, s)) dx ds = Ω B(β(u)(x, T ∞ )) dx.
Using the continuity of ν(u) :

[0, T ] → L 2 (Ω), lim ε→0 - Iε ν(u)(•, s) -ν(u)(•, T ∞ ) 2 L 2 (Ω) ds = 0. Since B is convex lower semi-continuous and 1 2 (β(u)(•, T ∞ ) + -Iε β(u)(•, s) ds) β(u)(•, T ∞ ) weakly in L 2 ( 
Ω) as ε → 0 (using the continuity of β(u) : [0, T ] → L 2 (Ω)-w), we apply Lemma 4.6 to deduce that

Ω B(β(u)(x, T ∞ )) dx ≤ lim inf ε→0 Ω B β(u)(x, T ∞ ) + -Iε β(u)(x, s) ds 2 dx.
Taking the limit supremum as ε → 0 of (5.24) yields (5.16), hence the result.

Remark 5.2. Since β n (u n )(•, T n ) β(u)(•, T ∞ ) weakly in L 2 (Ω) whenever T n → T ∞ (see Lemma A.
2), (5.10) still holds with T 0 in the left-hand side replaced with T ∞ and T 0 in the right-hand side replaced with T n . Thus with (5.20) we see that

Ω B n (β n (u n )(x, T n )) dx → Ω B(β(u)(x, T ∞ )) dx as n → ∞. Lemma A.2 and Part (i) in Lemma 4.2 then show that Ω B n (β n (u n )(x, •)) dx converges uniformly to Ω B(β(u)(x, •)) dx on [0, T ]. 5.5. Step 5: convergence of ζ n (u n ) to ζ(u) in L p (0, T ; W 1,p 0 (Ω)).
We follow the ideas of J. Leray and J.-L. Lions [START_REF] Leray | Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF]. Use (5.14) with T 0 = T and (5.12):

lim sup n→∞ T 0 Ω a n (x, ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n ) dx dt ≤ T 0 Ω a(x, ν(u), ∇ζ(u)) • ∇ζ(u) dx dt.
Together with T n = T ∞ = T in (5. [START_REF] Lions | Sur certaines équations paraboliques non linéaires[END_REF]), we see that

(5.25) lim n→∞ T 0 Ω a n (x, ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n ) dx dt = T 0 Ω a(x, ν(u), ∇ζ(u)) • ∇ζ(u) dx dt.
Now define

F n := [a n (x, ν n (u n ), ∇ζ n (u n )) -a n (x, ν n (u n ), ∇ζ(u))] • [∇ζ n (u n ) -∇ζ(u)] ≥ 0,
integrate this expression over Ω × (0, T ) and expand. The convergences (5.2), (5.6), (5.25) and the convergence in

L p (Ω × (0, T )) d of a n (•, ν n (u n ), ∇ζ(u)) to a(•, ν(u), ∇ζ(u)) imply that, as n → ∞, T 0 Ω F n (x, t) dx dt → 0.
The nonnegativity of F n then ensures that F n converges to zero in L 1 (Ω × (0, T )) and therefore, upon extraction of a subsequence, almost everywhere on Ω×(0, T ). Now use the strict monotonicity of a to apply Lemma A.4 with X = Ω×R, b n (s, ξ) = a n (x, s, ξ), χ n = ∇ζ n (u n ) to deduce that, up to a subsequence, ∇ζ n (u n ) → ∇ζ(u) almost everywhere on Ω × (0, T ). A subsequence of (ν n (u n )) n∈N converges almost everywhere on Ω × (0, T ) to ν(u), therefore the local uniform convergence on R × R d of (a n ) n∈N ensures that

a n (•, ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n ) → a(•, ν(u), ∇ζ(u))
• ∇ζ(u) a.e. on Ω × (0, T ).

Lemma A.3 then guarantees, using (5.25) and the nonnegativity of

a n (•, ν n (u n ), ∇ζ n (u n ))•∇ζ n (u n ), that a n (•, ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n ) → a(•, ν(u), ∇ζ(u)) • ∇ζ(u) in L 1 (Ω × (0, T )).
Therefore, the sequence (a n (•, 

ν n (u n ), ∇ζ n (u n )) • ∇ζ n (u n )) n∈N is equi-integrable,
) n∈N ⊂ K converging to s for d K , v n (s n ) → v(s) for d E .
We employ the final two lemmas of this appendix in Section 5.5 to establish the (strong) convergence in L p (0, T ; W 

