Automatic source-to-source error compensation of floating-point programs

Laurent Thévenoux¹ Philippe Langlois² Matthieu Martel²

¹LIP, ENS de Lyon, INRIA, France

²University of Perpignan Via Domitia, France

Context and motivation

Context

- Numerical computations can be innacurate: rounding errors
- ► **Techniques** are available for programmers to improve their numerical programs: expansions, software librairies,...
- These techniques are costly: improving accuracy impacts execution-time
- Error compensation technique allows a good tradeoff between accuracy and execution-time but reserved to experts

Motivation

- Accuracy and execution-time are two major concerns of software developpers
- Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

source-to-source error compensation

Context and motivation

Context

- Numerical computations can be innacurate: rounding errors
- ► **Techniques** are available for programmers to improve their numerical programs: expansions, software librairies,...
- These techniques are costly: improving accuracy impacts execution-time
- Error compensation technique allows a good tradeoff between accuracy and execution-time but reserved to experts

Motivation

- Accuracy and execution-time are two major concerns of software developpers
- Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

source-to-source error compensation

Context and motivation

Context

- Numerical computations can be innacurate: rounding errors
- ► **Techniques** are available for programmers to improve their numerical programs: expansions, software librairies,...
- These techniques are costly: improving accuracy impacts execution-time
- Error compensation technique allows a good tradeoff between accuracy and execution-time but reserved to experts

Motivation

- Accuracy and execution-time are two major concerns of software developpers
- Critical in many systems (from automotive to aerospace industry)

Automate compensation to allow non-expert users to use it:

source-to-source error compensation

Outline

Background on floating-point arithmetic

Error-free transformations Double-double expansions and compensated algorithms

Automatic program transformation

Improving accuracy: methodology Experimental results

Conclusion and perspectives

A standard to represent real numbers since 1985

- \blacktriangleright F, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- ▶ This set is defined by a precision p, and an exponent range $[e_{min}, e_{max}]$ such that

p = 53, $e_{max} = 1 - e_{min} = 1023$ in binary64 format.

▶ Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

 \hookrightarrow A way of estimating the **accuracy** of $\hat{x} = \mathbb{R}^*(x)$ is through the number of significant bits $0 \le \#_{sig} \le p$ shared by x and \hat{x} :

$$\#_{sig}(\widehat{x}) = -\log_2(E_{rel}(\widehat{x})),$$

where $E_{ref}(\hat{x})$ is the relative error defined by: $E_{rel}(\hat{x}) = |x - \hat{x}|/|x|, \quad x \neq 0.$

A standard to represent real numbers since 1985

- \blacktriangleright F, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- ▶ This set is defined by a precision p, and an exponent range $[e_{min}, e_{max}]$ such that

p = 53, $e_{max} = 1 - e_{min} = 1023$ in binary64 format.

▶ Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

 \hookrightarrow A way of estimating the **accuracy** of $\hat{x} = \mathbb{R}^*(x)$ is through the number of significant bits $0 \le \#_{sig} \le p$ shared by x and \hat{x} :

$$\#_{sig}(\widehat{x}) = -\log_2(E_{rel}(\widehat{x})),$$

where $E_{ref}(\hat{x})$ is the relative error defined by: $E_{rel}(\hat{x}) = |x - \hat{x}|/|x|, \quad x \neq 0.$

A standard to represent real numbers since 1985

- \blacktriangleright F, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- ▶ This set is defined by a precision p, and an exponent range $[e_{min}, e_{max}]$ such that

p = 53, $e_{max} = 1 - e_{min} = 1023$ in binary64 format.

▶ Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

 \hookrightarrow A way of estimating the **accuracy** of $\hat{x} = \mathbb{R}^*(x)$ is through the number of significant bits $0 \le \#_{sig} \le p$ shared by x and \hat{x} :

$$\#_{sig}(\widehat{x}) = -\log_2(E_{rel}(\widehat{x})),$$

where $E_{ref}(\hat{x})$ is the relative error defined by: $E_{rel}(\hat{x}) = |x - \hat{x}|/|x|, \quad x \neq 0.$

A standard to represent real numbers since 1985

- \blacktriangleright F, the finite floating-point (FP) numbers following one of the formats of IEEE 754
- ▶ This set is defined by a precision p, and an exponent range $[e_{min}, e_{max}]$ such that

p = 53, $e_{max} = 1 - e_{min} = 1023$ in binary64 format.

