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Abstract—Numerical programs with IEEE 754 floating-point
computations may suffer from inaccuracies since finite precision
arithmetic is an approximation of real arithmetic. Solutions
that reduce the loss of accuracy are available as, for instance,
compensated algorithms, more precise computation with double-
double or similar libraries. Our objective is to automatically
improve the numerical quality of a numerical program with the
smallest impact on its performances. We define and implement
source code transformation to derive automatically compensated
programs. We present several experimental results to compare the
transformed programs and existing solutions. The transformed
programs are as accurate and efficient than the implementations
of compensated algorithms when the latter exist.

I. INTRODUCTION

In this paper, we focus on numerical programs using
IEEE 754 floating-point arithmetic. Several techniques have
been introduced to improve the accuracy of numerical algo-
rithms, as for instance expansions [4], [23], compensations [7],
[10], differential methods [14] or extended precision arithmetic
using multiple-precision libraries [5], [8]. Nevertheless, bugs
from numerical failures are numerous and well known [2],
[18]. This illustrates that these improvement techniques are not
known enough outside the floating-point arithmetic commu-
nity, or not sufficiently automated to be applied more systemat-
ically. For example, the programmer has to modify the source
code by overloading floating-point types with double-double
arithmetic [8] or, less easily, by compensating the floating-
point operations with error-free transformations (EFT) [7].
The latter transformations are difficult to implement without a
preliminary manual step to define the modified algorithm.

We present a method that allows a non floating-point
expert to improve the numerical accuracy of his program
without impacting too much the execution time. Our approach
facilitates the numerical accuracy improvement by automating
compensation process. Even if we not provide error bounds on
the processed algorithms, our approach takes advantage of a
fast program transformation, available for a large community
of developers. So, we propose to automatically introduce at
compile-time a compensation step by using error-free transfor-
mations. We have developed a tool to parse C programs and
generate a new C code with a compensated treatment: floating-
point operations + and X are replaced by their respective error-
free TwWOSUM and TWOPRODUCT algorithms [21, Chap. 4].
The main advantage of this method compared to operator
overloading is to benefit from code optimizations and an
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efficient code generation. Program transformation is strongly
motivated by our perspectives for the multi-criteria optimiza-
tion of programs [25]. These optimizations will allow to trade-
off between accuracy and execution time. Programs will be
partially compensated by using transformation strategies to
meet some time and accuracy constraints which could be
difficult to reach with operator overloading.

To demonstrate the efficiency of this approach, we compare
our automatically transformed algorithms to existing compen-
sated ones such as floating-point summation [22] and polyno-
mial evaluation [7], [10]. The goal of this demonstration is to
recover automatically the same results in terms of accuracy
and execution time. Compensation is known to be a good
choice to benefit from the good instruction level parallelism
(ILP) of compensated algorithms compared to the ones derived
using fixed-length expansions such as double-double or quad-
double [8], [15]. Results for the automatically transformed
algorithms, both in terms of accuracy and execution time, are
shown to be very close to the results for the implementation
of the studied compensated algorithms.

This article is organized as follows. Section II intro-
duces background material on floating-point arithmetic, error-
free transformations, and accuracy improvement techniques
like double-double arithmetic and compensation. The core of
this article is Section III, where we present our automatic
code transformation to optimize the accuracy of floating-point
computations with the smallest execution time overhead. In
Section IV, we present some experimental results to illustrate
the interesting behavior of our approach compared to existing
ones. Conclusion and perspectives are proposed in Section V.

II. PRELIMINARIES

In this section we recall classical notations to deal with
IEEE floating-point arithmetic, basic methods to analyze the
accuracy of floating-point computations, and EFTs of the basic
operations *+ and x. We also present how to exploit these EFTs
with expansions and compensations.

