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The raising steps method. Application to the Lr Hodge

theory in a compact riemannian manifold.

Eric Amar

Abstract

Let X be a complete metric space and Ω a domain in X. The Raising Steps Method allows
to get from local results on solutions u of a linear equation Du = ω global ones in Ω.

It was introduced in [1] to get good estimates on solutions of ∂̄ equation in domains in a
Stein manifold.

As a simple application we shall get a strong Lr Hodge decomposition theorem for p−forms
in a compact riemannian manifold without boundary, and then we retrieve this known result
by an entirely different and simpler method.

1 Introduction.

This work proposes a way for passing from local to global: the raising steps method, RSM for
short. I introduce it precisely to get Lr − Ls estimates for solutions of the ∂̄ equation in Stein
manifold in [1]. See also [2] to have result in case of intersection of domains in Stein manifolds.

The aim is to generalise it to the case where the ∂̄ operator is replaced by an abstract linear
operator D acting on a domain in a complete metric space.

We shall deal with the following situation: we have a complete metric space X admitting partitions
of unity (see condition (ii) below) and a measure µ.

A domain of X will be a connected open set Ω of X, relatively compact.
We are interested on solutions u of a linear equation Du = ω, in a domain Ω. Precisely fix a

threshold s > 1. Suppose you have a global solution u on Ω of Du = ω with estimates Ls(Ω) →
Ls(Ω). It may happen that we have a constrain:

∃K ⊂ Ls′(Ω) with s′ the conjugate exponent for s, such that ∀u :: Du ∈ Ls(Ω), ∀h ∈
K, 〈Du, h〉 = 0.
In this case, in order for a solution of Du = ω to exist, we need to have ω ⊥ K. With no constrain,
we take K = {0}.

Very often this threshold will be s = 2, since Hilbert spaces are usually more tractable.
Now suppose that we have, for 1 ≤ r ≤ s, local solutions u on U ∩ Ω of Du = ω with estimates

Lr(Ω) → Lt(U ∩ Ω) with a strict increase of the regularity, for instance
1

t
=

1

r
− τ, τ > 0 for any

r ≤ s, then the raising steps method gives a global solution v of Dv = ω which is essentially in
Lt(Ω) if we start with a data ω in Lr(Ω).

In particular we prove:
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Theorem 1.1. (Raising steps theorem) Under the assumptions above, there is a positive constant

c such that for 1 ≤ r ≤ s, if ω ∈ Lr(Ω), ω ⊥ K, there is a u ∈ Lt(Ω) with
1

t
=

1

r
− τ, such that

Du = ω + ω̃, with ω̃ ∈ Ls(Ω), ω̃ ⊥ K and control of the norms.

From this theorem and the fact that there is a global solution v ∈ Ls(Ω) to Dv = ω̄ we get that
u− v is the global solution we are searching for.

To illustrate the method, we shall apply it for the Poisson equation associated to the Hodge
Laplacian in a compact riemannian boundary-less manifold (M, g).
On (M, g) we can define Sobolev spaces W k,r(Ω) (see [8]) and if M is compact these spaces are in
fact independent of the metric. Moreover the Sobolev embeddings are true in this case and a chart
diffeomorphism makes a correspondence between Sobolev spaces in Rn and Sobolev spaces in M.

Let d be the exterior derivative on M and d∗ its adjoint; we define the Hodge laplacian acting
from p differential forms to p differential forms to be: ∆ := dd∗ + d∗d. Because M is compact, we
have that ∆ is self adjoint. The Poisson equation on M is, for a given p-form ω on M, to find a
p-form u on M such that ∆u = ω.

Let Hp be the set of p-harmonic forms in M, i.e. h ∈ Hp ⇐⇒ h ∈ C∞
p (M), ∆h = 0. We have:

∀h ∈ Hp, 〈∆u, h〉 = 〈u,∆h〉 = 0
hence, in order to solve ∆u = ω, we need to have ω ⊥ Hp.