▶ Has several rounding modes: to nearest (RN), to zero (RZ), to infinities (RU, RD)

 \hookrightarrow A way of estimating the accuracy of $\hat{x} = \mathsf{R}^*(x)$ is through the number of significant bits $0 \le \#_{sig} \le p$ shared by x and \hat{x} :

$$\#_{sig}(\widehat{x}) = -\log_2(E_{rel}(\widehat{x})),$$

where $E_{ref}(\widehat{x})$ is the relative error defined by: $E_{rel}(\widehat{x}) = |x - \widehat{x}|/|x|, \quad x \neq 0.$

Error-free transformations (EFTs)

Allow to compute the error generated by a floating-point addition or multiplication

Principle [MBdD10] Let $\circ \in \{+, -, \times\}$, if $x = RN(a \circ b)$, then the floating-point error $y = RN(a \circ b) - x$ is exactly representable in \mathbb{F} : EFTs allow to compute y with floating-point arithmetic!

For the sum...

... and the product

function FastTwoSum $(a, b) \triangleright [Dekker, 71]$
$x \leftarrow RN(a+b) \qquad \triangleright a \ge b $
$y \leftarrow RN((a - x) + b)$
return (x, y)
end function
function TwoSum(a, b) ▷ [KNUTH, 69]
$x \leftarrow RN(a+b)$
$z \leftarrow RN(x - a)$
$y \leftarrow RN((a - (x - z)) + (b - z))$
return (x, y)
end function

$$\begin{array}{l} \mbox{function TwoProduct}(a,b) & \triangleright [DEKKER, 71] \\ x \leftarrow RN(a \times b) \\ [a_H, a_L] = Split(a) \\ [b_H, b_L] = Split(b) \\ y \leftarrow RN(a_L \times b_L - (((x - a_H \times b_H) - a_L \times b_H) - a_H \times b_L))) \\ \mbox{return} (x, y) \\ \mbox{end function} \\ \hline \\ \hline \\ \begin{array}{l} c \leftarrow RN(f \times a) \\ a_H \leftarrow RN(c - (c - a)), \\ a_L \leftarrow RN(a - a_H) \\ \mbox{return} (a_H, a_L) \\ \mbox{end function} \end{array}$$

- EFTs are costly: 3, 6, and 17 FP operations for FastTwoSum, TwoSum, and TwoProduct
- fused-multiply-add instruction can reduce the cost of TwoProduct to 2

Double-double expansions and compensated algorithms ${\sf Improving\ accuracy\ using\ EFTs}$

Two methods based on EFTs

- Double-double (DD) expansions: introduced in the 1970's [Dek71]
- Compensated algorithms: popularized in the 2000's [ROO05, GLL09]

Double-double

- ▶ Dekker, 1971
 - ► BAILEY+, QD Lib, 2000
 - SAITO, Scilab Toolbox: QuPAT, 2010
- generic method, algorithms applied to each elementary operations
- easy automatic application (overloading)

Compensated algorithms

- ▶ RUMP+, Sum2, Dot2, 2005
 - LOUVET, CompHorner, 2007
 - GRAILLAT+, CompHornerDer, 2013
- specific, expert work: a thesis or research paper per algorithm
- today: sum, dot product, polynomial evaluations

They provide roughly the same accuracy. . .

- Double-double is generic but has a strong impact on performance
- Compensation allows better performance: more instruction level parallelism [LL07] but it is very specific

Double-double expansions and compensated algorithms ${\sf Improving\ accuracy\ using\ EFTs}$

Two methods based on EFTs

- Double-double (DD) expansions: introduced in the 1970's [Dek71]
- Compensated algorithms: popularized in the 2000's [ROO05, GLL09]

Double-double

- ▶ Dekker, 1971
 - ► BAILEY+, QD Lib, 2000
 - SAITO, Scilab Toolbox: QuPAT, 2010
- generic method, algorithms applied to each elementary operations
- easy automatic application (overloading)

Compensated algorithms

- ▶ RUMP+, Sum2, Dot2, 2005
 - LOUVET, CompHorner, 2007
 - GRAILLAT+, CompHornerDer, 2013
- specific, expert work: a thesis or research paper per algorithm
- today: sum, dot product, polynomial evaluations

They provide roughly the same accuracy...

