
18th IEEE International Conference on Computational Science and Engineering Porto, Portugal, 21 October 2015

Automatic source-to-source error compensation
of floating-point programs

Laurent Thévenoux1 Philippe Langlois2 Matthieu Martel2

1LIP, ENS de Lyon, INRIA, France

2University of Perpignan Via Domitia, France

1

Context and motivation

Context

I Numerical computations can be innacurate: rounding errors

I Techniques are available for programmers to improve their numerical programs:
expansions, software librairies,. . .

I These techniques are costly: improving accuracy impacts execution-time

I Error compensation technique allows a good tradeoff between accuracy and
execution-time but reserved to experts

Motivation

I Accuracy and execution-time are two major concerns of software developpers

I Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

source-to-source error compensation

2

Context and motivation

Context

I Numerical computations can be innacurate: rounding errors

I Techniques are available for programmers to improve their numerical programs:
expansions, software librairies,. . .

I These techniques are costly: improving accuracy impacts execution-time

I Error compensation technique allows a good tradeoff between accuracy and
execution-time but reserved to experts

Motivation

I Accuracy and execution-time are two major concerns of software developpers

I Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

source-to-source error compensation

2

Context and motivation

Context

I Numerical computations can be innacurate: rounding errors

I Techniques are available for programmers to improve their numerical programs:
expansions, software librairies,. . .

I These techniques are costly: improving accuracy impacts execution-time

I Error compensation technique allows a good tradeoff between accuracy and
execution-time but reserved to experts

Motivation

I Accuracy and execution-time are two major concerns of software developpers

I Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

source-to-source error compensation

2

Outline

Background on floating-point arithmetic
Error-free transformations
Double-double expansions and compensated algorithms

Automatic program transformation
Improving accuracy: methodology
Experimental results

Conclusion and perspectives

3

IEEE 754 floating-point arithmetic [IEEE754]
A standard to represent real numbers since 1985

I F, the finite floating-point (FP) numbers following one of the formats of IEEE 754

I This set is defined by a precision p, and an exponent range [emin, emax] such that

p = 53, emax = 1− emin = 1023 in binary64 format.

I Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

x = 0.1 ≈

s e m

x̂ = binary32 representation of x (before rounding)

lost bits after rounding-to-nearest RN(x), #sig = 23

0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 . . .

↪→ A way of estimating the accuracy of x̂ = R*(x) is through the number of
significant bits 0 ≤ #sig ≤ p shared by x and x̂ :

#sig (x̂) = −log2(Erel (x̂)),

where Eref (x̂) is the relative error defined by: Erel (x̂) = |x − x̂ |/|x |, x 6= 0.

4

IEEE 754 floating-point arithmetic [IEEE754]
A standard to represent real numbers since 1985

I F, the finite floating-point (FP) numbers following one of the formats of IEEE 754

I This set is defined by a precision p, and an exponent range [emin, emax] such that

p = 53, emax = 1− emin = 1023 in binary64 format.

I Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

x = 0.1 ≈

s e m

x̂ = binary32 representation of x (before rounding)

lost bits after rounding-to-nearest RN(x), #sig = 23

0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 . . .

↪→ A way of estimating the accuracy of x̂ = R*(x) is through the number of
significant bits 0 ≤ #sig ≤ p shared by x and x̂ :

#sig (x̂) = −log2(Erel (x̂)),

where Eref (x̂) is the relative error defined by: Erel (x̂) = |x − x̂ |/|x |, x 6= 0.

4

IEEE 754 floating-point arithmetic [IEEE754]
A standard to represent real numbers since 1985

I F, the finite floating-point (FP) numbers following one of the formats of IEEE 754

I This set is defined by a precision p, and an exponent range [emin, emax] such that

p = 53, emax = 1− emin = 1023 in binary64 format.

I Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

x = 0.1 ≈

s e m

x̂ = binary32 representation of x (before rounding)

lost bits after rounding-to-nearest RN(x), #sig = 23lost bits after rounding-to-nearest RN(x) ,#sig = 23

0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 . . .1

↪→ A way of estimating the accuracy of x̂ = R*(x) is through the number of
significant bits 0 ≤ #sig ≤ p shared by x and x̂ :

#sig (x̂) = −log2(Erel (x̂)),

where Eref (x̂) is the relative error defined by: Erel (x̂) = |x − x̂ |/|x |, x 6= 0.

4

IEEE 754 floating-point arithmetic [IEEE754]
A standard to represent real numbers since 1985

I F, the finite floating-point (FP) numbers following one of the formats of IEEE 754

I This set is defined by a precision p, and an exponent range [emin, emax] such that

p = 53, emax = 1− emin = 1023 in binary64 format.

I Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

x = 0.1 ≈

s e m

x̂ = binary32 representation of x (before rounding)

lost bits after rounding-to-nearest RN(x), #sig = 23lost bits after rounding-to-nearest RN(x), #sig = 23

0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 . . .1

↪→ A way of estimating the accuracy of x̂ = R*(x) is through the number of
significant bits 0 ≤ #sig ≤ p shared by x and x̂ :

#sig (x̂) = −log2(Erel (x̂)),

where Eref (x̂) is the relative error defined by: Erel (x̂) = |x − x̂ |/|x |, x 6= 0.

4

Error-free transformations (EFTs)
Allow to compute the error generated by a floating-point addition or multiplication

Principle [MBdD10]

Let ◦ ∈ {+,−,×}, if x = RN(a ◦ b), then the floating-point error y = RN(a ◦ b)− x is
exactly representable in F: EFTs allow to compute y with floating-point arithmetic!

For the sum. . .

function FastTwoSum(a, b) . [Dekker, 71]
x ← RN(a + b) . |a| ≥ |b|
y ← RN((a − x) + b)
return (x, y)

end function

function TwoSum(a, b) . [Knuth, 69]
x ← RN(a + b)
z ← RN(x − a)
y ← RN((a − (x − z)) + (b − z))
return (x, y)

end function

. . . and the product

function TwoProduct(a, b) . [Dekker, 71]
x ← RN(a × b)
[aH , aL] = Split(a)
[bH , bL] = Split(b)
y ← RN(aL × bL − (((x − aH × bH)− aL × bH)− aH × bL))
return (x, y)

end function

function Split(a) . [Veltkamp, 68]

c ← RN(f × a) . f = 2dp/2e + 1
aH ← RN(c − (c − a)), aL ← RN(a − aH)
return (aH , aL)

end function

I EFTs are costly: 3, 6, and 17 FP operations for FastTwoSum, TwoSum, and
TwoProduct

I fused-multiply-add instruction can reduce the cost of TwoProduct to 2

5

Double-double expansions and compensated algorithms
Improving accuracy using EFTs

Two methods based on EFTs

I Double-double (DD) expansions: introduced in the 1970’s [Dek71]

I Compensated algorithms: popularized in the 2000’s [ROO05, GLL09]

Double-double

II Dekker, 1971
I Bailey+, QD Lib, 2000
I Saito, Scilab Toolbox: QuPAT, 2010

I generic method, algorithms applied to
each elementary operations

I easy automatic application
(overloading)

Compensated algorithms

II Rump+, Sum2, Dot2, 2005
I Louvet, CompHorner, 2007
I Graillat+, CompHornerDer, 2013

I specific, expert work: a thesis or
research paper per algorithm

I today: sum, dot product, polynomial
evaluations

They provide roughly the same accuracy. . .

I Double-double is generic but has a strong impact on performance

I Compensation allows better performance: more instruction level parallelism [LL07]
but it is very specific

6

Double-double expansions and compensated algorithms
Improving accuracy using EFTs

Two methods based on EFTs

I Double-double (DD) expansions: introduced in the 1970’s [Dek71]

I Compensated algorithms: popularized in the 2000’s [ROO05, GLL09]

Double-double

II Dekker, 1971
I Bailey+, QD Lib, 2000
I Saito, Scilab Toolbox: QuPAT, 2010

I generic method, algorithms applied to
each elementary operations

I easy automatic application
(overloading)

Compensated algorithms

II Rump+, Sum2, Dot2, 2005
I Louvet, CompHorner, 2007
I Graillat+, CompHornerDer, 2013

I specific, expert work: a thesis or
research paper per algorithm

I today: sum, dot product, polynomial
evaluations

They provide roughly the same accuracy. . .