We derive, from a solution of the Poisson equation we get by use of the RSM, a Lr
p Hodge

decomposition for p differential forms on M.
We shall use, for the local results, the classical ones. Let B be a ball in Rn, then:

∀γ ∈ Lr(B), ∃u ∈ W 2,r(B) :: ∆Ru = γ, ‖v0‖W 2,r(B) ≤ C‖γ‖Lr(B).
These non trivial estimates are coming from Gilbarg and Trudinger [6, Theorem 9.9, p. 230] and
the constant C = C(n, r) depends only on n and r.

Then, together with the R.S.M., we get a solution of the Poisson equation for the Hodge laplacian.

Theorem 1.2. Let M be a compact, C∞ Riemannian manifold without boundary. For any r, 1 ≤
r ≤ n/2, if g is a p-form in Lr

p(M) ∩ H⊥
p there is a p-form v ∈ Lt(M) such that ∆v = g and

‖v‖Lt
p(M) ≤ c‖g‖Lr

p(M) with
1

t
=

1

r
−

2

n
.

Moreover for any r > 1 and any p form u solution of ∆u = g, we have u in W 2,r
p (M).

From this result we deduce the Lr Hodge decomposition of p-forms.

Theorem 1.3. Let (M, g) be a compact riemannian manifold without boundary. We have the strong
Lr Hodge decomposition:

∀r, 1 ≤ r < ∞, Lr
p(M) = Hr

p ⊕ Im∆(W 2,r
p (M)) = Hr

p ⊕ Imd(W 1,r
p (M))⊕ Imd∗(W 1,r

p (M)).

The case r = 2 of this decomposition which gives us s = 2 as a threshold, goes to Morrey in 1966
and essentially all results in the L2 case we use here are coming from the basic work of Morrey [10].

This decomposition is an already known result of C. Scott [12] but proved here by an entirely
different method. Critical to Scott’s proof is a nice Lr Gaffney’s inequality which he proved and
used to get the Lr Hodge decomposition, the same way than Morrey [10] did with the L2 Gaffney’s
inequality [5] to get the L2 Hodge decomposition.
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In the case of a compact manifold with boundary, G. Schwarz [11] proved also a Lr Gaffney’s
inequality to get the Lr Hodge decomposition in that case, then he deduced of it a global Lr solution
for the equation ∆u = ω.

In the nice book by F.W. Warner [15], the author proved directly, without the use of Gaffney’s
inequality, a global L2 solution for the equation ∆u = ω in the case of a compact manifold without
boundary. He deduced from it the L2 Hodge decomposition.

Here we use the RSM plus the global L2 solution for the equation ∆u = ω given by Warner [15],
to get a global Lr solution for the equation ∆u = ω and then recover the Lr Hodge decomposition,
without any Gaffney’s inequalities. Hence we get a completely different proof of the known Lr

Hodge decomposition.
Many important applications of the L2 Hodge decomposition in cohomology theory and algebraic

geometry are in the book by C. Voisin [14].
So it may be interesting to have a short proof of this important Hodge decomposition in the Lr

case.
Finally, in the last section we prove, by use of the "double manifold" technique:

Theorem 1.4. Let Ω be a domain in the smooth complete riemannian manifold M and ω ∈ Lr
p(Ω),

then there is a p-form u ∈ W 2,r
p (Ω), such that ∆u = ω and ‖u‖W 2,r

p (Ω) ≤ c(Ω)‖ω‖Lr
p(Ω).

And we make a short incursion in the domain of manifold with boundary:

Corollary 1.5. Let M be a smooth compact riemannian manifold with smooth boundary ∂M. Let
ω ∈ Lr

p(M). There is a p-form u ∈ W 2,r
p (M), such that ∆u = ω and ‖u‖W 2,r

p (M) ≤ c‖ω‖Lr
p(M).

Schwarz [11, Theorem 3.4.10, p. 137] proved a better theorem: you can prescribe the values of u
on the boundary. But again the proof here is much lighter.

2 The Raising Steps Method.

We shall deal with the following situation: we have a complete metric space X admitting
partitions of unity (see condition (ii) below) and a positive σ-finite measure µ.

2.1 Assumptions on the linear operator D.

We shall denote Ep(X) the set of Cp valued fonctions on X. This means that ω ∈ Ep(X) ⇐⇒
ω(x) = (ω1(x), ..., ωp(x)). We put a punctual norm on ω ∈ Ep(X), |ω(x)|2 :=

∑p
j=1 |ωj(x)|

2 and if
U is an open set in X, we consider the Lebesgue space Lr

p(U):

ω ∈ Lr
p(U) ⇐⇒ ‖ω‖rLr

p(U) :=

∫

U

|ω(x)|r dµ(x) < ∞.