A. IEEE Floating-Point Arithmetic

In base § and precision p, IEEE floating-point numbers
have the form:
f= (_1)3 -m - B3¢,

where s € {0,1} is the sign, m = Y d;f" =
(do.dids - - -d,_1)p is the mantissa (with d; € {0,1,...,8 —



1}), and e is the exponent. The IEEE 754-2008 standard [24]
defines such numbers for several formats, that is, for various
pairs (3, p). It also defines rounding modes, and the semantics
of the basic operations =+, X, +, /-

Notation and assumptions. Throughout the paper, all compu-
tations are performed in binary64 format, with the round-to-
nearest mode. We assume that neither overflow nor underflow
occurs during the computations. We use the following nota-
tions:

e [Fis the set of all normalized floating-point numbers.
For example, in the binary64 format floating-point
numbers are expressed with § = 2 over 64 bits
including p = 53 bits, 11 for the exponent e, and
1 for the sign s.

e  fI(-) denotes the result of a floating-point computa-
tion where every operation inside the parenthesis is
performed in the working precision and the round-to-
nearest mode.

e ulp(x) is the floating-point value of the unit in the
last place of z defined by ulp(z) = 2¢ - 2'7P, Let
Z = fl(x) for a real number x. We have |z — Z| <

ulp(7)/2.

Accuracy analysis. One way of estimating the accuracy of
= fl(z) is through the number of significant bits #g;,
shared by = and Z:

#sig(?ﬂ\) = *ZOQQ(Erel(?E))’
where F,..;(%) is the relative error defined by:
Erel(/x\) = |x_x‘? .1’750
||

B. Error-Free Transformations

Error-free transformations (EFT) provide lossless transfor-
mations of basic floating-point operations o € {4, —, x }. Let
a,b€F and ¥ = fl(aob). There exists a floating-point value
y = aob—2 such that aob = T+ y. We have |y| < ulp(Z)/2.
Hence Z (resp. y) is the upper (resp. lower) part of a o b and
no digit of Z overlaps with y. The practical interest of EFTs
comes from Algorithms 1, 2, 4, and 5 which exactly compute
in floating-point arithmetic the error term y for the sum and
the product.

of floating-point addition. The TWOSUM algorithm requires 6
floating-point operations (flop) instead of 3 for FASTTWOSUM,
but does not require a preliminary comparison of a and b.

c+ fl(f xa) > f=2MP/21 41
ag + fl(c— (c—a))

ar, <+ flla—apy)

return [ay, ar]

Algorithm 3: SPLIT(a) [Veltkamp, 1968].

x + fllaxb)
[apr, ar] = SPLIT(a)
[br, br] = SPLIT(b)
Y fl(aL X bp, — ((({,E —ag X bH) —ar X bH)
—ayg X bL))
return [z, y]

Algorithm 4: TWOPRODUCT(a, b) [Dekker, 1971].

Algorithm 3, due to Veltkamp [4], splits a binary floating-
point number into two floating-point numbers containing the
upper and lower parts. It is used in Algorithm 4, introduced
by Dekker [4], to compute the EFT of a product for the cost
of 17 flops.

z < fl(a x b)
a

y < fU(FMA(a, b, —x))
return [z, y]

z — fl(a+b)
y <+ fl((a—=x)+b)
return [z, y]

> Jal > [0

Algorithm 1: FASTTWOSUM(a, b) [Dekker, 1971].

xz < flla+b)
z + fl(x —a)
yﬁf%a—W—ZD+®—@)

Algorithm 2: TWOSUM(a, b) [Mgller, 1965 and Knuth, 1969].

Algorithms 1 and 2, respectively introduced by Dekker [4]
and Knuth [12, Chap. 4] and Mgller [19], provide the error

Algorithm 5: TWOPRODUCTFMA(a, b).

Some processors have a fused multiply-add (FMA) instruc-
tion which evaluates expressions such as a x b= c with a single
rounding error. Algorithm 5 takes advantage of this instruction
to compute the exact product of two floating-point numbers
much faster, namely with 2 flops instead of 17 flops with
TWOPRODUCT.

Table I presents the number of operations and the depth
of the dependency graph (that is, the critical path in the EFT
data flow graph) for each of the output values x and y of these
algorithms. It is shown in [13] that TWOSUM is optimal, both
in terms of the number of operations and the depth of the
dependency graph.