- Double-double is generic but has a strong impact on performance
- Compensation allows better performance: more instruction level parallelism [LL07] but it is very specific

Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

Expansions vs. compensated algorithms

Why compensated algorithms expose more Instruction Level Parallelism (ILP) than expansions based ones?

Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

- A sequence is the set S of all dependent operations required to obtain one or several results
- CoHD tool performs this step after transform original code in three-address form
- In this example one sequence of two operations is detected

```
double
Horner(double *P, uint n, double x) {
    double r;
    uint i;
    r = P[n];
    for(i = n-1; i >= 0; i--) {
        r = r * x * P[i];
    }
    return r;
}
```

Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

- A sequence is the set S of all dependent operations required to obtain one or several results
- CoHD tool performs this step after transform original code in three-address form
- In this example one sequence of two operations is detected

```
double
Horner(double *P, uint n, double x) {
    double r, tmp;
    uint i;
    r = P[n];
    for(i = n-1; i >= 0; i--) {
        tmp = r * x;
        r = tmp + P[i];
    }
    return r;
}
```

Benefit from the good ILP of compensation automatically: detect FP sequences

Detect floating-point sequences

- A sequence is the set S of all dependent operations required to obtain one or several results
- CoHD tool performs this step after transform original code in three-address form
- In this example one sequence of two operations is detected

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

- ▶ For each $s \in \mathscr{S}$:
 - replace floating-point operations by EFTs,
 - and accumulate errors (inherited, generated),

with the following algorithms:

 $\frac{\text{AutoComp_TwoSum}\langle a, \delta_a \rangle, \langle b, \delta_b \rangle}{[s, \delta_+] = \text{TwoSum}(a, b)}$

 $\delta_s \leftarrow \mathsf{RN}((\delta_a + \delta_b) + \delta_+)$ return $\langle s, \delta_s \rangle$

AutoComp_TwoProduct $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $\begin{array}{l} [s, \delta_{\times}] = \texttt{TwoProduct}(a, b) \\ \delta_{s} \leftarrow \mathsf{RN}(((a \times \delta_{b}) + (b \times \delta_{a})) + \delta_{\times}) \\ \texttt{return} \ \langle s, \delta_{s} \rangle \end{array}$

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

- ▶ For each $s \in \mathscr{S}$:
 - replace floating-point operations by EFTs,
 - and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $[s, \delta_{+}] = \texttt{TwoSum}(a, b)$ $\delta_{s} \leftarrow \mathsf{RN}((\delta_{a} + \delta_{b}) + \delta_{+})$ return $\langle s, \delta_{s} \rangle$

AutoComp_TwoProduct $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $\begin{array}{l} [s, \delta_{\times}] = \texttt{TwoProduct}(a, b) \\ \delta_s \leftarrow \mathsf{RN}(((a \times \delta_b) + (b \times \delta_a)) + \delta_{\times}) \\ \texttt{return} \ \langle s, \delta_s \rangle \end{array}$

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

- ▶ For each $s \in \mathscr{S}$:
 - replace floating-point operations by EFTs,
 - and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $[s, \delta_{+}] = \texttt{TwoSum}(a, b)$ $\delta_{s} \leftarrow \mathsf{RN}((\delta_{a} + \delta_{b}) + \delta_{+})$ return $\langle s, \delta_{s} \rangle$

AutoComp_TwoProduct $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $\begin{array}{l} [s, \delta_{\times}] = \texttt{TwoProduct}(a, b) \\ \delta_s \leftarrow \mathsf{RN}(((a \times \delta_b) + (b \times \delta_a)) + \delta_{\times}) \\ \texttt{return} \ \langle s, \delta_s \rangle \end{array}$