The space L2
p(U) is a Hilbert space with the scalar product 〈ω, ω′〉 :=

∫

U

(

∑p
j=1 ωj(x)ω̄

′
j(x)

)

dµ(x).

We are interested in solution of a linear equation Du = ω, where D = Dp is a linear operator
acting on Ep.

In order to have Du = ω, it may happen that we have a constrain: there is a subspace K ⊂ Lr′(Ω)
such that

∀h ∈ K, ∀u :: Du ∈ Lr(Ω), 〈Du, h〉 = 0 ⇐⇒ Du ⊥ K.
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The absence of constrain is done by setting K = {0}.
Now on the integer p will be fixed so the explicit mention of the integer p will be often omitted.

We shall make the following hypotheses.

Let Ω be a domain in X. There is a τ ≥ δ with
1

t
=

1

r
− τ, and a positive constant cl such that:

(i) Local Existence with Increasing Regularity (LEIR): for any x ∈ Ω̄, there is a ball B :=
B(x,Rx) such that if ω ∈ Lr

p(B), we can solve Dux = ω in B′ := B(x,Rx/2) with Lr
p(B)− Lt

p(B
′)

estimates, i.e. ∃ux ∈ Lt(B′), Dux = ω in B′ and ‖ux‖Lt(B′) ≤ cl‖ω‖Lr(B).
It may append, in the case X is a manifold, that we have a better regularity for the local existence:

(i’) Sobolev regularity: if ω ∈ Lr
p(B), we can solve Dux = ω in B′ := B(x,Rx/2) with

Lr
p(B)−W α,r

p (B′) estimates, i.e. ∃ux ∈ W α,r
p (B′), Dux = ω in B′ and ‖ux‖Wα,r

p (B′) ≤ cl‖ω‖Lr(B).

By compactness we can cover Ω̄ by a finite set of balls {B(xj , Rj/2)}j=1,...,N of the previous form.
Set Bj := B(xj , Rj), B′

j := B(xj , Rj/2). Set uj the local solution of Duj = ω with ‖uj‖Lt(B′

j
) ≤

cl‖ω‖Lr(Bj)
.

(ii) Partition of unity: If {B′
j}j=1,...,N is a covering of Ω̄, then there is an associated set of

functions {χj}j=1,...,N such that χj has compact support in B′
j , ∀j = 1, ..., N, 0 ≤ χj(x) ≤ 1 and

∑N
j=1 χj(x) = 1 for x ∈ Ω̄.

(iii) Commutator condition: We set ∆j = ∆(χj , uj) := χjDuj−D(χjuj). There is a constant

δ > 0 such that, with
1

t
=

1

r
− δ, we have:

‖∆j‖Lt(B′

j
) ≤ c(χj)(‖ω‖Lr(Bj)

+ ‖uj‖Lr(Bj)
).

(iv) Global resolvability: We can solve Dw = ω globally in Ω with Ls − Ls estimates, i.e.
∃cg > 0, ∃w s.t. Dw = ω in Ω and ‖w‖Ls(Ω) ≤ cg‖ω‖Ls(Ω), provided that ω ⊥ K.

It may append, in the case X is a manifold, that we have a better regularity for the global
existence:

(iv’) Sobolev regularity: We can solve Dw = ω globally in Ω with Ls
p −W α,s

p estimates, i.e.
∃cg > 0, ∃w s.t. Dw = ω in Ω and ‖w‖Wα,s

p (Ω) ≤ cg‖ω‖Ls(Ω), provided that ω ⊥ K.

Theorem 2.1. (Raising steps theorem) Under the assumptions (i), (ii), (iii), (iv) above, there is
a positive constant cf such that for 1 ≤ r ≤ s, if ω ∈ Lr(Ω), ω ⊥ K there is a u = us ∈ Lt(Ω) with
1

t
=

1

r
− τ, such that Du = ω + ω̃, with ω̃ ∈ Ls(Ω), ω̃ ⊥ K and control of the norms.

