Automatic source-to-source error compensation of floating-point programs

Laurent Thévenoux ${ }^{1}$ Philippe Langlois ${ }^{2}$ Matthieu Martel ${ }^{2}$

${ }^{1}$ LIP, ENS de Lyon, INRIA, France
${ }^{2}$ University of Perpignan Via Domitia, France

Context and motivation

Context

- Numerical computations can be innacurate: rounding errors
- Techniques are available for programmers to improve their numerical programs: expansions, software librairies,...
- These techniques are costly: improving accuracy impacts execution-time
- Error compensation technique allows a good tradeoff between accuracy and execution-time but reserved to experts

Motivation

- Accuracy and execution-time are two major concerns of software developpers
- Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

Context and motivation

Context

- Numerical computations can be innacurate: rounding errors
- Techniques are available for programmers to improve their numerical programs: expansions, software librairies,...
- These techniques are costly: improving accuracy impacts execution-time
- Error compensation technique allows a good tradeoff between accuracy and execution-time but reserved to experts

Motivation

- Accuracy and execution-time are two major concerns of software developpers
- Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

Context and motivation

Context

- Numerical computations can be innacurate: rounding errors
- Techniques are available for programmers to improve their numerical programs: expansions, software librairies,...
- These techniques are costly: improving accuracy impacts execution-time
- Error compensation technique allows a good tradeoff between accuracy and execution-time but reserved to experts

Motivation

- Accuracy and execution-time are two major concerns of software developpers
- Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

Outline

> Background on floating-point arithmetic
> Error-free transformations
> Double-double expansions and compensated algorithms

Automatic program transformation Improving accuracy: methodology Experimental results

Conclusion and perspectives

IEEE 754 floating-point arithmetic [IEEE754]

A standard to represent real numbers since 1985

- \mathbb{F}, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- This set is defined by a precision p, and an exponent range $\left[e_{\text {min }}, e_{\text {max }}\right]$ such that

$$
p=53, \quad e_{\max }=1-e_{\min }=1023 \text { in binary } 64 \text { format. }
$$

- Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)
$x=0.1 \approx 001111011100110011001100110011001100110$

$\hat{x}=$ binary32 representation of x (before rounding)

\hookrightarrow A way of estimating the accuracy of $\widehat{x}=\mathrm{R}^{*}(x)$ is through the number of significant bits $0 \leq \#_{\text {sig }} \leq p$ shared by x and \widehat{x} :

$$
(\widehat{x})=-\log _{2}\left(E_{r e l}(\widehat{x})\right),
$$

IEEE 754 floating-point arithmetic [IEEE754]

A standard to represent real numbers since 1985

- \mathbb{F}, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- This set is defined by a precision p, and an exponent range $\left[e_{\text {min }}, e_{\text {max }}\right]$ such that

$$
p=53, \quad e_{\max }=1-e_{\min }=1023 \text { in binary } 64 \text { format. }
$$

- Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

$$
x=0.1 \approx \overbrace{0}^{\overbrace{00111101110011001100110011001100,1100110}^{s} \overbrace{\hat{x}=\text { binary32 representation of } x \text { (before rounding) }}^{e}}
$$

\hookrightarrow A way of estimating the accuracy of $\widehat{x}=\mathrm{R}^{*}(x)$ is through the number of significant bits $0 \leq \#_{\text {sig }} \leq p$ shared by x and \widehat{x} :

$$
(\widehat{x})=-\log _{2}\left(E_{r e l}(\widehat{x})\right),
$$

IEEE 754 floating-point arithmetic [IEEE754]

A standard to represent real numbers since 1985

- \mathbb{F}, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- This set is defined by a precision p, and an exponent range $\left[e_{\text {min }}, e_{\text {max }}\right]$ such that

$$
p=53, \quad e_{\max }=1-e_{\min }=1023 \text { in binary } 64 \text { format. }
$$

- Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

$$
\begin{aligned}
& \text { s } \overbrace{}^{e}{ }^{m} \\
& x=0.1 \approx 001111011100110011001100110011011100110 \\
& \underbrace{\text { I }}_{\widehat{x}=\text { binary } 32 \text { representation of } x \text { (before rounding) }} \\
& \text { lost bits after rounding-to-nearest } \mathrm{RN}(x)
\end{aligned}
$$

\hookrightarrow A way of estimating the accuracy of $\widehat{x}=\mathrm{R}^{*}(x)$ is through the number of significant bits $0 \leq \#_{\text {sig }} \leq p$ shared by x and \widehat{x} :
$(\widehat{x})=-\log _{2}\left(E_{\text {rel }}(\widehat{x})\right)$,

IEEE 754 floating-point arithmetic [IEEE754]

A standard to represent real numbers since 1985

- \mathbb{F}, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- This set is defined by a precision p, and an exponent range $\left[e_{\min }, e_{\max }\right]$ such that

$$
p=53, \quad e_{\max }=1-e_{\min }=1023 \text { in binary64 format. }
$$

- Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

$$
x=0.1 \approx \overbrace{0 \underbrace{\text { lost bits after rounding-to-nearest } \operatorname{RN}(x)}_{\hat{x}=\text { binary } 32 \text { representation of } \times \text { (before rounding) }} \text {, \#sig }=23}^{s} \underbrace{m}_{\underbrace{}_{0}}
$$

\hookrightarrow A way of estimating the accuracy of $\widehat{x}=\mathrm{R}^{*}(x)$ is through the number of significant bits $0 \leq \#_{\text {sig }} \leq p$ shared by x and \widehat{x} :

$$
\#_{\operatorname{sig}}(\widehat{x})=-\log _{2}\left(E_{r e l}(\widehat{x})\right)
$$

where $E_{\text {ref }}(\widehat{x})$ is the relative error defined by: $E_{r e l}(\widehat{x})=|x-\widehat{x}| /|x|, \quad x \neq 0$.

Error-free transformations (EFTs)

Allow to compute the error generated by a floating-point addition or multiplication

Principle [MBdD10]

Let $\circ \in\{+,-, x\}$, if $x=\operatorname{RN}(a \circ b)$, then the floating-point error $y=\operatorname{RN}(a \circ b)-x$ is exactly representable in \mathbb{F} : EFTs allow to compute y with floating-point arithmetic!

For the sum...
function FastTwoSum $(a, b) \triangleright[$ DEKKER, 71]
function FastTwoSum $(a, b) \triangleright[$ DEKKER, 71]
$x \leftarrow \mathrm{RN}(a+b)$
$x \leftarrow \mathrm{RN}(a+b)$
$\triangleright|a| \geq|b|$
$\triangleright|a| \geq|b|$
$y \leftarrow \operatorname{RN}((a-x)+b)$
$y \leftarrow \operatorname{RN}((a-x)+b)$
return (x, y)
return (x, y)
end function
end function
function TwoSum $(a, b) \triangleright[$ KNUTH, 69]
$x \leftarrow \operatorname{RN}(a+b)$
$z \leftarrow \operatorname{RN}(x-a)$
$y \leftarrow \operatorname{RN}((a-(x-z))+(b-z))$
return (x, y)
end function
... and the product

```
function TwoProduct \((a, b)\)
```

function TwoProduct (a, b)
$\triangleright[$ DEKKER, 71]
$\triangleright[$ DEKKER, 71]
$x \leftarrow \mathrm{RN}(a \times b)$
$x \leftarrow \mathrm{RN}(a \times b)$
$\left[a_{H}, a_{L}\right]=\operatorname{Split}(a)$
$\left[a_{H}, a_{L}\right]=\operatorname{Split}(a)$
$\left[b_{H}, b_{L}\right]=\operatorname{Split}(b)$
$\left[b_{H}, b_{L}\right]=\operatorname{Split}(b)$
$y \leftarrow \operatorname{RN}\left(a_{L} \times b_{L}-\left(\left(\left(x-a_{H} \times b_{H}\right)-a_{L} \times b_{H}\right)-a_{H} \times b_{L}\right)\right)$
$y \leftarrow \operatorname{RN}\left(a_{L} \times b_{L}-\left(\left(\left(x-a_{H} \times b_{H}\right)-a_{L} \times b_{H}\right)-a_{H} \times b_{L}\right)\right)$
return (x, y)
return (x, y)
end function

```
end function
```

```
function Split(a)
```

