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» Error compensation technique allows a good tradeoff between accuracy and
execution-time but reserved to experts



Context and motivation

Context

Numerical computations can be innacurate: rounding errors

v

» Techniques are available for programmers to improve their numerical programs:
expansions, software librairies,. . .

These techniques are costly: improving accuracy impacts execution-time

v

» Error compensation technique allows a good tradeoff between accuracy and
execution-time but reserved to experts

Motivation
» Accuracy and execution-time are two major concerns of software developpers

» Critical in many systems (from automotive to aerospace industry)



Context and motivation

Context
> Numerical computations can be innacurate: rounding errors

» Techniques are available for programmers to improve their numerical programs:
expansions, software librairies,. . .

> These techniques are costly: improving accuracy impacts execution-time

» Error compensation technique allows a good tradeoff between accuracy and
execution-time but reserved to experts

Motivation
» Accuracy and execution-time are two major concerns of software developpers
» Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

source-to-source error compensation
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IEEE 754 floating-point arithmetic [[EEE754]

A standard to represent real numbers since 1985

» IF, the finite floating-point (FP) numbers following one of the formats of IEEE 754

» This set is defined by a precision p, and an exponent range [emin, €max| such that
p=053, enm =1— ey, =1023 in binary64 format.

» Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)
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IEEE 754 floating-point arithmetic [[EEE754]

A standard to represent real numbers since 1985

» IF, the finite floating-point (FP) numbers following one of the formats of IEEE 754
» This set is defined by a precision p, and an exponent range [emin, €max| such that

p =053, €ns =1— e, =1023 in binary64 format.

» Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

s e m

x=01~001111011100110011001100110011011100110 -~

X = binary32 representation of x (before rounding) R —
lost bits after rounding-to-nearest RN(x), #.;, = 23

— A way of estimating the accuracy of X = R¥(x) is through the number of
significant bits 0 < #4, < p shared by x and X:

#eie(x) = —loga(Erer(X)),

where Epf(X) is the relative error defined by: E.(X) = |x —X|/|x|, x #DO0.



Error-free transformations (EFTs)

Allow to compute the error generated by a floating-point addition or multiplication

Principle [MBdD10]

Let o € {4+, —, x}, if x = RN(ao b), then the floating-point error y = RN(ao b) — x is
exactly representable in F: EFTs allow to compute y with floating-point arithmetic!

For the sum. ..

.and the product

function FastTwoSum(a, b) > [DEKKER, 71]
x < RN(a + b) > |a| > |b]
y < RN((a — x) + b)
return (x, y)

end function

function TwoSum(a, b) > [KNUTH, 69]
x < RN(a + b)

function TwoProduct(a, b) > [DEKKER, 71]
x + RN(a x b)
[ay, a] = split(a)
[by, br] = split(b)
y + RN(ap X by — (((x — ay x by) — ap X by) — ay X by))
return (x, y)

end function

z + RN(x — a)
y < RN((a = (x = 2)) + (b — 2))
return (x, y)

end function

» EFTs are costly: 3, 6, and 17 FP operations for FastTwoSum, TwoSum, and

TwoProduct

> fused-multiply-add instruction can reduce the cost of TwoProduct to 2




Double-double expansions and compensated algorithms
Improving accuracy using EFTs
Two methods based on EFTs

» Double-double (DD) expansions: introduced in the 1970's [Dek71]
» Compensated algorithms: popularized in the 2000's [RO005, GLL09]

Double-double Compensated algorithms
>> DEKKER, 1971 »»> RUMP+, Sum2, Dot2, 2005
> BalLEy+, QD Lib, 2000 » LOUVET, CompHorner, 2007
» SAITO, Scilab Toolbox: QuPAT, 2010 » GRAILLATH, CompHornerDer, 2013
> generic method, algorithms applied to » specific, expert work: a thesis or
each elementary operations research paper per algorithm
> easy automatic application » today: sum, dot product, polynomial
(overloading) evaluations
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Improving accuracy using EFTs
Two methods based on EFTs

» Double-double (DD) expansions: introduced in the 1970’s [Dek71]
» Compensated algorithms: popularized in the 2000's [RO005, GLL09]

Double-double Compensated algorithms
>> DEKKER, 1971 »»> RUMP+, Sum2, Dot2, 2005
> BalLEy+, QD Lib, 2000 » LOUVET, CompHorner, 2007
» SAITO, Scilab Toolbox: QuPAT, 2010 » GRAILLATH, CompHornerDer, 2013
> generic method, algorithms applied to » specific, expert work: a thesis or
each elementary operations research paper per algorithm
> easy automatic application » today: sum, dot product, polynomial
(overloading) evaluations

They provide roughly the same accuracy. . .