I Double-double is generic but has a strong impact on performance

I Compensation allows better performance: more instruction level parallelism [LL07]
but it is very specific

6

Expansions vs. compensated algorithms
Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function Sum(a1, a2, . . . , an)

s1 ← a1
for i = 2 : n do

s i ← RN(s i−1 + ai)
end for
return sn

end function

function SumDD(a1, a2, . . . , an)

s1
H ← a1

s1
L ← 0

for i = 2 : n do
[s i

H , s i
L] = QD TwoSum(s i−1

H
, s i−1

L
, ai ,∅)

end for
return sn

H
end function

function Sum2(a1, a2, . . . , an)

s1 ← a1

e1 ← 0
for i = 2 : n do

[s i , ε] = TwoSum(s i−1, ai)

e i ← RN(e i−1 + ε)
end for
return RN(sn + en)

end function

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

si−1

ai

si

Sum

+

7

Expansions vs. compensated algorithms
Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function Sum(a1, a2, . . . , an)

s1 ← a1
for i = 2 : n do

s i ← RN(s i−1 + ai)
end for
return sn

end function

function SumDD(a1, a2, . . . , an)

s1
H ← a1

s1
L ← 0

for i = 2 : n do
[s i

H , s i
L] = QD TwoSum(s i−1

H
, s i−1

L
, ai ,∅)

end for
return sn

H
end function

function Sum2(a1, a2, . . . , an)

s1 ← a1

e1 ← 0
for i = 2 : n do

[s i , ε] = TwoSum(s i−1, ai)

e i ← RN(e i−1 + ε)
end for
return RN(sn + en)

end function

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

si−1

ai

si

Sum

+

s
i−1
H

ai

si
H

s
i−1
L

si
L

SumDD

+
TwoSum

+

+
FastTwoSum

7

Expansions vs. compensated algorithms
Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function Sum(a1, a2, . . . , an)

s1 ← a1
for i = 2 : n do

s i ← RN(s i−1 + ai)
end for
return sn

end function

function SumDD(a1, a2, . . . , an)

s1
H ← a1

s1
L ← 0

for i = 2 : n do
[s i

H , s i
L] = QD TwoSum(s i−1

H
, s i−1

L
, ai ,∅)

end for
return sn

H
end function

function Sum2(a1, a2, . . . , an)

s1 ← a1

e1 ← 0
for i = 2 : n do

[s i , ε] = TwoSum(s i−1, ai)

e i ← RN(e i−1 + ε)
end for
return RN(sn + en)

end function

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

si−1

ai

si

Sum

+

s
i−1
H

ai

si
H

s
i−1
L

si
L

SumDD

+
TwoSum

+

+
FastTwoSum

si−1

ai

si

ei−1

ei

Sum2

+
TwoSum

+

7

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

I A sequence is the set S of all dependent
operations required to obtain one or several
results

I CoHD tool performs this step after

transform original code in

three-address form

I In this example one sequence of two operations
is detected

double
Horner(double *P, uint n, double x) {

double r;

uint i;

r = P[n];
for(i = n-1; i >= 0; i--) {

r = r * x + P[i];
}

return r;
}

8

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

I A sequence is the set S of all dependent
operations required to obtain one or several
results

I CoHD tool performs this step after

transform original code in

three-address form

I In this example one sequence of two operations
is detected

double
Horner(double *P, uint n, double x) {

double r, tmp;

uint i;

r = P[n];
for(i = n-1; i >= 0; i--) {

tmp = r * x;
r = tmp + P[i];

}

return r;
}

8

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

I A sequence is the set S of all dependent
operations required to obtain one or several
results