function Split(a)
c\leftarrowRN(f\timesa) }\quad\trianglerightf=\mp@subsup{2}{}{\lceilp/2\rceil}+
c\leftarrowRN(f\timesa) }\quad\trianglerightf=\mp@subsup{2}{}{\lceilp/2\rceil}+
a}\mp@subsup{H}{H}{}\leftarrow\textrm{RN}(c-(c-a)),\quad\mp@subsup{a}{L}{}\leftarrow\operatorname{RN}(a-\mp@subsup{a}{H}{}
a}\mp@subsup{H}{H}{}\leftarrow\textrm{RN}(c-(c-a)),\quad\mp@subsup{a}{L}{}\leftarrow\operatorname{RN}(a-\mp@subsup{a}{H}{}
return (aH, a L)
return (aH, a L)
end function

```
    end function
```

- EFTs are costly: 3, 6, and 17 FP operations for FastTwoSum, TwoSum, and TwoProduct
- fused-multiply-add instruction can reduce the cost of TwoProduct to 2

Double-double expansions and compensated algorithms
Improving accuracy using EFTs
Two methods based on EFTs

- Double-double (DD) expansions: introduced in the 1970's [Dek71]
- Compensated algorithms: popularized in the 2000's [ROO05, GLL09]

Double-double

- Dekker, 1971
- Bailey+, QD Lib, 2000
- Saito, Scilab Toolbox: QuPAT, 2010
- generic method, algorithms applied to each elementary operations
- easy automatic application (overloading)

Compensated algorithms

- Rump+, Sum2, Dot2, 2005
- Louvet, CompHorner, 2007
- Graillat+, CompHornerDer, 2013
- specific, expert work: a thesis or research paper per algorithm
- today: sum, dot product, polynomial evaluations

They provide roughly the same accuracy

- Double-double is generic but has a strong impact on performance
- Compensation allows better performance: more instruction level parallelism [LL07] but it is very specific

Double-double expansions and compensated algorithms
Improving accuracy using EFTs
Two methods based on EFTs

- Double-double (DD) expansions: introduced in the 1970's [Dek71]
- Compensated algorithms: popularized in the 2000's [ROO05, GLL09]

Double-double

- Dekker, 1971
- Bailey+, QD Lib, 2000
- Saito, Scilab Toolbox: QuPAT, 2010
- generic method, algorithms applied to each elementary operations
- easy automatic application (overloading)

Compensated algorithms

- Rump+, Sum2, Dot2, 2005
- Louvet, CompHorner, 2007
- Graillat+, CompHornerDer, 2013
- specific, expert work: a thesis or research paper per algorithm
- today: sum, dot product, polynomial evaluations

They provide roughly the same accuracy...

- Double-double is generic but has a strong impact on performance
- Compensation allows better performance: more instruction level parallelism [LL07] but it is very specific

Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function $\operatorname{Sum}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
$s^{1} \leftarrow a_{1}$
for $i=2: n$ do
$s^{i} \leftarrow \operatorname{RN}\left(s^{i-1}+a_{i}\right)$
end for
return s^{n}
end function

function $\operatorname{SumDD}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
$s_{H}^{1} \leftarrow a_{1}$
$s_{L}^{1} \leftarrow 0$
for $i=2: n$ do
$\left[s_{H}^{i}, s_{L}^{i}\right]=$ QD_TwoSum $\left(s_{H}^{i-1}, s_{L}^{i-1}, a_{i}, \varnothing\right)$
end for
return s_{H}^{n}
end function

Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function $\operatorname{Sum}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ $s^{1} \leftarrow a_{1}$ for $i=2: n$ do $s^{i} \leftarrow \operatorname{RN}\left(s^{i-1}+a_{i}\right)$ end for return s^{n} end function
function $\operatorname{SumDD}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ $s_{H}^{1} \leftarrow a_{1}$ $s_{L}^{1} \leftarrow 0$ for $i=2: n$ do $\left[s_{H}^{i}, s_{L}^{i}\right]=$ QD_TwoSum $\left(s_{H}^{i-1}, s_{L}^{i-1}, a_{i}, \varnothing\right)$ end for return s_{H}^{n} end function

function $\operatorname{Sum} 2\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
$s^{1} \leftarrow a_{1}$
$e^{1} \leftarrow 0$
for $i=2: n$ do
$\left[s^{i}, \epsilon\right]=\operatorname{TwoSum}\left(s^{i-1}, a_{i}\right)$
$e^{i} \leftarrow \operatorname{RN}\left(e^{i-1}+\epsilon\right)$
end for
return $\operatorname{RN}\left(s^{n}+e^{n}\right)$
end function

Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function $\operatorname{Sum}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
$s^{1} \leftarrow a_{1}$
for $i=2: n$ do
$s^{i} \leftarrow \operatorname{RN}\left(s^{i-1}+a_{i}\right)$
end for
return s^{n}
end function

function SumDD $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
$s_{H}^{1} \leftarrow a_{1}$
$s_{L}^{1} \leftarrow 0$
for $i=2: n$ do
$\left[s_{H}^{i}, s_{L}^{i}\right]=$ QD_TwoSum $\left(s_{H}^{i-1}, s_{L}^{i-1}, a_{i}, \varnothing\right)$
end for
return s_{H}^{n}
end function

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

- A sequence is the set \mathscr{S} of all dependent operations required to obtain one or several results
- CoHD tool performs this step after transform original code in three-address form
- In this example one sequence of two operations is detected

```
double
Horner(double *P, uint n, double x) {
    double r;
    uint i;
    r=P[n];
    for(i = n-1; i }>=0; i--) {
        r = r * X + P[i];
    }
    return r;
}
```

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

- A sequence is the set \mathscr{S} of all dependent operations required to obtain one or several results
- CoHD tool performs this step after transform original code in three-address form
- In this example one sequence of two operations is detected

```
double
Horner(double *P, uint n, double x) {
    double r, tmp;
    uint i;
    r = P[n];
    for(i = n-1; i >= 0; i--) {
        tmp = r * x;
    }
    return r;
}
```

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

- A sequence is the set \mathscr{S} of all dependent operations required to obtain one or several results
- CoHD tool performs this step after transform original code in three-address form
- In this example one sequence of two operations is detected

```
double
Horner(double *P, uint n, double x) {
    double r, tmp;
    uint i;
    r=P[n];
    for(i = n-1; i }>=0; i--) {
        tmp = r * x ;
        r = tmp + P[i];
    }
    return r;
}
```

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs
Compute error terms and accumulate them

- For each $s \in \mathscr{S}$:
- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated), with the following algorithms:

```
AutoComp_TwoSum \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{+}\right]=\operatorname{TwoSum}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\delta_{a}+\delta_{b}\right)+\delta_{+}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
AutoComp_TwoProduct \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{\times}\right]=\operatorname{TwoProduct}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\left(a \times \delta_{b}\right)+\left(b \times \delta_{a}\right)\right)+\delta_{x}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
```

- Every FP number $n \in s$ becomes a compensated number $\left\langle n, \delta_{n}\right\rangle$ where δ_{n} is the accumulated error attached to the computed result n