» Double-double is generic but has a strong impact on performance

» Compensation allows better performance: more instruction level parallelism [LLO7]
but it is very specific



Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function Sum(aj, ap, . . ., apn)
st ay
fori=2:ndo
sT 4 RN(s" ! 4 3))
end for
return s”
end function

function SumDD(a;, ap, . . ., an)
s,l_, < a1
si 0
fori=2:ndo

[siys 511 = QD,TwoSum(sj_, Y b/ L a, @)
end for
n
return sp
end function
function Sum2(ay, az, . . ., ap)
st ay
el «0
fori=2:ndo
[s' €] = TwoSum(s’71 ,ar)
e« RN(C”1 +€)
end for

return RN(s" + e”)
end function

: 4@’
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Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function Sum(ay, ap, ..., ap)
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end for
return s”
end function

function SumDD(a;, ap, . . ., an)

fori=2:ndo
[shys 5] = QD,TwoSum(s)f] x L aj, @)
end for
return sf
end function

function Sum2(ajg, ap, . . ., an)
S1 < a1
el o0
fori=2:ndo .
[s', €] = TwoSum(s' 1, 2;)
el « RN(e' ! +¢)
end for
return RN(s" + ")
end function

1 i—=1

FastTwoSum



Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

function Sum(ay, ap, ..., ap)
st ay
fori=2:ndo
st RN(s' ! 4 3))
end for
return s”
end function

function SumDD(a;, ap, . . ., an)
5,1_, < a1
s} «~— 0
fori=2:ndo
[shys 5] = QD,TwoSu.m(s'T] x L aj, @)
end for
return sf
end function

function Sum2(ajg, ap, . . ., an)
51 < a1
el o0
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Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

> A sequence is the set . of all dependent
operations required to obtain one or several

results

double
Horner (double *P, uint n,
double r;

wint i

return r;

double x) {




Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

> A sequence is the set . of all dependent
operations required to obtain one or several

results

> CoHD tool performs this step after

transform original code in
three-address form

double

Horner (double *P, uint n, double x) {
double r, tmp;

uint i;

r = P[nl;
for(i = n-1;
tmp = © * x

i >= 0; i--) {
r = tmp + Pi:i];

return r;




Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

> A sequence is the set . of all dependent
operations required to obtain one or several
results

> CoHD tool performs this step after
transform original code in
three-address form

> In this example one sequence of two operations
is detected

double

Horner (double *P, uint n, double x) {

double r, tmp;
uint i;

r = P[nl;

for(i = n-1; i >=

tmp = r * x;
r = tmp + P[il;

return r;

0; i--) {




Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

» For each s € .

> replace floating-point operations by EFTs,
> and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum(a, d,), (b, Ip)

[s,0+] = TwoSum(a, b)
ds < RN((6a + 0p) + 0+ )
return (s, ds)

AutoComp_TwoProduct(a, d,), (b, dp)

[s,0+] = TwoProduct(a, b)
ds < RN(((a x dp) + (b x 82)) + )
return (s, ds)

double
Horner (double *P,
double r, tmp;

uint ij;

r = Plnl;
for(i = n-1;
tmp = r *
r = tmp +
}

i >=

x
P[il;

return r;

uint n,

0;

double

i--) {

x)

{
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Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them
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double r
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return r ;
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Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

» For each s € .