EFT algorithm flop depth

x x Uy

FASTTWOSUM 1 3 1 3
TwoSum 1 6 1 5
TwWOPRODUCT 1 17 1 8
TwoPrRODUCTFMA 1 2 1 2

TABLE I: Floating-point operation count and dependency
graph depth for various EFTs.

The result x = fl(a o b) is computed and available after
only one floating-point operation. Moreover, the computation
of y exposes some parallelism which can be exploited and,
therefore, explains the efficiency of the algorithms [15].




Figure 1 defines diagrams for floating-point operations =+
and X, and for their EFTs. It allows us to graphically represent
transformation algorithms as basic computational blocks.

(a) Sum (b) PRODUCT
a a a
b y b y b H y
X x X

(c) FASTTWOSUM (d) TWoSUM (e) TWOPRODUCT

Fig. 1: Diagrams for basic floating-point operations (a), (b)
and EFT algorithms (c), (d), and (e).

C. Double-Double and Compensated Algorithms

We focus now on two methods using these EFTs to double
the accuracy: double-double expansions and compensations.
Then we recall why compensated algorithms are more efficient
than double-double algorithms.

Double-double expansions. We present here the algorithms
by Briggs, Kahan, and Bailey used in the QD library [8]. Let
a,ar and ar be floating-point numbers of precision p. The
corresponding double-double number of a is the unevaluated
sum ay + ar where ap, and ay, do not overlap: |ar| <
ulp(ag)/2. Double-double arithmetic simulates computations
with precision 2p. Proofs are detailed in [17].

Algorithms 6 and 7 compute the sum and the product of
two double-double numbers more accurately than Dekker’s
algorithms [4]. Double-double algorithms need a step of renor-
malization to guarantee |z;| < ulp(xg)/2. This step is insured
by a FASTTWOSUM EFT and is represented by dotted boxes
in Figure 2.

[rm, i) = TWOSUM(an, br)

[SH, SL] = TWOSUM(CLL7 bL)

c< fl(rr + sm)

[wgr, up] = FASTTWOSUM(rg, c)

w < fl(sp +ur)

return [z, 1] = FASTTWOSUM(up, w)

Algorithm 6: DD_TwoSUM(ay, ar, by, br), double-double
sum of two DD numbers [QD library, 2000].

[rg, r] = TWOPRODUCT(ag, by)

rr < fl(rr + (ag X by))

rr < fl(rp + (ap X by))

return [z, x7] = FASTTWOSUM(ry, 7r)

Algorithm 7: DD_TWOPRODUCT(ay, ar, bg, br), double-
double product of two DD numbers [QD library, 2000].

renormalization

TH XTI

(a) DD_TwoSuM.

ag ar
|
b —x}
| ©

bL CTD

renormalization

TH  TL

(b) DD_TWOPRODUCT.

Fig. 2: Diagrams for Algorithms 6 and 7.

In practice, double-double algorithms can be simply used
by overloading the basic operations as for example in Al-
gorithm 8, which is the double-double version of SUM, the
classical recursive algorithm to evaluate a; + as + - - - + ay.

Compensated algorithms. As double-double algorithms,
compensated algorithms can double the accuracy. We focus
here on this class of algorithms. We already mentioned that
double-double algorithms are easy to derive. On the contrary,
compensated algorithms have been, up to now, defined case
by case and by experts of rounding error analysis [7], [9],
[10], [11], [22]. For example the compensated Algorithm 9,
SUM2 [22], returns a twice more accurate sum.

Double-double versus compensation. Previous double-double
and compensated sums provide roughly the same accuracy.
How do they compare in terms of computing time? Algo-
rithm 9 needs 7n — 6 flops compared to n — 1 for the original
SuM algorithm. The double-double summation implementa-
tion by Algorithm 8 needs 10n — 9 flops, that is, almost
1.43 more floating-point operations than the compensated
algorithm.



SH < a1
s, <0
for i =2:n do
[sg, sp] = DD_TwWoOSUM(sy, si, a;, 0)
end for
return sy

Algorithm 8: SUMDD(a1, as, ...
sical recursive summation.

