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Sound pulse broadening in stressed granular media
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The pulse broadening and decay of coherent sound waves propagating in disordered granular media are
investigated. We find that the pulse width of these compressional waves is broadened when the disorder is
increased by mixing the beads made of different materials. To identify the responsible mechanism for the
pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical
simulation of pulsed sound wave propagation along one-dimensional disordered elastic chains. The qualitative
agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the
high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random
media via a correlation length.
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I. INTRODUCTION

The structure of jammed granular media is characterized by
the inhomogeneous contact networks at the mesoscopic scale
[1]. Elastic waves in such media propagate in different ways
according to the ratio of the wavelength λ to the grain size d. At
low λ/d the propagation of waves is incoherent and strongly
scattered, while at high λ/d the wave propagation is coherent
and ballistic [2]. The scattered waves are the fingerprint of a
specific configuration of the contact force network, which can
be used to measure the interfacial dissipation on the grain scale
and detect the tiny rearrangement of the contact network [3].
On the other hand, the velocity measurement of coherent waves
allows one to characterize the elastic properties of granular
packings on the macroscopic scale and infer the coordination
number within the framework of effective medium theories
[4–7]. This latter plays a central role in the granular mechanics
[8–11].

Pulse wave propagation provides a convenient way for
material characterization and signal transmission, thanks to
the possible temporal separation of signals from parasites.
In disordered granular packings, both experiments and nu-
merical simulations have shown that coherent wave pulses,
compressional or shear, decay in amplitude and broaden
in width as they propagate, thus reducing significantly the
resolution capacity [2,12–16]. In general, two mechanisms
may be responsible for the pulse broadening, i.e., attenuation
and dispersion of velocity, which can be analyzed in the
frequency domain via the dispersion relationship k(ω) between
the wave number k and the angular frequency ω. Indeed,
from k(ω) = k′(ω) + ik′′(ω), the phase velocity V (ω) = ω/k′
and the attenuation α(ω) = k′′ can be deduced, respectively.
Somfai et al. [14] showed that in (one-dimensional) ordered
granular media, the dispersion effect due to discrete lattice
governs the shape of the coherent wave front, and leads to
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a pulse broadening which scales with the source-detector
distance L as ∝ L1/3. By introducing the polydispersity in
the one-dimensional (1D) chain, their numerical simulations
revealed that disorder increases the pulse width. It was also
shown in amorphous media that disorder could induce a
dispersion of the phase velocity particularly at the high-
frequency range with λ ∼ d [17]. However, at such frequency
range, the coherent waves often exhibit strong attenuation
dominated by strong scattering thus being responsible for the
pulse broadening [18,19]. In granular media, despite some
recent numerical studies [14–16], few experimental data are
actually available to highlight the interplay between pulse
broadening and attenuation.

In this work, we study the propagation of compressional
wave pulses through disordered granular packings under stress.
A particular attention is focused on the evolution of the
pulse width of the coherent sound wave as a function of
propagation distance. Various granular media are investigated,
including the mixture of glass and (poly)methyl-methacrylate
(PMMA) beads with enhanced disorder. To understand the
origin of the pulse broadening, we also perform the attenuation
measurement by a spectral analysis and numerical simulations
of the pulse propagation along disordered 1D elastic chains.
The existing models of elastic wave scattering in random media
are finally discussed to highlight the attenuation mechanism
in granular media.

II. EXPERIMENTS

A. Granular samples

Acoustic measurements are performed using a pulse trans-
mission through granular media under stress [2]. The beads are
poured by rain deposition into a rigid cell of inner diameter
30 mm. A plane-wave source (longitudinal) transducer of
diameter 30 mm is placed on the top of the cell and the wave
transmission is detected by a similar transducer on the bottom;
both the source and the detector are in direct contact with
the beads (Fig. 1). Before the ultrasonic measurements, two
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FIG. 1. (Color online) Sketch of the experimental setup.

cycles of loading and unloading are performed to improve the
reproducibility of measurements.