If moreover we have (i’) then u ∈ W α,r
p (Ω) with control of the norm.

Proof. Let r ≤ s and ω ∈ Lr(Ω), ω ⊥ K; we start with the covering {B′
j}j=1,...,N and the local

solution Duj = ω with
1

t
=

1

r
− τ, uj ∈ Lt(B′

j) given by hypothesis (i).

If (i’) is true, then we have uj ∈ W α,r
p (B′

j), Duj = ω.
Let {χj}j=1,...,N be the partition of unity subordinate to {B′

j}j=1,...,N given by (ii). Because 0 ≤
χj(x) ≤ 1 we have χjuj ∈ Lt(Ω) hence

‖χjuj‖Lt(Ω) ≤ ‖uj‖Lt(B′

j
) ≤ cl‖ω‖Lr(Ω). (2.1)

Set v0 :=
∑N

j=1 χjuj. Then we have, setting now
1

t0
=

1

r
− τ :
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• v0 ∈ Lt0(Ω) because χjuj ∈ Lt0(Ω) for j = 1, ..., N, and ‖v0‖Lt0 (Ω) ≤ c‖ω‖Lr(Ω) with c = Ncl
by (2.1). If (i’) is true, i.e. X is a manifold, then we can choose χj ∈ D(B′

j), i.e. in the space of C∞

functions of compact support in Bj , hence ‖χjuj‖Wα,r
p (Ω) ≤ c‖uj‖Wα,r

p (B′

j
) ≤ cl‖ω‖Lr(Ω). So

• v0 ∈ W α,r
p (Ω) with ‖v0‖Wα,r

p (Ω) ≤ c‖ω‖Lr(Ω).
We have

• Dv0 =
∑N

j=1 χjDuj +
∑N

j=1∆(χj , uj).

Setting ω1(x) :=
N
∑

j=1

∆(χj , uj)(x), we get

∀x ∈ Ω, Dv0(x) =

N
∑

j=1

χj(x)ω(x) +

N
∑

j=1

∆(χj , uj)(x) = ω(x) + ω1(x)

By hypothesis (iii), ∆(χj , uj) ∈ Ls0(B′
j) with

1

s0
=

1

r
− δ, hence ω1 ∈ Ls0(Ω), with

‖ω1‖Ls0 (Ω) ≤ G‖ω‖Lr(Ω) (2.2)

and G = cslN.
The regularity of ω1 is higher by one step δ > 0 than that of ω. Moreover

∀h ∈ K, 〈ω1, h〉 = 〈ω, h〉 − 〈Dv0, h〉 = 0 because 〈ω, h〉 = 0 and 〈Dv0, h〉 = 0.
If s0 ≥ s we notice that ω1 ∈ Ls(Ω) because Ls0(Ω) ⊂ Ls(Ω) for Ω is relatively compact. So we

are done by setting us = v0, ω̃ = ω1.

If s0 < s we proceed by induction: we set t1 such that
1

t1
=

1

s0
− τ =

1

r
− δ − τ, and we use the

same covering {B′
j}j=1,...,N and the same partition of unity {χj}j=1,...,N and with ω1 in place of ω,

we get ∃v1 ∈ Lt1(Ω), Dv1 = ω1 + ω2 and, setting s1 such that
1

s1
=

1

s0
− δ =

1

r
− 2δ, we have that

the regularity of ω2 raises of 2 times δ from that of ω.
We still have

∀h ∈ K, 〈ω2, h〉 = 〈ω1, h〉 − 〈Dv1, h〉 = 0
so by induction, after a finite number k of steps, we get a sk ≥ s. The linear combination u :=
∑k−1

j=0 (−1)jvj now gives Du = ω + (−1)kωk with ωk ⊥ K. And again we are done by setting

ω̃ = (−1)kωk.
If (i’) is true, then we have v0 ∈ W α,r(Ω) and v1 ∈ W α,s0(Ω), ‖v1‖Wα,s0(Ω) ≤ c‖ω1‖Ls0 (Ω). Hence

by (2.2) we get ‖v1‖Wα,s0(Ω) ≤ cG‖ω‖Lr(Ω).
A fortiori, v1 ∈ W α,r(Ω) because r < s0 with the same control of the norm. Likewise we have
∀j = 1, ..., k, ‖vj‖Wα,r(Ω) ≤ c‖ω‖Lr(Ω), hence the same control of the norm of u.