, Gnp), double-double clas-

S < aq

e+ 0

for i =2:n do
[s, €] = TWOSUM(s, a;)
e+ flle+e)

end for

return fl(s+e)

Algorithm 9: SUM2(a;, ag, ..., a,), compensated classical
recursive summation [Rump, Ogita, and Oishi, 2005].

Now, let us consider the instruction level parallelism by
inspecting the number of instructions which could be simul-
taneously executed per one cycle (IPC). In the case of the
classical SUM algorithm, each iteration performs one floating-
point operation. Each iteration can be followed immediately
by the next iteration, so IPC(SUM) = (n — 1)/n ~ 1. With
the SUMDD algorithm, each iteration of the loop contains
10 operations versus 7 for the SUM2 algorithm. Neverthe-
less, the main difference between both algorithms is in the
parallelization of the loop iterations. The SUMDD algorithm
suffers from renormalization, and one iteration may only be
followed by the next one with the latency of 7 floating-point
operations, so IPC(SUMDD) = (10n —9)/(7n — 5) ~ 1.42.
The SuM2 algorithm does not suffer from such drawbacks
and iterations can be executed with a latency of only one flop:
IPC(SuM2) = (7Tn—6)/(n+5) =~ 7. So SUM2 benefits from a
seven times higher ILP. A detailed analysis has been presented
in [16].

This fact is measurable in practice, and compensated al-
gorithms exploit this low level parallelism much better than
double-double ones. The example of HORNER’s polynomial
evaluation algorithm is detailed in [15]. This latter shows that
the compensated HORNER’s algorithm runs at least twice as
fast as the double-double counterpart with the same output ac-
curacy. This efficiency motivates us to automatically generate
existing compensated algorithms.

III. AUTOMATIC CODE TRANSFORMATION

We present how to improve accuracy thanks to code trans-
formation. Experimental results are presented in Section IV.

A. Improving Accuracy: Methodology

Our code transformation automatically compensates pro-
grams and follows the next three steps.

1)  First, detect floating-point computations sequences.
A sequence is the set . of dataflow dependent
operations required to obtain one or several results.

2)  Then for each sequence .%; compute the error terms
and accumulate them beside the original computation

sequence by (a) replacing floating-point operations
by the corresponding EFTS, and (b) accumulating
error terms following Algorithms 10 and 11 given
hereafter. At this stage, every floating-point number
r € % becomes a compensated number, denoted
(x,05) where 0, € F is the accumulated error term
attached to the computed result x.

3) Finally close the sequences. Closing is the compen-
sation step itself, so that close(.#;) means computing
x + fl(x + ) for x being a result of .7;.

B. Compensated operators

Algorithms 10 and 11 allow us to automatically compen-
sate for the error of basic floating-point operations. Inputs are
now compensated numbers.

[s, 1] = TWOSUM(a, b)
ds < fl((6a + ) + 4)
return (s, ds)

Algorithm 10: AC_TwoSuM({a, d,), (b, d)), automatically
compensated sum of two compensated numbers.

[s, dx] = TWOPRODUCT(a, b)
0s + fl(((a x &p) + (b X da))+ 6x)
return (s, Js)

Algorithm 11: AC_TWOPRODUCT({a, d,), (b, 0p)), automat-
ically compensated product of two compensated numbers.
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Fig. 3: Diagrams for Algorithms 10 and 11 for the automatic
compensation of the sum (a), and the product (b). The dashed
or dotted lines are removed when a or b are not compensated
numbers but standard floating-point numbers.

Two different sources of errors have to be considered. First,
the error generated by the elementary operation itself, which
is computed with an EFT. This computation corresponds to
0+ and dx in the first line of Algorithms 10 and 11. Second,
the errors inherited from the two operands, denoted by d,, and




dp, are accumulated with the previous generated error. This
accumulation corresponds to the second line of Algorithms 10
and 11. These inherited errors come from previous floating-
point calculations. Operands with no inherited error are pro-
cessed to minimize added compensations. Figure 3 shows such
variants which can be obtained by removing the dashed or
dotted lines.