Various granular samples are investigated in this study.
Table I summarizes the main characteristics like constitutive
material (glass, PMMA, or steel), mean size of beads,
polydispersity, and sphericity. The beads with a mean diameter
larger than 1 mm have a good spherical shape and a low
polydispersity, while the smaller ones present sometimes a
nonspherical shape (e.g., partial coalescence of two beads)
and higher polydispersity. The use of polymeric beads,
e.g., PMMA, allows us to evaluate the effect of dissipation
mechanisms on the coherent wave front. Indeed, by measuring
the absorption time (not shown here) from the time-resolved
intensity profile of scattered waves [20,21], we infer a wave
dissipation four times larger in PMMA beads than in glass
beads at 300 kHz, due to the viscoelastic loss.

B. Impulse response and wave velocity measurement

To obtain the impulse response of the coherent compres-
sional wave in granular media, we may deconvolve the signals
transmitted through the media by the signal S sent by the source
transducer. Figure 2 shows an example of the measured signal
and deconvolved one (first part). The source signal S [inset of
Fig. 2(b)] is obtained by putting the source against the detector
via a coupling film. The deconvolution calculation, based on
FFT, is performed on the frequency range [1–900 kHz]. As
in [14], we characterize the impulse response of the coherent
signal by the arrival times associated to three particular points:
the peak A1 (t1), the first arrival at 10% of the peak (t0), and the
first zero crossing (t2). Complementary measurements of pulse
transmission were also performed in a reference medium, i.e.,
water filling up the above cell (waterproof) in which the shape
of received signal does not evolve significantly as the distance
source-receiver increases. This observation indicates that the

FIG. 2. (a) Measured pulse of a compressional wave measured in
a glass bead packing of d = 0.715 mm, under stress P = 995 kPa,
and at a distance L = 21.7 mm. (b) The deconvolved pulse of the
transmitted signal (first part), by a reference signal from the source
traducer (inset).

source transducer does generate a quasiplane wave and the
effect of edge waves are negligible in our experiments [22].

In pulse transmission experiments, the wave velocity
may be determined via the time-of-flight method, making
measurements at two different distances. If only one-distance
measurement is conducted for the velocity calculation, the
different time t0, t1, or t2 leads obviously to different values
(Fig. 3). Notice however that the velocity determined with t1 is
almost independent of the source-receiver distance, contrary
to the other times used. As shown in Fig. 3, this velocity
determined under low stress may exhibit a slight increase
with the distance source receiver. Such discrepancy could
be improved by an alternative method based on the Hilbert
transform using a reference signal, for example, the source
signal [23]. Nevertheless, the difference between the velocity
measured via t1 and that determined by the alternative method
is no more than 5%.

TABLE I. Description of the beads used for granular packings.

Material Glass Steel PMMA

Size d (mm) 5 4 3 2 1.5 1.125 0.715 0.35 0.225 0.7 0.615
Tolerance (mm) ±0.01 ±0.125 ±0.085 ±0.05 ±0.025 ±0.1 ±0.015
Sphericity good quite good quite good poor poor poor quite good
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FIG. 3. (Color online) Compressional wave velocities measured
as a function of propagation distance, using different time arrivals
(see text).

The wave velocity measurement has been extensively used
to study the nonlinear elasticity of stressed granular media; see,
e.g., [4,6]. Figure 4(a) shows that as the confining pressure is
decreased, there is an increase of the time of flight, a decay of
the pulse amplitude, and a broadening of the pulse. However,
by rescaling the time t/t1 and the amplitude A/A1 axes, we
find that almost all responses collapse [Fig. 4(b)], indicating
that the coherent wave fronts are mainly governed by the time
scale t/t1 or Vpt . To evaluate the accuracy of this collapse, we
compare the normalized width of the signal, W = (t1 − t0)/t1
at high and low pressures (inset of Fig. 4). The normalized
width at low pressure is always higher than that obtained at
high pressure. This difference may arise from the heterogeneity
of the contact force networks which is more important at lower
confining pressure [24]. For glass bead packings, the collapse
of the rescaled responses appears more effective with beads
of large size, less polydisperse, and more spherical whose
packing structures are expected to be less disordered. These
results would suggest a possible dependence of the normalized
width on the amount of disorder.