Methodology of accuracy improvement
Benefit from the good ILP of compensation automatically: replace FP computations with EFTs
Compute error terms and accumulate them

- For each $s \in \mathscr{S}$:
- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated), with the following algorithms:

```
AutoComp_TwoSum \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{+}\right]=\operatorname{TwoSum}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\delta_{a}+\delta_{b}\right)+\delta_{+}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
AutoComp_TwoProduct \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{\times}\right]=\operatorname{TwoProduct}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\left(a \times \delta_{b}\right)+\left(b \times \delta_{a}\right)\right)+\delta_{x}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
```

- Every FP number $n \in s$ becomes a compensated number $\left\langle n, \delta_{n}\right\rangle$ where δ_{n} is the accumulated error attached to the computed result n

Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

- For each $s \in \mathscr{S}$:
- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated), with the following algorithms:

```
AutoComp_TwoSum \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{+}\right]=\operatorname{TwoSum}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\delta_{a}+\delta_{b}\right)+\delta_{+}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
AutoComp_TwoProduct \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    [ \(s, \delta_{\times}\)] = TwoProduct \((a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\left(a \times \delta_{b}\right)+\left(b \times \delta_{a}\right)\right)+\delta_{x}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
```

- Every FP number $n \in s$ becomes a

```
double
Horner(double *P, uint n, double x) {
    double r, tmp, d_tmp, d_r;
    uint i;
    r = P [n];
    d_r = 0.0;
    for(i = n-1; i >= 0; i--) {
        tmp =r*x
    }
    return r;
}
```

compensated number $\left\langle n, \delta_{n}\right\rangle$ where δ_{n} is the accumulated error attached to the computed result n

Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

- For each $s \in \mathscr{S}$:
- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated), with the following algorithms:

```
AutoComp_TwoSum \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{+}\right]=\operatorname{TwoSum}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\delta_{a}+\delta_{b}\right)+\delta_{+}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
AutoComp_TwoProduct \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    [ \(s, \delta_{\times}\)] = TwoProduct \((a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\left(a \times \delta_{b}\right)+\left(b \times \delta_{a}\right)\right)+\delta_{\times}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
```

- Every FP number $n \in s$ becomes a

```
double
Horner(double *P, uint n, double x) {
    double r, tmp, d_tmp, d_r, c, rh, rl,
        xh, xl, d_2p;
    uint i;
    r = P [n];
    d_r = 0.0;
    for(i=n-1; i >= 0; i--) {
        tmp = r * x;
        c}=r*134217729
        rh = c - (c - r);
        rl = r - rh;
        c}=x*134217729
        xh = c - (c - x);
        xl = x - xh;
        d_2p = rl * xl - (((x - rh * xh)
        d_tmp = d_2p + d_r * x;
    }
    return r;
}
```

compensated number $\left\langle n, \delta_{n}\right\rangle$ where δ_{n} is the accumulated error attached to the computed result n

Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

- For each $s \in \mathscr{S}$:
- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated), with the following algorithms:

```
AutoComp_TwoSum \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{+}\right]=\operatorname{TwoSum}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\delta_{a}+\delta_{b}\right)+\delta_{+}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
AutoComp_TwoProduct \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    [ \(\left.s, \delta_{\times}\right]=\operatorname{TwoProduct}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\left(a \times \delta_{b}\right)+\left(b \times \delta_{a}\right)\right)+\delta_{\times}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
```

- Every FP number $n \in s$ becomes a

```
double
Horner(double *P, uint n, double x) {
    double r, tmp, d_tmp, d_r, c, rh, rl,
        xh, xl, d_2p;
    uint i;
    r = P [n];
    d_r = 0.0;
    for(i = n-1; i >= 0; i--) {
        tmp = r * x;
        c =r * 134217729;
        rh = c - (c - r);
        rl = r - rh;
        c}=\textrm{x}*134217729
        xh = c - (c - x);
        xl = x - xh;
        d_2p = rl * xl - (((x - rh * xh)
            - rl * xh) - rh * xl);
        d_tmp=d_2p+
    }
    return r;
}
```

compensated number $\left\langle n, \delta_{n}\right\rangle$ where δ_{n} is the accumulated error attached to the computed result n

Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

- For each $s \in \mathscr{S}$:
- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated), with the following algorithms:

```
AutoComp_TwoSum \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{+}\right]=\operatorname{TwoSum}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\delta_{a}+\delta_{b}\right)+\delta_{+}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
AutoComp_TwoProduct \(\left\langle a, \delta_{a}\right\rangle,\left\langle b, \delta_{b}\right\rangle\)
    \(\left[s, \delta_{\times}\right]=\operatorname{TwoProduct}(a, b)\)
    \(\delta_{s} \leftarrow \operatorname{RN}\left(\left(\left(a \times \delta_{b}\right)+\left(b \times \delta_{a}\right)\right)+\delta_{x}\right)\)
    return \(\left\langle s, \delta_{s}\right\rangle\)
```

- Every FP number $n \in s$ becomes a

```
double
Horner(double *P, uint n, double x) {
    double r, tmp, d_tmp, d_r, c, rh, rl,
        xh, xl, d_2p, u, d_2s;
    uint i;
    r = P [n];
    d_r = 0.0;
    for(i=n-1; i >= 0; i--) {
        tmp = r * x;
        c = r * 134217729;
        rh = c - (c - r);
        rl = r - rh;
        c = x * 134217729;
        xh = c - (c - x);
        xl = x - xh;
        d_2p = rl * xl - (((x - rh * xh)
        - rl * xh) - rh * xI);
        d_tmp = d_2p + d_r * x;
        r = tmp + P[i];
        u = r - tmp;
        d_2s=(tmp - (r-u)) + (P[i] - u);
        d_r = d_2s + d_tmp;
    }
    return r;
}
``` compensated number \(\left\langle n, \delta_{n}\right\rangle\) where \(\delta_{n}\) is the accumulated error attached to the computed result \(n\)

\section*{Methodology of accuracy improvement}

Benefit from the good ILP of compensation automatically: close sequences (error compensation)

Compensate errors: close sequences
- For each \(s \in \mathscr{S}\), close(s) means computing
\[
n \leftarrow \operatorname{RN}\left(n+\delta_{n}\right)
\]
for \(n\) being a result of \(s\)
```

```
double
```

```
double
Horner(double *P, uint n, double x) {
Horner(double *P, uint n, double x) {
 double r, tmp, d_tmp, d_r, c, rh, rl,
 double r, tmp, d_tmp, d_r, c, rh, rl,
 xh, xl, d_2p, u, d_2s;
 xh, xl, d_2p, u, d_2s;
 uint i;
 uint i;
 r=P[n];
 r=P[n];
 d_r = 0.0;
 d_r = 0.0;
 for(i = n-1; i >= 0; i--) {
 for(i = n-1; i >= 0; i--) {
 tmp = r * x;
 tmp = r * x;
 c = r * 134217729;
 c = r * 134217729;
 rh = c - (c - r);
 rh = c - (c - r);
 rl = r - rh;
 rl = r - rh;
 c = x * 134217729;
 c = x * 134217729;
 xh = c - (c - x);
 xh = c - (c - x);
 xl = x - xh;
 xl = x - xh;
 d_2p = rl * xl - (((x-rh * *h)
 d_2p = rl * xl - (((x-rh * *h)
 d_tmp = d_2p + d_r * x;
 d_tmp = d_2p + d_r * x;
 r = tmp + P[i];
 r = tmp + P[i];
 u =r - tmp;
 u =r - tmp;
 d_2s=(tmp - (r - u)) + (P[i] - u);
 d_2s=(tmp - (r - u)) + (P[i] - u);
 d_r = d_2s + d_tmp;
 d_r = d_2s + d_tmp;
 }
 }
 return r;
 return r;
}
```