> replace floating-point operations by EFTs,
> and accumulate errors (inherited, generated),

with the following algorithms:
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AutoComp_TwoProduct(a, d,), (b, dp)

[s,0+] = TwoProduct(a, b)
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return (s, ds)

» Every FP number n € s becomes a
compensated number (n,d,) where d, is the
accumulated error attached to the computed
result n

double
Horner (double *P,

uint n, double

double r, tmp, d_tmp, d_r;
uint ij
r = P[nl;
d_r = 0.0;
for(i = n-1; i >= 0; i--) {
tmp = r * x;
T o= tmp + P[i]

}

return r;

%)

{




Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

» For each s € .

> replace floating-point operations by EFTs,
> and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum(a, d,), (b, Ip)

[s,0+] = TwoSum(a, b)
ds < RN((6a + 0p) + 0+ )
return (s, ds)

AutoComp_TwoProduct(a, d,), (b, dp)

[s,0+] = TwoProduct(a, b)
ds < RN(((a x dp) + (b x 82)) + )
return (s, ds)

» Every FP number n € s becomes a
compensated number (n,d,) where d, is the
accumulated error attached to the computed
result n

double

Horner (double *P, uint n,
double r,

double x) {

tmp, d_tmp, d_r, €, rh, rl,

xh, x1, d_2p;

uint ij;
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c - x);

Hlloxs

- xh;
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Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

» For each s € .

> replace floating-point operations by EFTs,
> and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum(a, d,), (b, Ip)

[s,0+] = TwoSum(a, b)
ds < RN((6a + 0p) + 0+ )
return (s, ds)

AutoComp_TwoProduct(a, d,), (b, dp)

[s, 0] = TwoProduct(a, b)
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return (s, ds)

» Every FP number n € s becomes a
compensated number (n,d,) where d, is the
accumulated error attached to the computed
result n

double
Horner (double *P, uint n, double x) {
double r, tmp, d_tmp, d_r, ¢, rh, rl,

xh, x1, d_2p;
uint i;

.05

n-1; i >= 0; i--) {

T o* x;

* 134217729;

r - rh;

* 134217729;

c - (c - x);

x - xh;

= rl * x1 - (((x - rh * xh)
- rl * xh) - rh * x1);

d_tmp = d_2p + d_r * x;

r = tmp + P[i];

return r;




Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

» For eachs e .7
> replace floating-point operations by EFTs,

> and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum(a, d,), (b, Ip)

[s,0+] = TwoSum(a, b)
ds < RN((6a + 0p) + 0+ )
return (s, ds)

AutoComp_TwoProduct(a, d,), (b, dp)

[s, 0] = TwoProduct(a, b)
55 <~ RN(((a X 5b) + (b X 53)) + (5><)
return (s, ds)

» Every FP number n € s becomes a
compensated number (n,d,) where d, is the
accumulated error attached to the computed
result n

double
Horner (double *P, uint n, double x) {
double r,
xh, x1,
uint i;

c = *
c

return r;

tmp, d_tmp, d_r, c, rh, rl,

d_2p, m, d_2s;

7729;
)5
rh;
134217729
- (¢ - x);
x - xh;
rl * x1 - (((x - rh * xh)
- rl * xh) - rh * x1);
A_2p + d.r * x
+ P[i];

tmp ;
(tmp - (r - w)) + (PL[i] - u);

= d_2s + d_tmp;




Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: close sequences (error compensation)

Compensate errors: close sequences
» For each s € ., close(s) means computing
n < RN(n + 65)

for n being a result of s

double
Horner (double *P, uint n, double x) {
double r, tmp, d_tmp, d_r, c, rh, rl,
xh, x1, d_2p, u, d_2s;

uint i;
r = P[nl;
d_r = 0.0;
for(i = n-1; i >= 0; i--) {
tmp = r * x;
c = r * 134217729;
tho=c - (co- 1)
rl = r - rh;
c = x * 134217729;
xh = ¢ - (c - x);
x1 = x - xh;
d_2p = rl * x1 - (((x - rh * xh)
- rl * xh) - rh * x1);
d_tmp = d_2p + d_r * x;
r = tmp + P[i];
u r - tmp;
d_2s = (tmp - (r - w)) + (P[i]l - w)
d_r = d_2s + d_tmp;
3

return (g}




Methodology of accuracy improvement

Benefit from the good ILP of compensation automatically: close sequences (error compensation)

double
Horner (double *P, uint n, double x) {
double r, tmp, d_tmp, d_r, c, rh, rl,
xh, x1, d_2p, u, d_2s;
uint i;