I CoHD tool performs this step after

transform original code in

three-address form

I In this example one sequence of two operations
is detected

double
Horner(double *P, uint n, double x) {

double r, tmp;

uint i;

r = P[n];
for(i = n-1; i >= 0; i--) {

tmp = r * x;
r = tmp + P[i];

}

return r;
}

8

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

I For each s ∈ S :
I replace floating-point operations by EFTs,
I and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp TwoSum〈a, δa〉, 〈b, δb〉
[s, δ+] = TwoSum(a, b)
δs ← RN((δa + δb) + δ+)
return 〈s, δs〉

AutoComp TwoProduct〈a, δa〉, 〈b, δb〉
[s, δ×] = TwoProduct(a, b)
δs ← RN(((a× δb) + (b × δa)) + δ×)
return 〈s, δs〉

I Every FP number n ∈ s becomes a
compensated number 〈n, δn〉 where δn is the
accumulated error attached to the computed
result n

double
Horner(double *P, uint n, double x) {

double r, tmp;

uint i;

r = P[n];
for(i = n-1; i >= 0; i--) {

tmp = r * x;
r = tmp + P[i];

}

return r;
}

9

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

I For each s ∈ S :
I replace floating-point operations by EFTs,
I and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp TwoSum〈a, δa〉, 〈b, δb〉
[s, δ+] = TwoSum(a, b)
δs ← RN((δa + δb) + δ+)
return 〈s, δs〉

AutoComp TwoProduct〈a, δa〉, 〈b, δb〉
[s, δ×] = TwoProduct(a, b)
δs ← RN(((a× δb) + (b × δa)) + δ×)
return 〈s, δs〉

I Every FP number n ∈ s becomes a
compensated number 〈n, δn〉 where δn is the
accumulated error attached to the computed
result n

double
Horner(double *P, uint n, double x) {

double r, tmp , d_tmp, d_r;

uint i;

r = P[n];
d_r = 0.0;
for(i = n-1; i >= 0; i--) {

tmp = r * x;
r = tmp + P[i];

}

return r ;
}

9

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

I For each s ∈ S :
I replace floating-point operations by EFTs,
I and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp TwoSum〈a, δa〉, 〈b, δb〉
[s, δ+] = TwoSum(a, b)
δs ← RN((δa + δb) + δ+)
return 〈s, δs〉

AutoComp TwoProduct〈a, δa〉, 〈b, δb〉
[s, δ×] = TwoProduct(a, b)
δs ← RN(((a× δb) + (b × δa)) + δ×)
return 〈s, δs〉

I Every FP number n ∈ s becomes a
compensated number 〈n, δn〉 where δn is the
accumulated error attached to the computed
result n

double
Horner(double *P, uint n, double x) {

double r, tmp , d_tmp , d_r;

uint i;

r = P[n];
d_r = 0.0;
for(i = n-1; i >= 0; i--) {

tmp = r * x;
r = tmp + P[i];

}

return r;
}

9

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

I For each s ∈ S :
I replace floating-point operations by EFTs,
I and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp TwoSum〈a, δa〉, 〈b, δb〉
[s, δ+] = TwoSum(a, b)
δs ← RN((δa + δb) + δ+)
return 〈s, δs〉

AutoComp TwoProduct〈a, δa〉, 〈b, δb〉
[s, δ×] = TwoProduct(a, b)
δs ← RN(((a× δb) + (b × δa)) + δ×)
return 〈s, δs〉

I Every FP number n ∈ s becomes a
compensated number 〈n, δn〉 where δn is the
accumulated error attached to the computed
result n

double
Horner(double *P, uint n, double x) {

double r, tmp , d_tmp , d_r , c, rh, rl,
xh, xl , d_2p;

uint i;

r = P[n];
d_r = 0.0;
for(i = n-1; i >= 0; i--) {

tmp = r * x;
c = r * 134217729;
rh = c - (c - r);
rl = r - rh;
c = x * 134217729;
xh = c - (c - x);
xl = x - xh;
d_2p = rl * xl - (((x - rh * xh)

- rl * xh) - rh * xl);
d_tmp = d_2p + d_r * x;
r = tmp + P[i];