C. Evolution of sound pulse width

Figure 5(a) shows a pulse broadening and decay with the
distance of propagation through granular media. The width of
the signal, t1 − t0, scales with the ratio L/d as a power law
with exponent of about 1/2 or higher for beads of large size
[Fig. 5(b)]. However, if the pulse width is normalized by the
propagation time t1, it decreases with the propagation distance
L/d, according to

W � CW (L/d)−0.5, (1)

where CW is a prefactor. Moreover, Fig. 5(c) shows that
the data of these normalized widths are much less disperse
compared to those in Fig. 5(b), ranged in a grey band likely
independent of the material property of beads and its mean
size d. The data located in the upper part of this band are
obtained with less spherical small beads. The results obtained
from PMMA beads are very similar to those from glass beads,

FIG. 4. (Color online) The effect of the confining pressure P

on the shape of the pulse signal measured at L = 11.5 mm. (a)
Decreasing the pressure leads to an increase of the pulse width. (b)
Rescaling the time axis by t1 and the amplitude axis by A1 leads
to collapse of pulse signals. Inset: Decreasing the pressure make
increase the normalized width W with WH = W (P = 995 kPa) and
WL = W (P = 65 kPa).

showing that the viscoelastic dissipation does not significantly
affect measurements of the normalized pulse width.

To verify whether the normalized width depends on the
amount of disorder mentioned above, we investigate the
evolution of the prefactor CW in granular packings with a
mixture of glass and PMMA beads. A mixture of the beads
of different nature is expected to increase the heterogeneity of
stiffness and mass in the granular packings and accordingly
the normalized width W . For a given volume fraction of
glass beads φglass[= Vglass/(Vglass + Vpmma)], we determined
the prefactor CW by fitting the normalized widths measured for
three source-receiver distances. Figure 6 shows the evolution
of prefactor CW as a function of the glass beads volume fraction
φglass. As expected, CW versus φglass presents a maximum.
Instead, the elastic longitudinal modulus C11 given by C11 =
ρmV 2

p with ρm the packing density of the granular mixture in-
creases monotonically with the volume fraction of glass beads.

D. Attenuation measurement by FFT

To identify the origin of the pulse broadening, we investi-
gate the wave attenuation and velocity dispersion in frequency
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FIG. 5. (Color online) (a) Pulse broadening and decay through a
glass bead packing of d = 0.715 mm under stress P = 995 kPa. The
first period (plain line) of coherent wave front is used for the FFT
analysis. (b) Width of the pulse measured as a function of the ratio L/d

for different granular media under P = 995 kPa. (c) Normalized pulse
width W = (t1 − t0)/t1 plotted as a function of ratio L/d . Numerical
results in 2D disordered granular packings [14] and 1D ordered chain
simulation (dashed red line) are added here for comparison. The
normalized width scales with L as W ∼ CW (L/d)−0.5.

FIG. 6. (Color online) Pulse broadening due to disorder: the best
fit values of prefactor CW and the elastic longitudinal modulus C11 =
ρmV 2

p obtained as a function of glass beads volume fraction in a
glass-PMMA beads mixture (d = 0.615 mm, P = 995 kPa).

domain. By a FFT analysis of coherent wave fronts measured at
different source-receiver distances, it is possible to determine
the wave attenuation α and velocity dispersion as a function
of frequency ω. As detailed elsewhere [25], the dispersion of
the phase velocity is quite small in the range of frequency
used here. Figures 7(a) and 7(b) show respectively the spectra
associated with the pulses detected at different distances L

[Fig. 5(a)] and the attenuation α deduced from the ratio
of spectra. For guidance, different scaling of attenuation on
frequency (ω, ω2, and ω4) are recalled. We discuss later in
Sec. III C the possible mechanisms of wave attenuation.

III. SIMULATION AND MODELING

Despite the lack of theoretical models accurately describing
the sound propagation and scattering in granular media, we
seek to explain our main experimental observations by the
simplified numerical simulations and the general models of
elastic wave scattering in random media.

A. Pulse broadening versus dispersion relationship

We here consider two distinct mechanisms leading to the
pulse broadening, i.e., wave attenuation α(ω) ≡ k′′(ω) and
velocity dispersion V (ω) ≡ ω/k′(ω) where k(ω) = k′(ω) +
ik′′(ω) is the complex wave number. To this end, we investigate
the propagation of a plane wave a(x,t) along x, related to its
inverse Fourier transform ã by

a(x,t) = 1

2π

∫ +∞

−∞
e−iωtA(ω)eik(ω)xdω (2)

with ã = A(ω)eik(ω)x . For a Dirac-like pulse propagation, one
has A(ω) = 1. Two properties of the Fourier transform are
recalled which are useful for the following discussions. (i)
Translation: if g(t) = f (t − t1), then g̃(ω) = eiωt1 f̃ (ω). (ii)
Scaling: if g(t) = f (at), then g̃(ω) = | 1

a
|f̃ (ω

a
).