```
}
```

```

\section*{Methodology of accuracy improvement}

Benefit from the good ILP of compensation automatically: close sequences (error compensation)

Compensate errors: close sequences
- For each \(s \in \mathscr{S}\), close(s) means computing
\[
n \leftarrow \operatorname{RN}\left(n+\delta_{n}\right)
\]
for \(n\) being a result of \(s\)
```

```
double
```

```
double
Horner(double *P, uint n, double x) {
Horner(double *P, uint n, double x) {
 double r, tmp, d_tmp, d_r, c, rh, rl,
 double r, tmp, d_tmp, d_r, c, rh, rl,
 xh, xl, d_2p, u, d_2s;
 xh, xl, d_2p, u, d_2s;
 uint i;
 uint i;
 r = P [n];
 r = P [n];
 d_r = 0.0;
 d_r = 0.0;
 for(i = n-1; i >= 0; i--) {
 for(i = n-1; i >= 0; i--) {
 tmp = r * x;
 tmp = r * x;
 c = r * 134217729;
 c = r * 134217729;
 rh = c - (c - r);
 rh = c - (c - r);
 rl = r - rh;
 rl = r - rh;
 c = x * 134217729;
 c = x * 134217729;
 xh = c - (c - x);
 xh = c - (c - x);
 xl = x - xh;
 xl = x - xh;
 d_2p = rl * xl - (((x - rh * xh))
 d_2p = rl * xl - (((x - rh * xh))
 d_tmp = d_2p + d_r * x;
 d_tmp = d_2p + d_r * x;
 r = tmp + P[i];
 r = tmp + P[i];
 u =r - tmp;
 u =r - tmp;
 d_2s = (tmp - (r-u)) + (P[i] - u);
 d_2s = (tmp - (r-u)) + (P[i] - u);
 d_r = d_2s + d_tmp;
 d_r = d_2s + d_tmp;
 }
 }
 return r + d_r;
```

    return r + d_r;
    ```
}
```

Experimental results: case studies from compared works
Our method results compared to existing double-double expansions and compensated ones

1. Sum2 for the recursive summation of $n$ values [ROO05]

| Data | $\#$ values | condition number | Data | $\#$ values | condition number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $d_{1}$ | $32 \times 10^{4}$ | $10^{8}$ | $d_{4}$ | $32 \times 10^{4}$ | $10^{16}$ |
| $d_{2}$ | $32 \times 10^{5}$ | $10^{8}$ | $d_{5}$ | $32 \times 10^{5}$ | $10^{16}$ |
| $d_{3}$ | $32 \times 10^{6}$ | $10^{8}$ | $d_{6}$ | $32 \times 10^{6}$ | $10^{16}$ |

2. CompHorner [GLL09] and CompHornerDer [JGH13] for Horner's evaluation of $p_{H}(x)=(x-0.75)^{5}(x-1)^{11}$ and its derivative
3. CompdeCasteljau and CompdeCasteljauDer [JLCS10] for evaluating $p_{D}(x)=(x-0.75)^{7}(x-1)$ and its derivative, written in the Bernstein basis (deCasteljau's scheme)
4. CompClenshawI and CompClenshawII [JBL11] for evaluating $p_{C}(x)=(x-0.75)^{7}(x-1)^{10}$ written in the Chebyshev basis (Clenshaw's scheme)

| Data | $\# x$ | range |
| :---: | :---: | :---: |
| $x_{1}$ | 256 | $\{0.85: 0.95\}$ (uniform dist.) |
| $x_{2}$ | 256 | $\{1.05: 1.15\}$ (uniform dist.) |

## Experimental results: performance comparison

Our method results compared to existing double-double expansions and compensated ones