Corollary 2.2. Under the assumptions of the raising steps theorem and with the global assumption
(iv), there is a constant cf > 0, such that for r ≤ s, if ω ∈ Lr(Ω), ω ⊥ K there is a v ∈ Lt(Ω) with

t := min(s, t0) and
1

t0
=

1

r
− τ, such that

Dv = ω and v ∈ Lt(Ω), ‖v‖Lt(Ω) ≤ c‖ω‖Lr(Ω).

If moreover (i’) and (iv’) are true then we have v ∈ W α,r(Ω) ∩ Lt(Ω) with ‖v‖Wα,r(Ω) ≤ c‖ω‖Lr(Ω).

Proof. By the raising steps Theorem 2.1 we have a u ∈ Lt0(Ω) such that Du = ω+ω̃ with ω̃ ∈ Ls(Ω)
and ω̃ ⊥ K; by hypothesis (iv) we can solve Dṽ = ω̃ with ṽ ∈ Ls(Ω) so it remains to set v := u− ṽ
to get v ∈ Lt(Ω) and Dv = ω.
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If moreover (i’) is true then we have u ∈ W α,r(Ω). If (iv’) is true then we can solve Dṽ = ω̃ with
ṽ ∈ W α,s(Ω). Hence, because r ≤ s, with v := u− ṽ we get v ∈ W α,r(Ω) and Dv = ω. The proof is
complete.

3 Application to Poisson equation on a compact riemannian

manifold.

3.1 Local existence with increasing regularity.

In order to have the local result, we choose a chart (V, ϕ := (x1, ..., xn)) so that gij(y) = δij and
ϕ(V ) = B where B = Be is an Euclidean ball centered at ϕ(y) = 0 and gij are the components of
the metric tensor w.r.t. ϕ.

Because I was unable to find an easy proof of the following theorem in the literature, I reprove it
for the reader’s convenience.

Theorem 3.1. For any y ∈ M, there are open sets W ⊂ W̄ ⊂ V ⊂ M, y ∈ W, such that we have:
∀ω ∈ Lr

p(W ), ∃u ∈ W 2,r
p (W ) :: ∆u = ω, ‖u‖W 2,r(W ) ≤ C‖ω‖Lr(W ).

Proof. Of course the operator d on p-forms is local and so is d∗ as a first order differential operator.
We start with a chart (V, ϕ) of M such that ϕ(y) = 0 ∈ Rn and the metric tensor read in this chart
at y is the identity.

Then the Hodge laplacian ∆ϕ read by ϕ in a ball B := B(0, R) ⊂ R
n is not so different from that

of Rn in B when acting on p-forms in B. We set ∆ϕωϕ = ∆Rωϕ + Aωϕ, where ωϕ is the p-form ω
read in the chart (V, ϕ) and A is a matrix valued second order operator with C∞ smooth coefficients
such that A : W 2,r(B) → Lr(B) with, for a R small enough ‖Av‖Lr(B) ≤ c‖v‖W 2,r(B).

This is true because at the point y ∈ V we are in the flat case and if R is small enough, the
difference A := ∆ϕ −∆R in operator norm W 2,r(B) → Lr(B) goes to 0 when R goes to 0, because
ϕ ∈ C2 and the metric tensor g is also C2.

We know that ∆R operates component-wise on the p-form γ, so we have
∀γ ∈ Lr

p(B), ∃v0 ∈ W 2,r
p (B) :: ∆Rv0 = γ, ‖v0‖W 2,r(B) ≤ C‖γ‖Lr(B),

simply setting the component of v0 to be the Newtonian potential of the corresponding component
of γ in U. This way v0 is linear with respect to γ. These non trivial estimates are coming from
Gilbarg and Trudinger [6, Thorem 9.9, p. 230] and the constant C = C(n, r) depends only on n
and r.

So we get ∆Rv0 + Av0 = γ + γ1, with
γ1 = Av0 ⇒ ‖γ1‖Lr(B) ≤ c‖v0‖W 2,r(B) ≤ cC‖γ‖Lr(B).