}

return r;
}

9

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

I For each s ∈ S :
I replace floating-point operations by EFTs,
I and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp TwoSum〈a, δa〉, 〈b, δb〉
[s, δ+] = TwoSum(a, b)
δs ← RN((δa + δb) + δ+)
return 〈s, δs〉

AutoComp TwoProduct〈a, δa〉, 〈b, δb〉
[s, δ×] = TwoProduct(a, b)
δs ← RN(((a× δb) + (b × δa)) + δ×)
return 〈s, δs〉

I Every FP number n ∈ s becomes a
compensated number 〈n, δn〉 where δn is the
accumulated error attached to the computed
result n

double
Horner(double *P, uint n, double x) {

double r, tmp , d_tmp , d_r , c, rh, rl,
xh, xl , d_2p;

uint i;

r = P[n];
d_r = 0.0;
for(i = n-1; i >= 0; i--) {

tmp = r * x;
c = r * 134217729;
rh = c - (c - r);
rl = r - rh;
c = x * 134217729;
xh = c - (c - x);
xl = x - xh;
d_2p = rl * xl - (((x - rh * xh)

- rl * xh) - rh * xl);
d_tmp = d_2p + d_r * x;
r = tmp + P[i];

}

return r;
}

9

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

I For each s ∈ S :
I replace floating-point operations by EFTs,
I and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp TwoSum〈a, δa〉, 〈b, δb〉
[s, δ+] = TwoSum(a, b)
δs ← RN((δa + δb) + δ+)
return 〈s, δs〉

AutoComp TwoProduct〈a, δa〉, 〈b, δb〉
[s, δ×] = TwoProduct(a, b)
δs ← RN(((a× δb) + (b × δa)) + δ×)
return 〈s, δs〉

I Every FP number n ∈ s becomes a
compensated number 〈n, δn〉 where δn is the
accumulated error attached to the computed
result n

double
Horner(double *P, uint n, double x) {

double r, tmp , d_tmp , d_r , c, rh, rl,
xh, xl , d_2p , u, d_2s;

uint i;

r = P[n];
d_r = 0.0;
for(i = n-1; i >= 0; i--) {

tmp = r * x;
c = r * 134217729;
rh = c - (c - r);
rl = r - rh;
c = x * 134217729;
xh = c - (c - x);
xl = x - xh;
d_2p = rl * xl - (((x - rh * xh)

- rl * xh) - rh * xl);
d_tmp = d_2p + d_r * x;
r = tmp + P[i];
u = r - tmp;
d_2s = (tmp - (r - u)) + (P[i] - u);
d_r = d_2s + d_tmp;

}

return r;
}

9

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: close sequences (error compensation)

Compensate errors: close sequences

I For each s ∈ S , close(s) means computing

n← RN(n + δn)

for n being a result of s

double
Horner(double *P, uint n, double x) {

double r, tmp , d_tmp , d_r , c, rh, rl,
xh, xl , d_2p , u, d_2s;

uint i;

r = P[n];
d_r = 0.0;
for(i = n-1; i >= 0; i--) {

tmp = r * x;
c = r * 134217729;
rh = c - (c - r);
rl = r - rh;
c = x * 134217729;
xh = c - (c - x);
xl = x - xh;
d_2p = rl * xl - (((x - rh * xh)

- rl * xh) - rh * xl);
d_tmp = d_2p + d_r * x;
r = tmp + P[i];
u = r - tmp;
d_2s = (tmp - (r - u)) + (P[i] - u);
d_r = d_2s + d_tmp;

}

return r;
}

10

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: close sequences (error compensation)

Compensate errors: close sequences

I For each s ∈ S , close(s) means computing

n← RN(n + δn)

for n being a result of s

double
Horner(double *P, uint n, double x) {

double r, tmp , d_tmp , d_r , c, rh, rl,
xh, xl , d_2p , u, d_2s;

uint i;

r = P[n];
d_r = 0.0;
for(i = n-1; i >= 0; i--) {

tmp = r * x;
c = r * 134217729;
rh = c - (c - r);
rl = r - rh;
c = x * 134217729;
xh = c - (c - x);
xl = x - xh;
d_2p = rl * xl - (((x - rh * xh)