We first study the effect of the velocity dispersion V (ω) =
ω/k′(ω) on the pulse broadening in a 1D mass-spring chain
composed of identical spheres of radius R. There is no attenu-
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FIG. 7. (Color online) (a) Spectra associated with the pulses
detected at different distances L [Fig. 5(a)]. (b) Attenuation α as
a function of the pulsation ω in d = 0.715 mm glass beads (P =
995 kPa). Error bars correspond to measurements using different
ratios of spectra, and different scaling laws are added for guidance.

ation in such a system (k′′ = 0) and the dispersion relationship
is given by k = (1/R)sin−1(ωR

V
) with V the longitudinal wave

velocity in the long wavelength limit. If the wavelength is
long enough, the wave number can be approximated by
k = ω

c
+ 1

6 (ω
c

)3R2 [14], and the Fourier transform of the signal

will be given by ei((ω/V )x+(1/6)(ω/V )3R2x) = eiωt1ei((1/3)(ω/ω1)3)

with t1 = x
V

and ω1 = ( 2V 3

R2x
)1/3. The first term eiωt1 can be

Fourier transformed using the translation property, and the
second one ei((1/3)(ω/ω1)3) corresponds to the Fourier transform
of the Airy function Ai(−x) scaled by the pulsation ω1. As
shown in [14], the resultant temporal signal can be written
as a(x,t) = ω1Ai[ω1(t1 − t)] = ω1Ai{ωt1[(t1 − t)/t1]}. With
the rescaled time axis (t1 − t)/t1, the normalized width of
the signal is then given by W ∼ (ω1t1)−1 = ( R2

2x2 )1/3 ∝ x−2/3,
namely,

W ∝ L−2/3 (3)

which implies a pulse broadening (t1 − t0) ∼ Wt1 ∼ L1/3, as
previously found [14].

Second, we examine a pulse propagation in a 1D random
medium where the phase velocity V = ω/k′ is constant,
dispersionless. However, there is an attenuation given by
α = k′′(ω) = [σ 2

KLn−1
c ]( ω

V
)n with n an integer; the underlying

physics (and the parameters in the bracket) of such a system

is detailed in Sec. III C below. The Fourier transform of the
temporal signal is then ã(ω) = eik′xe−k′′x = eiωt1e−(ω/ω1)n with
t1 = x

V
and ω1 = ( V n

σ 2
KLn−1

c x
)1/n. By considering the properties

of the Fourier transform, the temporal signal is a(x,t) =
ω1s[ω1(t − t1)] where the function s is the inverse Fourier
transform of e−ωn

. With the rescaled time axis (t1 − t)/t1,
the normalized width of the signal is then W ∼ (ω1t1)−1 =
(σK )2/n(Lc

x
)(n−1)/n. In 1D randomly layered media, one has

n = 2 (see details below in Sec. III C) leading to α ∼ ω2 and
W at (x = L)

W ∝ L−1/2. (4)

B. Simulations in 1D chains of elastic lattices

The use of normalized variables allows us to compare our
experimental results to numerical simulations. As shown in
Fig. 5(c), the numerical results obtained in disordered 2D
granular media [14] compare quite well with our experimental
results. Moreover, the velocity dispersion in 1D ordered
chains leads to a power law scaling of W on distance as
(L/d)−2/3 [Eq. (3)] as found in [14]. However, the normalized
widths obtained in disordered packing scales with distance as
(L/d)−1/2 [similar to Eq. (4)] and have also values larger than
those deduced from ordered packings.

In order to evaluate the effect of scattering attenuation
on the pulse broadening, we perform the simulation in a 1D
disordered mass-spring chain in the presence of the correlation
length similar to random media by Fouque et al. [19]. More
specifically, we consider a 1D chain of mass spring consisted
of subchains of length Li and stiffness Di which is uniform
inside each subchain [Fig. 8(a)]. Assuming an exponential
distribution of the subchain length Li ,

p(Li) = (1/L0)e−Li/L0 , (5)

we then obtain a mean length of the subchains equal to L0.

If the inverse of stiffness is given by D−1 = D
−1

(1 + νD)

with D
−1

the mean value and νD the fluctuation uniformly
distributed in the range [−νmax, + νmax], we may readily
verify 〈νD〉 = 0 and the variance 〈ν2

D〉 = σ 2
D = (νmax)2/3.