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

▶ For each $s \in \mathscr{S}$:

- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $[s, \delta_{+}] = \texttt{TwoSum}(a, b)$ $\delta_{s} \leftarrow \mathsf{RN}((\delta_{a} + \delta_{b}) + \delta_{+})$ return $\langle s, \delta_{s} \rangle$

AutoComp_TwoProduct $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $\begin{array}{l} [s, \delta_{\times}] = \texttt{TwoProduct}(a, b) \\ \delta_{s} \leftarrow \mathsf{RN}(((a \times \delta_{b}) + (b \times \delta_{a})) + \delta_{\times}) \\ \texttt{return} \ \langle s, \delta_{s} \rangle \end{array}$

double						
Horner(double *P, wint n, double x) {						
double r, tmp, d_tmp, d_r, c, rh, rl,						
xh, xl, d_2p;						
uint i;						
$\mathbf{r} = \mathbf{P}[\mathbf{n}];$						
$a_r = 0.0;$ for (i = n-1; i >= 0; i) f						
tmp = r * x:						
c = r * 134217729;						
rh = c - (c - r);						
rl = r - rh;						
c = x * 134217729;						
xh = c - (c - x);						
$x_1 = x - x_1;$ $d_{2n} = n + n + n + n + n + n + n + n + n + n$						
-rl * xh) - rh * xl);						
$d_{tmp} = d_{2p} + d_{r} * x;$						
r = tmp + P[i];						
}						
return r;						
1						
1						

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

▶ For each $s \in \mathscr{S}$:

- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

$$\begin{split} [s, \delta_{+}] &= \texttt{TwoSum}(a, b) \\ \delta_{s} \leftarrow \mathsf{RN}((\delta_{a} + \delta_{b}) + \delta_{+}) \\ \texttt{return} & \langle s, \delta_{s} \rangle \end{split}$$

AutoComp_TwoProduct $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $\begin{array}{l} [s, \delta_{\times}] = \texttt{TwoProduct}(a, b) \\ \delta_s \leftarrow \mathsf{RN}(((a \times \delta_b) + (b \times \delta_a)) + \delta_{\times}) \\ \texttt{return} \ \langle s, \delta_s \rangle \end{array}$

<pre>double Hornar(double *P, uint n, double x) { double r, tmp, d_tmp, d_r, c, rh, rl, xh, xl, d_2p; uint i;</pre>
$ r = P[n]; d_r r = 0.0; for(i = n-1; i >= 0; i) { tmp = r + x; c = r + 134217729; rh = c - (c - r); rl = r - rh; rn = rh; r$
<pre>c = x * 13421//29; xh = c - (c - x); xl = x - xh; d_2p = rl * xl - (((x - rh * xh)</pre>
return r; }

Benefit from the good ILP of compensation automatically: replace FP computations with EFTs

Compute error terms and accumulate them

▶ For each $s \in \mathscr{S}$:

- replace floating-point operations by EFTs,
- and accumulate errors (inherited, generated),

with the following algorithms:

AutoComp_TwoSum $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

$$\begin{split} [s, \delta_{+}] &= \texttt{TwoSum}(a, b) \\ \delta_{s} \leftarrow \mathsf{RN}((\delta_{a} + \delta_{b}) + \delta_{+}) \\ \texttt{return} & \langle s, \delta_{s} \rangle \end{split}$$

AutoComp_TwoProduct $\langle a, \delta_a \rangle, \langle b, \delta_b \rangle$

 $\begin{array}{l} [s, \delta_{\times}] = \texttt{TwoProduct}(a, b) \\ \delta_{s} \leftarrow \mathsf{RN}(((a \times \delta_{b}) + (b \times \delta_{a})) + \delta_{\times}) \\ \texttt{return} \ \langle s, \delta_{s} \rangle \end{array}$

```
Horner(double *P, uint n, double x) {
  double r, tmp, d_tmp, d_r, c, rh, rl,
    xh, xl, d_2p, u, d_2s;
  uint i:
  r = P[n];
  d r = 0.0;
  for (i = n-1; i \ge 0; i--) f
    tmp = r * x:
    c = r * 134217729;
    rh = c - (c - r);
    rl = r - rh:
    c = x * 134217729:
    xh = c - (c - x);
    xl = x - xh:
    d_2p = rl * xl - (((x - rh * xh)))
               - rl * xh) - rh * xl);
    d_{tmp} = d_{2p} + d_{r} * x;
    r = tmp + P[i];
    u = r - tmp:
    d_2s = (tmp - (r - u)) + (P[i] - u);
    d_r = d_{2s} + d_{tmp};
  return r:
3
```