Listing 2 illustrates what provides the code transformation
of the sequence a = b+ ¢ x d of Listing 1.

Listing 1: Original code computing the sequence a = b+cx d.

double foo () {
double a, b, c, d ;
[...]
a=b+c*xd;
[...]
return a ;

}

/+ computation sequence */

Listing 2: Transformed code computing the sequence a = b+
¢ X d with error compensation.

double foo () {
double a, b, ¢, d ;
[...]
/* variables introduced by step 1 =/
double t, c_H, c_1L, d_L, d_H, tmp_L, a_L ;
/* variables introduced by step 2 =/
double delta_tmp, delta_a ;
[...]
/* first part of the sequence detected at
step 1 «/
tmp = ¢ x d ;
/* step 2a: adding 16 flops with
TwoProduct (c,d) =*/

t = 134217729.0 x ¢ ; /x 2"ceil (53/2) + 1 =/
cH=¢t - (£t -c¢c) ;
c_L =c¢c - c_H ;
t = 134217729.0 % d ;
dH=t - (¢t - d) ;
dL =d- d_H ;
tmp_L = c_L » d_L - ((( tmp - c_H x d_H)
- c_ L » d_H) - c_H » d_L) ;

/x step 2b: accumulation of TwoProduct error
term result and inherited errors from c
and d */

delta_tmp = tmp_L ;

/+ second part of the sequence detected at
step 1 */

a =>b + tmp ;

/+ step 2a: adding 5 flops with

TwoSum (b, tmp) */

t =a-Db;

al= (b - (a-1t)) + (tmp - t)

/+ step 2b: accumulation of TwoSum error
term result and inherited errors from b
and tmp */

delta_a = a_L + delta_tmp;

[...]

/* step 3: close sequence */

return a + delta_a ;

IV. EXPERIMENTAL RESULTS

We now describe our CoHD tool that implements this code
transformation. We apply it to several case studies chosen such
that there exist compensated versions to compare with. We
also add comparisons with the corresponding double-double
versions.

A. The CoHD Tool

CoHD is a source-to-source transformer written in OCaml
and built as a compiler. The front-end, which reads input
C files, comes from a previous development by Casse [3].
The middle-end implements some passes of optimization, from
classical compiler passes such as operand renaming or three-
address code conversion [1, Chap. 19]. It also implements one
pass of floating-point error compensation. This pass uses our
methodology and the algorithms defined in Section III. Then,
the back-end translates the intermediate representation into C
code.

B. Case Studies

We study here the cases described in Table II which are
representative of existing compensated algorithms.

Case studies: compensated algorithms of reference

1) Sum2 for the recursive summation of n val-
ues [22].

2) COMPHORNER [7] and COMPHORNERDER [10]
for Horner’s evaluation of pgy(x) = (z —
0.75)%(z — 1)!* and its derivative.

3) COMPDECASTELJAU and COMPDECASTELJAU-
DER [11] for evaluating pp(z) = (2 —0.75)" (x —
1) and its derivative, written in the Bernstein basis,
by means of deCasteljau’s scheme.

4)  COMPCLENSHAWI and COMPCLENSHAWII [9]
for evaluating pc(z) = (x — 0.75)7(x — 1)1°
written in the Chebyshev basis, by means of
Clenshaw’s scheme.

Summation (case 1 above)

Data  # values condition number
di 32 x10% 108
do 32 x 10° 108
dz 32 x 10 108
dy 32 x 10* 1016
ds 32 x10° 1016
dg 32 x 106 1016
d; 10° random
dg 106 random

Polynomial evaluations (cases 2, 3, 4)

Data #x range
x1 256 {0.85: 0.95} (uniform dist.)
T2 256 {1.05: 1.15} (uniform dist.)
T 1 random

TABLE II: Case studies and data for SUM and polynomial
evaluation with HORNER, CLENSHAW, and DECASTELJAU.