To determine the correlation length associated with such a
disordered chain, we compute the correlation function of the
stiffness fluctuation 〈νD(x)νD(x + 
x)〉 via ensemble average
between two points separated by a distance 
x. Figure 8(c)
shows the normalized correlation function (by σ 2

D) versus 
x,
calculated for the different L0. If we defined the correlation
length Lc corresponding to a decrease of the normalized
correlation to about 0.4 (≈e−1), we deduce a correlation length
Lc ≈ L0 from Fig. 8(c).

Simulations of the pulse propagation are performing by
solving the eigenproblem of the linear spring system at given
initial conditions. The equation of motion of the N beads is
given by [Fig. 8(b)]

müj = Dj+1(uj+1 − uj ) + Dj (uj−1 − uj ). (6)

This equation can be expressed in a matrix form mü = D · u
where u is the displacement vector of each bead (only the
translational motion is considered here), m is the constant
mass of beads, and D is a N × N matrix (for simplicity m

and D are here set to 1). Eigenfrenquencies ωn of this linear
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FIG. 8. (Color online) (a) Random 1D chain (see text). (b) The
interaction between the nearest neighboring beads. (c) Autocorrela-
tion function of the fluctuation νD of the inverse stiffness D−1 vs
separate distance �x for different mean lengths L0.

system are the square roots of the eigenvalues of the matrix
D/m. The oscillations of beads are given by the superposition
of the eigenmodes: u(t) = ∑

n Anuncos(ωnt) where un are
the eigenvectors of the matrix D/m and the amplitudes An

are determined by the initial conditions. To prevent the wave
reflections at the edges, the source and the detector are
placed in the middle of the chain. Assuming that at t = 0 the
particle displacement u located at the source is equal to 1, the
propagation of the pulse for various source-detector distances
L is then computed with the displacement u(t), averaged over
100 000 configurations.

Figure 9(a) shows the evolution of the coherent wave
front where the shape of the wave front evolves during the
propagation and tends to a Gaussian-like pulse at long distance.
The normalized width of the pulse is plotted in Fig. 9(b)
as a function of the source-detector distance for the case
σD = 0.29. The variance σD slightly increases the normalized
width and the variation of the mean or correlation length further
enhances the effect on W . Figure 9(c) depicts the pulsed wave
attenuation observed in frequency domain. It scales as ω2 and
increases with the mean length of subchains L0.

C. Models of elastic wave scattering and dissipation

Finally, we compare our experimental and numerical results
with the theoretical models of elastic wave propagation in
random or granular media. In these scattering media, the
models seek to relate the attenuation of coherent waves
to the statistical properties of random media such as the
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FIG. 9. (Color online) (a) Pulse broadening and decay of the
coherent compressional wave propagating through a 1D chain (σD =
0.29 and L0/d = 6). (b) Normalized signal width as a function
of L/d . In disordered chains, the signal is averaged on 100 000
configurations. The gray band corresponds to the experimental data
dispersion [Fig. 5(c) is added]. (c) Attenuation (over a distance of d)
of the coherent wave propagating through a 1D chain for σD = 0.29
and various correlation lengths.

elastic modulus K and the density ρ [18,19,26], for instance
introducing a characteristic length Lc of the fluctuation νK =

K−1/K

−1
(see below).

Consider 1D random layers with the similar statistical
properties as those investigated above in 1D disordered chains
and free of dispersion and dissipation. Assuming Lc � λ � L

and a high level of disorder corresponding to a variance
〈ν2

K〉 = σ 2
K ∼ 1, Fouque et al. [19] show that the wave form of

a coherent pulse tends to a Gaussian signal at long distance of
propagation [Fig. 9(a)]; it propagates at an effective velocity
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FIG. 10. (Color online) Normalized width W as a function of√
σ 2

DLc/L for various source-detector distance L/d . Only cases
satisfying L > Lc are shown. For high disorder, the pulse width W

tends to
√

ln(10)
√

σ 2
DLc/L predicted by Eq. (7).