Benefit from the good ILP of compensation automatically: close sequences (error compensation)

Compensate errors: close sequences

For each $s \in \mathscr{S}$, close(s) means computing

 $n \leftarrow \mathsf{RN}(n + \delta_n)$

for *n* being a result of *s*

```
double
Horner(double *P, uint n, double x) {
 double r, tmp, d_tmp, d_r, c, rh, rl,
    xh, xl, d_2p, u, d_2s;
  uint i:
  r = P[n];
 d r = 0.0:
  for(i = n-1; i >= 0; i--) {
    tmp = r * x;
    c = r * 134217729:
    rh = c - (c - r);
    rl = r - rh:
    c = x * 134217729;
    xh = c - (c - x);
    xl = x - xh:
    d_2p = rl * xl - (((x - rh * xh)))
               - rl * xh) - rh * xl);
    d tmp = d 2p + dr * x:
    r = tmp + P[i];
    u = r - tmp:
    d_{2s} = (tmp - (r - u)) + (P[i] - u);
   d_r = d_{2s} + d_{tmp}
  3
 return r;
3
```

Benefit from the good ILP of compensation automatically: close sequences (error compensation)

Compensate errors: close sequences

For each $s \in \mathcal{S}$, close(s) means computing

 $n \leftarrow \mathsf{RN}(n + \delta_n)$

for *n* being a result of *s*

```
double
Horner(double *P, uint n, double x) {
 double r, tmp, d_tmp, d_r, c, rh, rl,
    xh, xl, d_2p, u, d_2s;
 uint i:
  r = P[n];
 d r = 0.0:
  for(i = n-1; i >= 0; i--) {
    tmp = r * x;
    c = r * 134217729:
    rh = c - (c - r);
    rl = r - rh:
    c = x * 134217729;
    xh = c - (c - x);
    xl = x - xh:
    d_2p = rl * xl - (((x - rh * xh)))
               - rl * xh) - rh * xl);
    d tmp = d 2p + dr * x:
    r = tmp + P[i];
    u = r - tmp:
    d_{2s} = (tmp - (r - u)) + (P[i] - u);
   d_r = d_{2s} + d_{tmp}
  3
 return r + d_r;
3
```

Experimental results: case studies from compared works

Our method results compared to existing double-double expansions and compensated ones

1. Sum2 for the recursive summation of n values [ROO05]

Data	# values	condition number	Data	# values	condition number
d_1	$32 imes 10^4$	10 ⁸	d_4	$32 imes 10^4$	10^{16}
d_2	$32 imes 10^5$	10 ⁸	d_5	$32 imes10^5$	10 ¹⁶
d ₃	$32 imes10^6$	108	d_6	$32 imes10^6$	10 ¹⁶

- 2. CompHorner [GLL09] and CompHornerDer [JGH13] for Horner's evaluation of $p_H(x) = (x 0.75)^5(x 1)^{11}$ and its derivative
- 3. CompdeCasteljau and CompdeCasteljauDer [JLCS10] for evaluating $p_D(x) = (x 0.75)^7(x 1)$ and its derivative, written in the Bernstein basis (deCasteljau's scheme)
- 4. CompClenshawI and CompClenshawII [JBL11] for evaluating $p_C(x) = (x 0.75)^7 (x 1)^{10}$ written in the Chebyshev basis (Clenshaw's scheme)

Experimental results: performance comparison

Our method results compared to existing double-double expansions and compensated ones

- Compensated algorithms, Comp (manualy implemented), and AC (automatically generated) present similar performance
- Comp and AC algorithms present more ILP than DD (double-double) ones