Compensate errors: close sequences Lvm0p ieo) 1
32517729;
c - (c - 1);
r - rh;
= x * 134217729;

n + RN(n + 6,) g

» For each s € ., close(s) means computing

- xhj;
rl *x x1 - (((x - rh * xh)

- rl * xh) - rh * x1);
tmp = d_2p + d_r * x;
= tmp + P[il;
=r - tmp;
_2s = (tmp - (r = w) + (P[i] - w)
r = d_2s + d_tmp;

m o

tm

for n being a result of s

return r + d_r;




Experimental results: case studies from compared works

Our method results compared to existing double-double expansions and compensated ones

1. Sum2 for the recursive summation of n values [ROO05]

Data | # values | condition number Data | # values | condition number
dy 32 x 10* 108 ds 32 x 10* 1016
d> 32 x 10° 108 ds 32 x 10° 1016
d3 32 x 108 108 ds 32 x 10° 1016

2. CompHorner [GLLO9] and CompHornerDer [JGH13] for Horner's evaluation of
pr(x) = (x — 0.75)°(x — 1)™ and its derivative

3. CompdeCasteljau and CompdeCasteljauDer [JLCS10] for evaluating
po(x) = (x — 0.75)"(x — 1) and its derivative, written in the Bernstein basis
(deCasteljau’s scheme)

4. CompClenshawI and CompClenshawII [JBL11] for evaluating
pc(x) = (x — 0.75)"(x — 1)* written in the Chebyshev basis (Clenshaw's scheme)

Data | # x range
X1 256 | {0.85:0.95} (uniform dist.)
X2 256 | {1.05:1.15} (uniform dist.)



Experimental results: performance comparison
Our method results compared to existing double-double expansions and compensated ones

AC/Comp instr mmmmm AC/Comp cycles mmmm AC/DD instr mmmm  AC/DD cycles mmmmm
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< measurments done with papi tool (API of performance counters) on an intel Core i5, 2.53GHz over Linux kernel 3.2 and gcc4.6.3 -02
< ideal measurements (not shown here) validate experimental measures



Experimental results: performance comparison

Our method results compared to existing double-double expansions and compensated ones

AC/Comp IPC mmmmm AC/DD IPC mmmmm

25

15

Ratios of IPC

» Compensated algorithms, Comp (manualy implemented), and AC (automatically
generated) present similar performance

» Comp and AC algorithms present more ILP than DD (double-double) ones

< measurments done with papi tool (API of performance counters) on an intel Core i5, 2.53GHz over Linux kernel 3.2 and gcc4.6.3 -02
< ideal measurements (not shown here) validate experimental measures



Experimental results: accuracy comparison

Our method results compared to existing double-double expansions and compensated ones

AC-Comp mmmmm AC-DD mmmm
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» Compensated algorithms, Comp (manualy implemented), and AC (automatically

generated) present similar accuracy

< DD (double-double) algorithms are more accurate when data are too ill-conditioned (three leftmost cases)



Conclusions and perspectives

Summary

» A new method for automatically compensating the FP error of the computations
» Similar results to those of manual implementations of compensated algorithms

< better accuracy and ILP exposure
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Conclusions and perspectives

Summary

> A new method for automatically compensating the FP error of the computations
» Similar results to those of manual implementations of compensated algorithms

< better accuracy and ILP exposure

Perspectives

» Support +, va and elementary functions
» Support all C and validate our approach on other case studies
» Unbounded compensation: SumK, HornerkK

> Integrate of our code transformation into gcc

— ask me if you want to see a demonstration of our actual prototype (CoHD)

Related works

» 6 months of knowledge transfer in a startup

> First step toward multi-criteria optimization (accuracy and execution time)
< https://hal.archives-ouvertes.fr/hal-01157509


https://hal.archives-ouvertes.fr/hal-01157509
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