F n (x) dx → Ω F (x) dx. Then F n → F in L 1 (Ω) as n → ∞.
Lemma A.4. Let X be a metric space and for every n ∈ N let b n : X × R d → R d be continuous and monotone:

(b n (u, δ) -b n (u, γ)) • (δ -γ) ≥ 0 ∀u ∈ X, ∀δ, γ ∈ R d . Assume that b n converges locally uniformly on X × R d to a continuous map b : X × R d → R d that is strictly monotone: (b(u, δ) -b(u, γ)) • (δ -γ) > 0 ∀u ∈ X, ∀δ = γ ∈ R d . Take a sequence (u n , χ n ) ∈ X × R d and (u, χ) ∈ X × R d such that as n → ∞, (b n (u n , χ n ) -b n (u n , χ)) • (χ n -χ) → 0 and u n → u. Then χ n → χ. Proof. Let δ ∈ R d \ {0}. For n ∈ N, define h δ,n : R → R by h δ,n (s) := (b n (u n , χ + sδ) -b n (u n , χ)) • δ. For s > s , (h δ,n (s) -h δ,n (s ))(s -s ) = (b n (u n , χ + sδ) -b n (u n , χ + s δ)) • δ(s -s ) ≥ 0, so h δ,
n is a nondecreasing function. Now assume that χ n does not converge to χ, so there is some ε > 0 and a subsequence of (χ n ) n∈N , not relabelled for convenience, such that s

n := |χ n -χ| ≥ ε for all n ∈ N. Define δ n := χ n -χ |χ n -χ| . There exists δ ∈ R d with |δ| = 1 such that, upon extraction of a subsequence, δ n → δ. Then (b n (u n , χ n ) -b n (u n , χ)) • χ n -χ s n = h δn,n (s n ) ≥ h δn,n (ε) = (b n (u n , χ + εδ n ) -b n (u n , χ)) • δ n . Let n → ∞ to see that 0 = lim n→∞ 1 s n (b n (u n , χ n ) -b n (u n , χ)) • (χ n -χ) ≥ lim n→∞ (b n (u n , χ + εδ n ) -b n (u n , χ)) • δ n = (b(u, χ + εδ) -b(u, χ)) • δ > 0, a contradiction.

Appendix B. Compensated compactness lemma

Space-time compensated compactness results usually state the convergence of a product (f n g n ) n∈N of functions, each one converging only weakly but (f n ) n∈N having compactness properties in space and (g n ) n∈N having compactness properties in time. As seen in the work of A.V. Kazhikhov [START_REF] Kazhikhov | Recent developments in the global theory of two-dimensional compressible Navier-Stokes equations[END_REF], A. Moussa [START_REF] Moussa | Some variants of the classical Aubin-Lions Lemma[END_REF] and references therein, the proof of compensated compactness is often a consequence of the Aubin-Simon compactness theorem. The following lemma is no exception.

Lemma B.1. Let Ω be an open and bounded domain in R d , T > 0, and p ∈ (1, ∞). Take two sequences of functions (f n ) n∈N and (g n ) n∈N in L 2 (Ω × (0, T )) such that • f n f and g n g weakly- * in L 2 (Ω × (0, T )) as n → ∞, • (f n ) n∈N is bounded in L p (0, T ; W 1,p 0 (Ω)), • (∂ t g n ) n∈N is bounded in L p (0, T ; W -1,p (Ω)).

Assume furthermore that one of the following properties holds: (i) p ≥ 2, or (ii) 2d d+2 < p < 2 and (g n ) n∈N is bounded in L p (0, T ; L 2 (Ω)), or (iii) 1 < p ≤ 2d d+2 , (g n ) n∈N is bounded in L p (0, T ; L 2 (Ω)), and (f n ) n∈N is bounded in L ∞ (Ω × (0, T )).

Then f n g n → f g in the sense of measures on Ω × (0, T ), that is, for all ϕ ∈ C(Ω × [0, T ]), (B.1)

T 0 Ω
f n (x, t)g n (x, t)ϕ(x, t) dx dt → T 0 Ω f (x, t)g(x, t)ϕ(x, t) dx dt as n → ∞.

Remark B.2. This result is clearly not optimal and the conclusion holds under much weaker assumptions. Using for example the ideas of [START_REF] Droniou | Uniform-in-time convergence result of numerical methods for non-linear parabolic equations[END_REF], which consists of reducing the proof to the case where (f n ) n∈N are tensorial functions, we could establish a convergence result for (f n g n ) n∈N under weaker bounds on the functions, and assuming only space-translate estimates of (f n ) n∈N instead of bounds in a Lebesgue-Sobolev space. We establish only this simpler lemma that is adapted precisely to our setting, and emphasise that we make no claim over the originality of its core idea.