We solve again
∃v1 ∈ W 2,r

p (B) :: ∆Rv1 = γ1, ‖v1‖W 2,r(B) ≤ C‖γ1‖Lr(B) = C2c‖γ‖Lr(B),
and we set

γ2 := Av1 ⇒ ‖γ2‖Lr(B) ≤ c‖v1‖W 2,r(B) ≤ C‖γ1‖Lr(B) ≤ C2c2‖γ‖Lr(B).
And by induction:

∀k ∈ N, γk := Avk−1 ⇒ ‖γk‖Lr(B) ≤ c‖vk−1‖W 2,r(B) ≤ C‖γk−1‖Lr(B) ≤ Ckck‖γ‖Lr(B)

and
∃vk ∈ W 2,r

p (B) :: ∆Rvk = γk, ‖vk‖W 2,r(B) ≤ C‖γk‖Lr(B) ≤ Ck+1ck‖γ‖Lr(B).
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Now we set v :=
∑

j∈N (−1)jvj . This series converges in norm W 2,r(B), provided that we choose

the radius of the ball B small enough to have cC2 < 1, and we get:

∆ϕv = ∆Rv + Av =
∑

j∈N

(−1)j(∆Rvj + Avj) = γ,

the last series converging in Lr(B).
In fact every step is linear and we get that v is linear in γ.
Going back to the manifold M with γ := ωϕ and setting uϕ := v, W := ϕ−1(B), we get the right

estimates:
∃u ∈ W 2,r(W ) :: ∆u = ω in W, ‖u‖W 2,r(W ) ≤ C‖ω‖Lr(W ),

because the Sobolev spaces for B go to the analogous Sobolev spaces for W in M.

Now the next corollary is precisely the result we are searching for.

Corollary 3.2. For any y ∈ M, there are open sets V, W ⋐ V, y ∈ W, such that we have for
r ≤ 2:
∀ω ∈ Lr

p(V ), ∃u ∈ W 2,r(W ) ∩ Lt
p(W ) :: ∆u = ω, ‖u‖W 2,r(W ) ≤ C‖ω‖Lr(V ), ‖u‖Lt

p(W ) ≤ C‖ω‖Lr
p(V )

with
1

t
=

1

r
−

2

n
, and ∇u ∈ W 1,r

p (W ).

Proof. The Theorem 3.1 gives u ∈ W 2,r(W ) such that ∆u = ω, ‖u‖W 2,r(W ) ≤ C‖ω‖Lr(V ), hence we

get that ∇u ∈ W 1,r
p (W ) with the same control: ‖∇u‖W 1,r(W ) ≤ C‖ω‖Lr(V ).

For the first statement it remains to apply the Sobolev embedding theorems which are true
here.

So we are in a special case of the previous section with D := ∆ and, because ∆ is essentially self
adjoint, we have here K := Hp(M) where Hp(M) is the space of C∞ harmonic p-forms in M.

We shall need the following lemma.

Lemma 3.3. Let ∆ϕ be a second order elliptic matrix operator with C∞ coefficients operating on p-
forms v defined in U ⊂ Rn. Let B := B(0, R) a ball in Rn, B′ := B(0, R/2) and suppose that B ⋐ U.
Then we have an interior estimate: there are constants c1, c2 depending only on n = dimRM, r and
the C1norm of the coefficients of ∆ϕ in B̄ such that

∀v ∈ W 2,r
p (B), ‖v‖W 2,r(B′) ≤ c1‖v‖Lr(B) + c2‖∆ϕv‖Lr(B). (3.3)

Proof. For a 0-form this lemma is exactly [6, Theorem 9.11].
For p-forms we cannot avoid the use of deep results on elliptic systems of equations.
Let v be a p-form in B ⊂ Rn. We use the interior estimates in [10, §6.2, Thm 6.2.6]. In our

context, second-order elliptic system, and with our notations, with r > 1, we get:

∃C > 0, ∀v ∈ W 2,r
p (B), ‖v‖W 2,r(B′) ≤ c1R

−2‖v‖Lr(B) + c2‖∆ϕv‖Lr(B),

already including the dependence in R.
The constants c1, c2 depend only on r, n := dimM and the bounds and moduli of continuity of

all the coefficients of the matrix ∆ϕ. (In [10], p. 213: the constant depends only on E and on E ′.)
In particular, if ∆ϕ has its coefficients near those of ∆R in the C1 norm, then the constants c1, c2

are near the ones obtained for ∆R.
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Now we deduce from it local interior regularity for the laplacian on a smooth compact manifold
without boundary.