- rl * xh) - rh * xl);
d_tmp = d_2p + d_r * x;
r = tmp + P[i];
u = r - tmp;
d_2s = (tmp - (r - u)) + (P[i] - u);
d_r = d_2s + d_tmp;

}

return r + d_r;
}

10

Experimental results: case studies from compared works
Our method results compared to existing double-double expansions and compensated ones

1. Sum2 for the recursive summation of n values [ROO05]
Data # values condition number

d1 32× 104 108

d2 32× 105 108

d3 32× 106 108

Data # values condition number
d4 32× 104 1016

d5 32× 105 1016

d6 32× 106 1016

2. CompHorner [GLL09] and CompHornerDer [JGH13] for Horner’s evaluation of
pH (x) = (x − 0.75)5(x − 1)11 and its derivative

3. CompdeCasteljau and CompdeCasteljauDer [JLCS10] for evaluating
pD (x) = (x − 0.75)7(x − 1) and its derivative, written in the Bernstein basis
(deCasteljau’s scheme)

4. CompClenshawI and CompClenshawII [JBL11] for evaluating
pC (x) = (x − 0.75)7(x − 1)10 written in the Chebyshev basis (Clenshaw’s scheme)

Data # x range
x1 256 {0.85 : 0.95} (uniform dist.)
x2 256 {1.05 : 1.15} (uniform dist.)

11

Experimental results: performance comparison
Our method results compared to existing double-double expansions and compensated ones

0

0.2

0.4

0.6

0.8

1

1.2

DeCasteljauDer(p
D , x

1)

DeCasteljau(p
D , x

1)

ClenshawII(p
C , x

1)

ClenshawI(p
C , x

1)

HornerDer(p
H , x

1)

Horner(p
H , x

1)

Sum(d
5)

Sum(d
6)

R
a

ti
o

s
o

f
in

st
ru

ct
io

n
s

a
n

d
cy

cl
es

AC/Comp instr AC/Comp cycles AC/DD instr AC/DD cycles

I Compensated algorithms, Comp (manualy implemented), and AC (automatically
generated) present similar performance

I Comp and AC algorithms present more ILP than DD (double-double) ones
↪→ measurments done with papi tool (API of performance counters) on an intel Core i5, 2.53GHz over Linux kernel 3.2 and gcc4.6.3 -O2

↪→ ideal measurements (not shown here) validate experimental measures

12

Experimental results: performance comparison
Our method results compared to existing double-double expansions and compensated ones

0

0.5

1

1.5

2

2.5

3

DeCasteljauDer(p
D , x

1)

DeCasteljau(p
D , x

1)

ClenshawII(p
C , x

1)

ClenshawI(p
C , x

1)

HornerDer(p
H , x

1)

Horner(p
H , x

1)

Sum(d
5)

Sum(d
6)

R
a

ti
o

s
o

f
IP

C

AC/Comp IPC AC/DD IPC

I Compensated algorithms, Comp (manualy implemented), and AC (automatically
generated) present similar performance

I Comp and AC algorithms present more ILP than DD (double-double) ones
↪→ measurments done with papi tool (API of performance counters) on an intel Core i5, 2.53GHz over Linux kernel 3.2 and gcc4.6.3 -O2

↪→ ideal measurements (not shown here) validate experimental measures

12

Experimental results: accuracy comparison
Our method results compared to existing double-double expansions and compensated ones

-10

-8

-6

-4

-2

0

DeCasteljauDer(p
D , x

1)

DeCasteljauDer(p
D , x

2)

DeCasteljau(p
D , x

1)

DeCasteljau(p
D , x

2)

ClenshawII(p
C , x

1)

ClenshawII(p
C , x

2)

ClenshawI(p
C , x

1)

ClenshawI(p
C , x

2)

HornerDer(p
H , x

1)