Remark B.3 (p small). If p is too small, then an additional assumption on (f n ) n∈N is mandatory, as the following example shows. If p ≤ 2d d+2 then p * ≤ 2 and W 1,p 0 (Ω) is therefore not compactly embedded in L 2 (Ω). Take a sequence (u n ) n∈N that is bounded in W 1,p 0 (Ω) ∩ L 2 (Ω) that converges weakly but not strongly to some u ∈ L 2 (Ω). Set f n (x, t) = g n (x, t) = u n (x) and f (x, t) = g(x, t) = u(x). Then f n f and g n g weakly in L ∞ (0, T ; L 2 (Ω)), (f n ) n∈N is bounded in L ∞ (0, T ; W 1,p 0 (Ω)) and ∂ t g n = 0, but the convergence of Ω×(0,T ) f n g n to Ω×(0,T ) f g would imply that u n L 2 (Ω) → u L 2 (Ω) . Hence, u n would converge strongly to u in L 2 (Ω), which is a contradiction.

Proof. By density of C ∞ (Ω × [0, T ]) in C(Ω × [0, T ]), we only need to prove the result for ϕ smooth. Replacing (f n ) n∈N with (ϕf n ) n∈N , which has the same bound and convergence properties as (f n ) n∈N , we can actually assume that ϕ = 1 and we only have to prove f (x, t)g(x, t) dx dt as n → ∞.

We recall a classical consequence of Aubin-Simon's theorem [START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF][START_REF] Droniou | Intégration et espaces de sobolev à valeurs vectorielles[END_REF]: assume that V , E and F are Banach spaces such that V is compactly embedded in E and E is continuously embedded in F ; if (w n ) n∈N is bounded in L r (0, T ; V ) and (∂ t w n ) n∈N is bounded in L m (0, T ; F ) for some r, m ∈ (1, ∞], then (w n ) n∈N is relatively compact in L r (0, T ; E).

We first consider Cases (i) and (ii). In both cases, p * > 2 and thus W 1,p 0 (Ω) is compactly embedded in L 2 (Ω). By duality, we infer that V = L 2 (Ω) is compactly embedded in E = F = W -1,p (Ω). Since (g n ) n∈N is bounded in L p (0, T ; V ) (in Case (i), we use the fact that p ≤ 2), and (∂ t g n ) n∈N is bounded in L p (0, T ; W -1,p (Ω)), the Aubin-Simon theorem shows that (g n ) n∈N is relatively compact in L p (0, T ; W -1,p (Ω)), and that its convergence to g is strong in this space. Since (f n ) n∈N is bounded in L p (0, T ; W 1,p 0 (Ω)), its convergence to f also holds weakly in this space. Observe that T 0 Ω f n (x, t)g n (x, t) dx dt = We now consider Case (iii). Fix s ∈ (0, 1) such that 2s < p. By the assumptions on (f n ) n∈N and Lemma B.4 below, the sequence (f n ) n∈N is bounded in L p (0, T ; W s,2 0 (Ω)), and thus converges weakly in this space to f . Since s > 0, W s,2 0 (Ω) is compactly embedded in L 2 (Ω) (we use [9, Theorem 7.1] with the extension W s,2 0 (Ω) → W s,2 (R d ) by 0 outside Ω, which is valid since W s,2 0 (Ω) is the closure in W s,2 (Ω) of compactly supported functions). Dually, V = L 2 (Ω) is compactly embedded in E = W -s,2 (Ω). Set F = W -s,2 (Ω) + W -1,p (Ω), and apply the Aubin-Simon theorem to see that (g n ) n∈N is relatively compact in L p (0, T ; W -s,2 (Ω)). The weak convergence of (f n ) n∈N in L p (0, T ; W s,2 0 (Ω)) therefore allows us to pass to the weak/strong limit in (B.2) as above.

The following lemma is a simple interpolation result between W 1,p 0 (Ω) and L ∞ (Ω). Lemma B.4 (Interpolation estimate). Let Ω be a bounded open subset of R d and p ∈ (1, ∞). If s ∈ (0, 1) and q ∈ (p, ∞) are such that sq < p, then there exists C 10 such that for all w ∈ W 1,p 0 (Ω) ∀w ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) , ||w|| W s,q 0 (Ω) ≤ C 10 ||w||

1-p q L ∞ (Ω) ||w|| p q W 1,p 0 (Ω) ,
where W s,q 0 (Ω) is the closure in W s,q (Ω) (for the norm defined in the proof ) of C ∞ c (Ω). Proof. We write, using the change of variable y = x + ξ, ||w|| q W s,q 0 (Ω) = 

ζ

  (u) = 0 on ∂Ω × (0, T ) on a bounded open subset Ω of R d . The functions β and ζ are nondecreasing and the function ν satisfies ν = β ζ . The operator a is of Leray-Lions type and u ini ∈ L 2 (Ω).