 \hookrightarrow measurments done with papi tool (API of performance counters) on an intel Core i5, 2.53GHz over Linux kernel 3.2 and gcc4.6.3 -02 \hookrightarrow ideal measurements (not shown here) validate experimental measures

Experimental results: performance comparison

Our method results compared to existing double-double expansions and compensated ones

 Compensated algorithms, Comp (manualy implemented), and AC (automatically generated) present similar performance

Comp and AC algorithms present more ILP than DD (double-double) ones

 \hookrightarrow measurments done with papi tool (API of performance counters) on an intel Core i5, 2.53GHz over Linux kernel 3.2 and gcc4.6.3 -02 \hookrightarrow ideal measurements (not shown here) validate experimental measures

Experimental results: accuracy comparison

Our method results compared to existing double-double expansions and compensated ones

 Compensated algorithms, Comp (manualy implemented), and AC (automatically generated) present similar accuracy

 \hookrightarrow DD (double-double) algorithms are more accurate when data are too ill-conditioned (three leftmost cases)

Conclusions and perspectives

Summary

- A new method for automatically compensating the FP error of the computations
- ► Similar results to those of manual implementations of compensated algorithms → better accuracy and ILP exposure

Perspectives

- **Support** \div , $\sqrt{}$ and elementary functions
- Support all C and validate our approach on other case studies
- Unbounded compensation: SumK, HornerK
- Integrate of our code transformation into gcc

 \hookrightarrow ask me if you want to see a demonstration of our actual prototype (CoHD)

Related works

- 6 months of knowledge transfer in a startup
- ► First step toward multi-criteria optimization (accuracy and execution time) → https://hal.archives-ouvertes.fr/hal-01157509

Conclusions and perspectives

Summary

- A new method for automatically compensating the FP error of the computations
- ► Similar results to those of manual implementations of compensated algorithms

 \hookrightarrow better accuracy and ILP exposure

Perspectives

- Support \div , $\sqrt{}$ and elementary functions
- Support all C and validate our approach on other case studies
- Unbounded compensation: SumK, HornerK
- Integrate of our code transformation into gcc

 \hookrightarrow ask me if you want to see a demonstration of our actual prototype (CoHD)

Related works

- 6 months of knowledge transfer in a startup
- ► First step toward multi-criteria optimization (accuracy and execution time)

References

- [Dek71] T.J. Dekker A Floating-Point Technique for Extending the Available Precision, 1971
- [GLL09] S. Graillat, P. Langlois, N. Louvet Algorithms for Accurate, Validated and Fast Polynomial Evaluation, 2009
- [HBL01] Y. Hida, X.S. Li, D.H. Bailey. Algorithms for Quad-Double Precision Floating Point Arithmetic, 2001
- [IEEE754] IEEE Standard for Floating-Point Arithmetic Microprocessor Standards Committee of the IEEE Computer Society, 3 Park Avenue, New York, NY 10016-5997, USA, 2008
- [JBL11] H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng, F. Su Accurate Evaluation of a Polynomial in Chebyshev Form, 2011
- [JGH13] H. Jiang, S. Graillat, C. Hu, S. Li, X. Liao, L. Chang, F. Su Accurate Evaluation of the k-th Derivative of a Polynomial and its Application, 2013
- [JLCS10] H. Jiang, S. Li, L. Cheng, F. Su
 - Accurate Evaluation of a Polynomial and its Derivative in Bernstein Form, 2010
- [LL07] P. Langlois, N. Louvet. More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms, 2007
- [LMT10a] P. Langlois, M. Martel, L. Thévenoux Trade-off Between Accuracy and Time for Automatically Generated Summation Algorithms, 2010
- [LMT12] P. Langlois, M. Martel, L. Thévenoux Automatic Code Transformation to Optimize Accuracy and Speed in Floating-Point Arithmetic, 2012
- [MBdD10] J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, S. Torres. Handbook of Floating-Point Arithmetic, 2010
- [RO005] S.M. Rump, T. Ogita, S.Oishi. Accurate Sum and Dot Product, 2005
- [She97] J.R. Shewchuk

Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, 1997