V̄ =
√

K/ρ̄:

a(L,t) = 1√
2πw2

L

e−(t−L/V̄ )2/2w2
L, (7)

where wL = (γL/2V̄ 2)1/2 governs the pulse width and γ =∫ ∞
0 〈νK (0)νK (x)〉dx = σ 2

KLc is determined by the product of
the variance σ 2

K and the correlation length Lc. Equation (7)
implies that the normalized width W ∼ wL/(L/V̄ ) scales
with propagation distance L as (σ 2

KLc/L)1/2, and that the
attenuation of the pulse is given by α = γ ( ω

2V̄
)2.

Figure 10 depicts numerical results from simulations in
disordered chains, regarding the normalized width W for
various source-detector distances L/d as a function of a
combined parameter (σ 2

DLc/L)1/2. More specifically, at a
given distance L, we determine W by varying the variance
σD or/and the correlation length Lc. The stack data show that
for high disorder W scales as (σ 2

DLc/L)1/2 as predicted above,
while for the weak level of disorder, i.e., σ 2

D(Lc

d
) � (L

d
)−1/3,

W tends to the constant values as those determined in ordered
1D elastic chains (represented by the horizontal solid lines).
In terms of the dispersion relationship for the high level of
disorder, the attenuation is given by α = σ 2

DLck
2/4 ∼ ω2,

consistent with the results shown in Fig. 9(c).
In 3D random media without dispersion and dissipation

[18,26], the attenuation may be expressed in the limit case
k2γL � 1, by

α ∼ σ 2
KLn−1

c kn ∼ ωn, (8)

where n = 2 corresponds to the large scale fluctuation (Lc �
λ) with a strongly anisotropic scattering, identical to the above

result obtained in 1D random media [see also Fig. 9(c)], and
n = 4 corresponds to the small scale fluctuation (Lc � λ) with
an isotropic Rayleigh-like scattering [26].

Regarding the experimental data of attenuation shown in
Fig. 7 and in [27], these two mechanisms of scattering invoked
here corresponding to α ∼ ω2 and α ∼ ω4, respectively, may
explain qualitatively the measurements at the high-frequency
range (note that the former appears more significant in the
present work), due to the heterogeneous and anisotropic
structure of the contact force networks. However, at the
low-frequency range, we experimentally observe a different
behavior of attenuation α ∼ ω1. As mentioned before, the
viscoelastic dissipation related to the particle material seems to
be negligible here. Nevertheless, the wave dissipation around
the bead contacts via thermoelastic relaxation might be a mech-
anism responsible for such kind of attenuation, as proposed by
Wang and Santamarina [28], when the characteristic time is
comparable with ∼1/ω.

IV. CONCLUSION

We have studied the pulse broadening of coherent sound
waves propagating in granular media. The evolution of the
pulse width of the coherent compressional wave is analyzed
in terms of the dispersion relationship, including wave
attenuation and velocity dispersion. The pulse broadening
measured in various disordered bead packings reveals both
a different scaling law on distance of propagation L and
larger values, compared to analytical and numerical results
only invoking the dispersion effect as that found in ordered
elastic lattices. The numerical simulations carried out in 1D
disordered elastic systems composed of subchains show that
the pulse broadening may be caused by scattering attenuation.
More specifically, the normalized pulse width W by the wave
propagation time scales with distance as ∝ L−1/2 instead
∝ L−2/3 due to the dispersion, and significantly depends
on the product of the inverse stiffness variance σ 2

D and
the correlation length Lc. Our experimental and numerical
results are consistent with theoretical models of elastic wave
scattering in 1D and 3D random continuous media, suggesting
a dominant attenuation mechanism α ∼ ω2 possibly due to an
anisotropiclike scattering. Further works are still necessary
to highlight the underlying physics of attenuation at the
low-frequency range.

For future studies, the effects of disorder via mass or spring
fluctuations found by numerical simulation in 1D chains need
to be investigated in 2D or 3D disordered elastic networks. In
these cases, the additional topological disorder appears and the
absence of a reference medium prevents actually the analytical
model of sound propagation [5]. Numerical simulation may
help us to better understand the elastic wave propagating in
granular media.

[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys.
68, 1259 (1996).

[2] X. Jia, C. Caroli, and B. Velicky, Phys. Rev. Lett. 82, 1863
(1999).

[3] X. Jia, J. Laurent, Y. Khidas, and V. Langlois, Chin. Sci. Bull.
54, 4327 (2009).

[4] P. J. Digby, J. Appl. Mech. 48, 803 (1981).
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