HornerDer(p
H , x

2)

Horner(p
H , x

1)

Horner(p
H , x

2)

Sum(d
1)

Sum(d
2)

Sum(d
3)

Sum(d
4)

Sum(d
5)

Sum(d
6)

D
iff

er
en

ce
s

o
f

th
e

n
u

m
b

er
o

f
si

g
n

ifi
ca

n
t

b
it

s AC-Comp AC-DD

I Compensated algorithms, Comp (manualy implemented), and AC (automatically
generated) present similar accuracy

↪→ DD (double-double) algorithms are more accurate when data are too ill-conditioned (three leftmost cases)

13

Conclusions and perspectives

Summary

I A new method for automatically compensating the FP error of the computations

I Similar results to those of manual implementations of compensated algorithms

↪→ better accuracy and ILP exposure

Perspectives

I Support ÷,
√

and elementary functions

I Support all C and validate our approach on other case studies

I Unbounded compensation: SumK, HornerK

I Integrate of our code transformation into gcc

↪→ ask me if you want to see a demonstration of our actual prototype (CoHD)

Related works

I 6 months of knowledge transfer in a startup

I First step toward multi-criteria optimization (accuracy and execution time)

↪→ https://hal.archives-ouvertes.fr/hal-01157509

14

https://hal.archives-ouvertes.fr/hal-01157509

Conclusions and perspectives

Summary

I A new method for automatically compensating the FP error of the computations

I Similar results to those of manual implementations of compensated algorithms

↪→ better accuracy and ILP exposure

Perspectives

I Support ÷,
√

and elementary functions

I Support all C and validate our approach on other case studies

I Unbounded compensation: SumK, HornerK

I Integrate of our code transformation into gcc

↪→ ask me if you want to see a demonstration of our actual prototype (CoHD)

Related works

I 6 months of knowledge transfer in a startup

I First step toward multi-criteria optimization (accuracy and execution time)

↪→ https://hal.archives-ouvertes.fr/hal-01157509

14

https://hal.archives-ouvertes.fr/hal-01157509

References

[Dek71] T.J. Dekker
A Floating-Point Technique for Extending the Available Precision, 1971

[GLL09] S. Graillat, P. Langlois, N. Louvet
Algorithms for Accurate, Validated and Fast Polynomial Evaluation, 2009

[HBL01] Y. Hida, X.S. Li, D.H. Bailey.
Algorithms for Quad-Double Precision Floating Point Arithmetic, 2001

[IEEE754] IEEE Standard for Floating-Point Arithmetic
Microprocessor Standards Committee of the IEEE Computer Society, 3 Park Avenue, New York, NY 10016-5997, USA, 2008

[JBL11] H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng, F. Su
Accurate Evaluation of a Polynomial in Chebyshev Form, 2011

[JGH13] H. Jiang, S. Graillat, C. Hu, S. Li, X. Liao, L. Chang, F. Su
Accurate Evaluation of the k-th Derivative of a Polynomial and its Application, 2013

[JLCS10] H. Jiang, S. Li, L. Cheng, F. Su
Accurate Evaluation of a Polynomial and its Derivative in Bernstein Form, 2010

[LL07] P. Langlois, N. Louvet.
More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms, 2007

[LMT10a] P. Langlois, M. Martel, L. Thévenoux
Trade-off Between Accuracy and Time for Automatically Generated Summation Algorithms, 2010

[LMT12] P. Langlois, M. Martel, L. Thévenoux
Automatic Code Transformation to Optimize Accuracy and Speed in Floating-Point Arithmetic, 2012

[MBdD10] J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, S. Torres.
Handbook of Floating-Point Arithmetic, 2010

[ROO05] S.M. Rump, T. Ogita, S.Oishi.
Accurate Sum and Dot Product, 2005

[She97] J.R. Shewchuk
Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, 1997

	Background on floating-point arithmetic
	Error-free transformations
	Double-double expansions and compensated algorithms

	Automatic program transformation
	Improving accuracy: methodology
	Experimental results

	Conclusion and perspectives
	Appendix