- Compensated algorithms, Comp (manualy implemented), and AC (automatically generated) present similar performance
- Comp and AC algorithms present more ILF than DD (double-double) ones
$\hookrightarrow$ measurments done with papi tool (API of performance counters) on an intel Core i5, 2.53GHz over Linux kernel 3.2 and gcc4.6.3-02
$\hookrightarrow$ ideal measurements (not shown here) validate experimental measures


## Experimental results: performance comparison

Our method results compared to existing double-double expansions and compensated ones


- Compensated algorithms, Comp (manualy implemented), and AC (automatically generated) present similar performance
- Comp and AC algorithms present more ILP than DD (double-double) ones


## Experimental results: accuracy comparison

Our method results compared to existing double-double expansions and compensated ones


- Compensated algorithms, Comp (manualy implemented), and AC (automatically generated) present similar accuracy

Conclusions and perspectives

## Summary

- A new method for automatically compensating the FP error of the computations
- Similar results to those of manual implementations of compensated algorithms
$\hookrightarrow$ better accuracy and ILP exposure
Perspectives
- Sunport $\div \sqrt{ }$ and elementary functions
- Support all C and validate our approach on other case studies
- Unbounded compensation: SumK, HornerK
- Integrate of our code transformation into gcc
$\hookrightarrow$ ask me if you want to see a demonstration of our actual prototype ( CoHD )

Related works
> 6 month of knowledge transfer in a startup

- First step toward multi-criteria optimization (accuracy and execution time) $\hookrightarrow$ https://hal.archives-ouvertes.fr/hal-01157509


## Conclusions and perspectives

## Summary

- A new method for automatically compensating the FP error of the computations
- Similar results to those of manual implementations of compensated algorithms
$\hookrightarrow$ better accuracy and ILP exposure


## Perspectives

- Support $\div \sqrt{ }$ and elementary functions
- Support all C and validate our approach on other case studies
- Unbounded compensation: SumK, HornerK
- Integrate of our code transformation into gcc
$\hookrightarrow$ ask me if you want to see a demonstration of our actual prototype (CoHD)

Related works

- 6 months of knowledge transfer in a startup
- First step toward multi-criteria optimization (accuracy and execution time)
$\hookrightarrow$ https://hal.archives-ouvertes.fr/hal-01157509


## References

```
[Dek71] T.J. Dekker
 A Floating-Point Technique for Extending the Available Precision, }197
[GLL09] S. Graillat, P. Langlois, N. Louvet
 Algorithms for Accurate, Validated and Fast Polynomial Evaluation, }200
[HBL01] Y. Hida, X.S. Li, D.H. Bailey.
 Algorithms for Quad-Double Precision Floating Point Arithmetic, }200
[IEEE754] IEEE Standard for Floating-Point Arithmetic
 Microprocessor Standards Committee of the IEEE Computer Society, 3 Park Avenue, New York, NY 10016-5997, USA, 2008
[JBL11] H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng, F. Su
 Accurate Evaluation of a Polynomial in Chebyshev Form, 2011
[JGH13] H. Jiang, S. Graillat, C. Hu, S. Li, X. Liao, L. Chang, F. Su
 Accurate Evaluation of the k-th Derivative of a Polynomial and its Application,2013
[JLCS10] H. Jiang, S. Li, L. Cheng, F. Su
 Accurate Evaluation of a Polynomial and its Derivative in Bernstein Form, }201
[LL07] P. Langlois, N. Louvet.
 More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms, 2007
[LMT10a] P. Langlois, M. Martel, L. Thévenoux
 Trade-off Between Accuracy and Time for Automatically Generated Summation Algorithms, 2010
[LMT12] P. Langlois, M. Martel, L. Thévenoux
 Automatic Code Transformation to Optimize Accuracy and Speed in Floating-Point Arithmetic, }201
[MBdD10] J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, S. Torres.
 Handbook of Floating-Point Arithmetic, }201
[ROO05] S.M. Rump, T. Ogita, S.Oishi.
 Accurate Sum and Dot Product, 2005
[She97] J.R. Shewchuk
 Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates,1997
```