This section presents how we perform accuracy and ex-
ecution time measurements to compare programs generated
automatically by our method with programs, written by hand,
that implement compensated and double-double algorithms.
It also presents a study of the HORNER’s algorithm, and
summarizes other test study results: summation, polynomial
and derivative evaluation with CLENSHAW or DECASTEL-
JAU algorithms. All measurements are done with the follow-
ing experimental environment: Intel® Core™i5 CPU M540:
2.53GHz, Linux 3.2.0.51-generic-pae 1686 1386, gcc v4.6.3
with -O2 -mfpmath=sse -msse4, PAPI v5.1.0.2 and PERPI
(pilp5 version).

Accuracy and execution time measurements. Accuracy is
measured as the number of significant bits in the floating-point
mantissa. So, 53 is the maximum value we can expect from
the binary64 format.

A reliable measure of the execution time is more difficult
to obtain. Such measurements are not always reproducible
because of many side effects (operating system, executing
programs,...). Significant measures are provided here using
two software tools. First, PAPI (Performance Application
Programming Interface) [20] allows us to read the physical
counters of cycles or instructions that correspond to an actual
execution. The second software, PERPI [6], measures the
numbers of cycles and instructions of one ideal execution,
that is, one execution by a machine with infinite resources.
The latter measure is more related to a performance potential
than to the actual one as provided by PAPI. Using both tools
provides confident and complementary results.

Horner’s polynomial evaluation. We automatically compen-
sate HORNER’s scheme and compare it with DDHORNER
(a double-double HORNER evaluation) and COMPHORNER (a
compensated HORNER algorithm). The compensated algorithm
and the data come from [7].

DDHORNER -~ CACHORNER

-
SOF ™y d
40 |- . , i
30 | i i
20} Yooy :
10 | ' Y f .
0 % 1 N TP 1 1“’( Nl

07 075 08 08 09 09 1 105 1.1 1.15

Fig. 4: Number of significant bits #,;, when evaluating
pu(r) = (z — 0.75)%(x — 1)!, where z € [0.68,1.15] for
HORNER, DDHORNER, COMPHORNER, and ACHORNER.

Let py(z) = (z — 0.75)%(z — 1)!! be evaluated with
HORNER’s scheme, for 512 = € F N [0.68,1.15]. Figure 4
shows the accuracy of this evaluation using HORNER (orig-
inal), DDHORNER, COMPHORNER, and our automatically
generated ACHORNER algorithm. In each case, we measure
the number of significant bits #;,. The original HORNER’s

accuracy is low since the evaluation is processed in the
neighborhood of multiple roots: most of the time, there is
no significant bit. The other algorithms yield better accuracy.
Our automatically generated algorithm has the same accuracy
behavior as the twice more accurate DDHORNER and COM-
PHORNER.

PApPI1 (PERPI)

instructions cycles IPC
COMPHORNER 532 (566) 277 (62)  1.99 (9.12)
DDHORNER 658 (676) 920 (325) 0.72 (2.08)
ACHORNER 553 (581) 303 (77)  1.82 (7.54)
AC/Comp 1.04 (1.02) 1.09 (1.24) 0.95 (0.82)
AC/DD 0.84 (0.85) 0.33 (0.23) 2.55 (3.62)

TABLE III: Performance measurements of the algorithms:
COMPHORNER, DDHORNER, and ACHORNER. Real values
(PAPI) are the mean of 10% measures. Ideal values (PERPI) are
displayed within parentheses.

Table III shows the real and ideal performances of the
algorithms in terms of numbers of instructions, cycles, and
instructions per cycle (IPC). The automatically generated al-
gorithm has almost the same number of instructions and cycles
than the compensated one. Moreover, Table III confirms that
compensated algorithms expose more ILP than double-double
ones. Even if the code of the algorithm generated by our
approach is slightly different from the code of the existing
algorithm, it appears to be here as accurate and efficient as the
one of [7]. Moreover, our future multi-criteria optimizations
will produce algorithms quite different, by trading off accuracy
against speed [25].

Further results. We now synthesize the case studies of
algorithms and data presented in Table II. They are chosen such
that the algorithm returns no significant digit at the working
precision while all of them are recovered by the twice more
accurate ones.