( 2 .

 2 1a) β : R → R is nondecreasing, Lipschitz continuous with Lipschitz constant L β > 0, and satisfies β(0) = 0. (2.1b) ζ : R → R is nondecreasing, Lipschitz continuous with Lipschitz constant L ζ > 0, and satisfies ζ(0) = 0. Furthermore, there are positive constants M 1 , M 2 such that for every s ∈ R, |ζ(s)| ≥ M 1 |s| -M 2 .

2d d+2 < p < 2

 2 and there are positive constants M 3 , M 4 such that for all s ∈ R, |β(s)| ≥ M 3 |s| -M 4 , or (III) 1 < p ≤ 2d d+2 , there are positive constants M 3 , M 4 such that for all s ∈ R, |β(s)| ≥ M 3 |s| -M 4 , and β is (strictly) increasing. Remark 2.1. (i) The assumption β(0) = ζ(0) = 0 is not restrictive, since replacing β and ζ with β -β(0) and ζ -ζ(0) (respectively) does not change the problem. (ii) Hypotheses (2.1d) and (2.1e) can be relaxed to a(x, s, ξ) • ξ ≥ a|ξ| p -Θ(x)

  is nondecreasing and Lipschitz continuous with Lipschitz constant 1. Set ζ = R(T ) and β = Id -ζ. These functions are nondecreasing and Lipschitz continuous with constant 1. By definition of the resolvent,

  II) 2d d+2 < p < 2 and there are positive constants T 3 , T 4 such that for all (x, y) ∈ Gr(T ), |y| ≥ T 3 |x| -T 4 , or (III) 1 < p ≤ 2d d+2 , there are positive constants T 3 , T 4 such that for all (x, y) ∈ Gr(T ), |y| ≥ T 3 |x| -T 4 , and T is strictly monotone. In (PM), ν is defined as the anti-derivative of ζ β , where ζ = R(T ) and β = Id -ζ. The reciprocal T -1 of T is itself a maximal monotone operator, and the function ζ

  3 and Corollary 2.7. We simply take u = b + z, which implies β(u) = b and ζ(u) = z since (z, b) ∈ Gr(T ). Theorem 3.4. Under Hypotheses (2.1d)-(2.1g), (3.2) and (3.3), (PM) has at least one solution.

Lemma 4 . 1 .

 41 Assume (2.1). Then for every a, b ∈ R, (4.1a) |ν(a) -ν(b)| ≤ L β |ζ(a) -ζ(b)|, and

Lemma 4 . 3 .

 43 Assume (2.1) and (2.6). Define B n : R βn → [0, ∞] from ζ n , β n analogously to (2.4), and extend B n to R by setting B n = +∞ outside R βn . Then (i) B and all (B n ) n∈N are convex lower semi-continuous on R; (ii) B n • β n → B • β locally uniformly on R as n → ∞; (iii) For any z ∈ R and any sequence (z n ) n∈N that converges to z, B(z) ≤ lim inf n→∞ B n (z n ). Proof. (i) The convexity has already been noted. Since B and B n are continuous on R β and R βn respectively by Lemma 4.1, their extension by +∞ outside their initial domain ensures their lower semi-continuity. (ii) Let M > 0. By (4.1c) applied to B n , B n (β n ) is Lipschitz continuous on [-M, M ] with Lipschitz constant L β sup |s|≤M |ζ n (s)|. This quantity is bounded with respect to n since (ζ n ) n∈N converges uniformly on [-M, M ]. Hence, the local uniform convergence of (B n (β n )) n∈N follows from the Arzelà-Ascoli theorem if we can prove that B n (β n ) → B(β) pointwise. The reasoning in Remark 2.5 shows that β n β weak- * in L ∞ (R). Hence, for any s ∈ R, since ζ n → ζ uniformly on [0, s],

  ( µ+ ν), ν(u) = ν and β(u)+ζ(u) = β + ζ. Now apply Lemma B.1 to (ζ n (u n )) n∈N and (β n (u n )) n∈N . As in Case (I), this gives β = β(u) and ζ = ζ(u). 5.2.3. Case (III): 1 < p ≤ 2d d+2 , |β n (s)| ≥ M 3 |s| -M 4 and β is strictly increasing.