Lemma 3.4. Let (M, g) be a riemannian manifold. For x ∈ M, R > 0, we take a geodesic
ball B(x,R) such that, read in a chart (V, ϕ), B(x,R) ⋐ V, the metric tensor at the center is the
identity.
We have a local Calderon Zygmund inequality on the manifold M. For any r > 1, there are constants
c1, c2 depending only on n = dimRM, r and R, such that:

∀u ∈ W 2,r(B(x,R)), ‖u‖W 2,r(B(x,R/2)) ≤ c1‖u‖Lr(B(x,R)) + c2‖∆u‖Lr(B(x,R)).

Proof. We transcribe the problem in Rn by use of a coordinates path (V, ϕ) exactly the same way
we did to prove Theorem 3.1. The Hodge laplacian is the second order elliptic matrix operator
∆ϕ with C∞ coefficients operating in ϕ(V ) ⊂ Rn. By the choice of a R small enough we can apply
Lemma 3.3, to the euclidean balls B′ := Be(0, R

′
e) ⊂ ϕ(B(x,R/2)), B := Be(0, Re) ⊂ ϕ(B(x,R))

and we get, with uϕ the p-form u read in the chart (V, ϕ),

‖uϕ‖W 2,r(B′) ≤ c1R
−2‖uϕ‖Lr(B) + c2‖∆ϕuϕ‖Lr(B).

The Lebesgue measure on U and the canonical measure dvg on B(x,R) are equivalent; so the
Lebesgue estimates and the Sobolev estimates up to order 2 on U are valid in B(x,R) up to a
constant.

So passing back to M, we get, with A := ϕ−1(B), A′ := ϕ−1(B′)

‖u‖W 2,r(A′) ≤ c1‖u‖Lr(A) + c2‖∆u‖Lr(A)).

So taking a smaller ball centered at x we end the proof of the lemma.

Theorem 3.5. Let M be a compact C∞ Riemannian manifold without boundary. We have:

∀ω ∈ Lr
p(M) ∩ Hp(M)⊥, r ∈ (1,

n

2
); ∃u ∈ Ls

p(M) :: ∆u = ω,

with
1

s
=

1

r
−

2

n
. Moreover u ∈ W 2,r(M), ‖u‖W 2,r(M) ≤ c‖ω‖Lr(M).

Proof. First by duality we get the range r > 2. For this we shall proceed as we did in [1], using an
avatar of the Serre duality [13]. We take t as in corollary 2.2.

Let g ∈ Lt′

p (M) ∩ Hp(M)⊥, we want to solve ∆v = g, with t′ > 2 and t′ conjugate to t.
We know by the previous part that, with r ≤ 2,

∀ω ∈ Lr
p(M) ∩ Hp(M)⊥, ∃u ∈ Lt

p(M), ∆u = ω, ‖u‖Lt(M) ≤ c‖ω‖Lr(M). (3.4)

Consider the linear form
∀ω ∈ Lr

p(M), L(ω) := 〈u, g〉,
where u is a solution of (3.4); in order for L(ω) to be well defined, we need that if u′ is another
solution of ∆u′ = ω, then 〈u− u′, g〉 = 0; hence we need that g must be "orthogonal" to p-forms ϕ
such that ∆ϕ = 0 which is precisely our assumption.

Hence we have that L(f) is well defined and linear; moreover
|L(f)| ≤ ‖u‖Lt(M)‖g‖Lt′ (M) ≤ c‖ω‖Lr(M)‖g‖Lt′(M).

So this linear form is continuous on ω ∈ Lr
p(M) ∩Hp(M)⊥. By the Hahn Banach Theorem there is

a form v ∈ Lr′

p (M) such that:
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∀ω ∈ Lr
p(M) ∩Hp(M)⊥, L(ω) = 〈ω, v〉 = 〈u, g〉.