Table IV presents the differences of the number of signif-
icant bits, between the automatically compensated algorithms
AC and the compensated (COMP) ones, or the double-double
(DD) ones. For example, the first line concerns HORNER’S
scheme of py for data x;. The difference between the number
of significant bits of ACHORNER and COMPHORNER is zero.
The AC algorithm is as accurate as the existing compensated
one. The difference with the DD algorithm is of one bit. Most
of the other results exhibit a similarly good behavior. The slight
differences of the last three data sets for the summation are due
to the different effects of the sum length onto the compensated
and double-double solutions: the accuracy bound of the former
is quadratically affected by the length while being only linearly
dependant in the double-double case. This appears only when
the condition number is large enough.

Figure 5 presents the performance ratios between automat-
ically compensated algorithms (AC) and existing compensated
(CoMmP) or double-double (DD) ones.

Here again, PAPI real measures (the mean of 106 execu-
tions) and PERPI ideal measures are proposed (plain or dotted



Algorithm Data AC-ComP AC-DD
HORNER PH,T1 0 -1
HORNER PH,Z2 0 —0.5
HORNERDER PH, %1 +0.1 —-0.3
HORNERDER PH, X2 +0.3 +0.1
CLENSHAWI PC,T1 0 —1.3
CLENSHAWI pC, T —0.3 —-1.5
CLENSHAWII pc,x1 -0.3 —-1.7
CLENSHAWII PC, T2 0 —-1.2
DECASTELJAU PD, X1 0 0
DECASTELJAU PD, T2 0 0
DECASTELJAUDER pp, 2 0 0
DECASTELJAUDER pp, 2o 0 0
Sum dy 0 0
Sum do 0 0
Sum ds 0 0
SuMm dy 0 -3
Sum ds 0 —4.8
Sum dg 0 -10

TABLE IV: Differences of the number of significant bits
#sig for automatically compensated (AC) algorithm versus
the existing compensated algorithms (COMP), and the double-
double (DD) ones.

lines, respectively). The top and middle parts of Figure 5
show respectively the ratios of the number of cycles and of
the number of instructions. For example, the rightmost plot is
SuM(d;). We see that the instruction ratio AC/ComMp = 1.
The original SUM2 algorithm and our automatically generated
one share the same number of instructions (both for the real
and ideal measurements). The instruction ratio compared to the
DD one is 0.8. This means 20% less generated instructions.
Similarly, compensated algorithms (original and generated)
present only 30% of the total cycles number of the DD one.
The bottom part of Figure 5 shows the ratio of the number of
instructions per cycle. We observe that AC algorithms have the
same features as the original compensated ones. Measurements
confirm also the interest of compensated algorithms, which
have a better ILP potential than DD ones.

Finally, we note that the ILP potential (shown as dotted
lines in Figure 5) is not fully exploited in our experimental
environment. In a more favorable environment, where the
hardware could exploit much more ILP, even better results
for compensated algorithms are expected.

V. CONCLUSIONS AND PERSPECTIVES

In this article we discussed the automated transformation
of programs using floating-point arithmetic. We propose a
new method for automatically compensating the floating-point
errors of the computations, which improves the accuracy
without impacting execution time too much. The automatic
transformation produces some compensated algorithms which
are as accurate and efficient as the ones derived case by case.
The efficiency of our approach has been illustrated on various
case studies.

It remains now to validate this approach (and the CoHD
tool) on real and more sophisticated programs. To achieve
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Fig. 5: Performance ratios between automatically compensated
algorithms (AC) and existing compensated (COMP) or double-
double (DD) ones. Line drawings are real measurements done
with PAPI (mean of 10° values) while dotted ones are ideal
measures done with PERPI.

this, we have to add the support of floating-point division,
square-root, and the elementary functions. Moreover, this work
is actually a first step toward the automatic generation of
multi-criteria program optimizations (with respect to accuracy
and execution time). It will allow us to apply partial error
compensation and optimize for the execution time overhead.
Strategies of partial transformations assured by code synthesis
will be the subject of another paper (which we currently write),
whose abstract is given in [25].
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