  t) • ∇ζ(u) dx dt, using the identities (4.2) (with v = u) and (5.11) (with v = ζ(u)).

  u)(x, T ∞ )) dx < +∞. To handle I 2 , recall that B n • β n converges locally uniformly on R to to B • β (Lemma 4.3). By Hypothesis (2.2), u ∈ L 2 (Ω × (0, T )). Hence by the dominated convergence theorem, the quadratic growth (4.1d) of B n ensures that B n (β n (u)) → B(β(u)) = B(β(u)) in L 1 (Ω × (0, T )) and so (5.21) lim n→∞ I 2 (n, ε) = -Iε Ω B(β(u)(x, s)) dx ds. Now the convexity of B n enables the application of Jensen's inequality to I 3 , yielding

  s) ds) weakly in L 2 ()(x, T ∞ ) + -Iε β(u)(x, s) ds 2 dx ≤ lim inf n→∞ I 3 (n, ε).

(

  x, t)g n (x, t) dx dt → T 0 Ω

T 0 g

 0 n (t), f n (t) W -1,p ,W1,p 0 dt, so the convergence (B.2) holds by strong/weak convergence.

Ω

  |w(x)| q dx + Ω Ω |w(x) -w(y)| q |x -y| d+sq dx dy≤ ||w|| q-p L ∞ (Ω) ||w|| p L p (Ω) + 2||w|| q-p L ∞ (Ω) Ω Ω |w(x) -w(y)| p |x -y| d+sq dx dy ≤ ||w|| q-p L ∞ (Ω) ||w|| p L p (Ω) + 2||w|| q-p L ∞ (Ω) Ω-Ω |ξ| -d-sq Ω |w(x + ξ) -w(x)| p dx dξ. But Ω |w(x + ξ) -w(x)| p dx ≤ |ξ| p ||∇w|| p L p (Ω) d and Ω -Ω ⊂ B(0, D) where D is the diameter of Ω. Hence ||w|| q W s,q 0 (Ω) ≤ ||w|| q-p L ∞ (Ω) ||w|| p L p (Ω) + 2||w|| q-p L ∞ (Ω) ||∇w|| p L p (Ω) d B(0,D)|ξ| p-d-sq dξ and the proof is complete since p -d -sq > -d.

  Since β n , ζ n and ν n are non-decreasing and β, ζ and ν are continuous, Dini's theorem shows that we only need to assume that β n , ζ n , ν n converge pointwise. The Arzelà-Ascoli theorem can be used to arrive at the same conclusion, since β n , ζ n and ν n are uniformly Lipschitz continuous. The local uniform convergence on R of ν n to ν holds if we assume that β n → β almost everywhere on R, or ζ n → ζ almost everywhere on R. Indeed, suppose that the latter pointwise convergence holds. Since (β n ) n∈N is bounded by L β , up to a subsequence, β n

	1,p 0 (Ω)).
	Remark 2.4. Remark 2.5.

  and so too is (|∇ζ n (u n )| p ) n∈N thanks to the uniform coercivity of (a n ) n∈N . The strong convergence (2.8) then follows from Vitali's theorem.Lemma A.2. Let (K, d K ) be a compact metric space, (E, d E ) a metric space. Denote by F(K, E) the space of functions K → E, endowed with the uniform metric d F (v, w) = sup s∈K d E (v(s), w(s)) (note that this metric may take infinite values).Let (v n ) n∈N be a sequence in F(K, E) and v : K → E be continuous. Then v n → v for d F if and only if, for any s ∈ K and any sequence (s n

  1,p 0 (Ω)) of ζ n (u n ) to ζ(u). For a proof of the first of these lemmas, see [13, Lemma 3.3]. The second is a slight modification of [13, Lemma 3.2]. Lemma A.3. Let (F n ) n∈N be a sequence of nonnegative functions in L 1 (Ω). Let F ∈ L 1 (Ω) be such that F n → F almost everywhere and

	Ω
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Appendix A. Convergence lemmas

We make frequent use of the following lemma, proved in [START_REF] Droniou | On a miscible displacement model in porous media flow with measure data[END_REF].

Lemma A.1. Let H n : R → R be a sequence of continuous functions such that (i) there exist positive constants C 9 , γ such that for every

The next lemma gives an equivalent characterisation of uniform convergence, which is critical to Step 3 of the proof of our main result. For a proof of this lemma, see [START_REF] Droniou | Uniform-in-time convergence result of numerical methods for non-linear parabolic equations[END_REF].