But ω = ∆u, so we have, because ∆ is essentially self adjoint and M is compact, 〈ω, v〉 = 〈∆u, v〉 =
〈u,∆v〉 = 〈u, g〉, for any u ∈ Lt

p(M) :: ∆u ∈ Lr
p(M). In particular for u ∈ C∞

p (M). Now the

hypothesis (iii) gives that ∆v = g in Lt′

p (M), with v ∈ Lr′

p (M). So we get:

∀g ∈ Lt′

p (M) ∩ Hp(M)⊥, ∃v ∈ Lr′

p (M), ∆v = g.
It remains to prove the moreover. The condition (i’) is true by the local existence Theorem 3.1.

The condition (iv’) is true in the case of the Hodge Laplacian on a compact boundary-less manifold
by Morrey’s results for L2(M), so we are done for r ≤ 2.

For r > 2, Lemma 3.4 gives us by compactness that there is a smaller R > 0 and bigger constants
c1, c2 such that:

∀x ∈ M, ‖u‖W 2,r(B(x,R/2)) ≤ c1‖u‖Lr(B(x,R)) + c2‖∆u‖Lr(B(x,R)). (3.5)

We take for u our global solution in Lr
p(M). We have that ∆u = ω ∈ Lr

p(M) hence we can apply
the estimate (3.5) to u:

∀x ∈ M, ‖u‖W 2,r(B(x,R/2)) ≤ c1‖u‖Lr(B(x,R)) + c2‖∆u‖Lr(B(x,R)) ≤ C‖ω‖Lr(M).
Now it remains to cover M with a finite set of balls of the type B(x,R/2) to end the proof.

3.2 The Lr Hodge decomposition.

In order to deduce the Hodge decomposition from the existence of a good solution to the Poisson
equation, we shall need a little bit more material.

3.2.1 Basic facts.

Let H2
p be the set of harmonic p-forms in L2(M), i.e. p-form ω such that ∆ω = 0, which is

equivalent here to dω = d∗ω = 0.
The classical L2 theory of Morrey [10] gives, on a compact manifold M without boundary:

Hp := H2
p ⊂ C∞(M) [ [10], (vi) p. 296]

dimRHp < ∞ [ [10], Theorem7.3.1].
This gives the existence of a linear projection from Lr

p(M) → Hp:

∀v ∈ Lr
p(M), H(v) :=

N
∑

j=1

〈v, ej〉ej

where {ej}j=1,...,N is an orthonormal basis for Hp. This is meaningful because v ∈ Lr
p(M) can be

integrated against ej ∈ Hp ⊂ C∞(M). Moreover we have v−H(v) ∈ Lr
p(M) ∩H⊥

p in the sense that
∀h ∈ Hp, 〈v −H(v), h〉 = 0; it suffices to test on h := ek. We get

〈v −H(v), ek〉 = 〈v, ek〉 −

〈

N
∑

j=1

〈v, ej〉ej , ek

〉

= 〈v, ek〉 − 〈v, ek〉 = 0.

Let v ∈ Lr
p(M). Set h := H(v) ∈ Hp, and ω := v − h. We have that ∀k ∈ Hp, 〈ω, k〉 =

〈v −H(v), k〉 = 0. Hence we can solve ∆u = ω with u ∈ W 2,r
p (M) ∩Ls

p(M). So we get v = h+∆u
which means:

Lr
p(M) = Hr

p ⊕ Im∆(W 2,r
p (M)).

We have a direct decomposition because if ω ∈ Hp ∩ Im∆(W 2,r
p (M)), then ω ∈ C∞(M) and

ω = ∆u ⇒ ∀k ∈ Hp, 〈ω, k〉 = 0
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so choosing k = ω ∈ Hp we get 〈ω, ω〉 = 0 hence ω = 0.
Now we are in position to prove:

Theorem 3.6. If (M, g) is a compact riemannian manifold without boundary; we have the strong
Lr Hodge decomposition:

∀r, 1 ≤ r < ∞, Lr
p(M) = Hr

p ⊕ Imd(W 1,r
p (M))⊕ Imd∗(W 1,r

p (M)).

Proof. We already have
Lr
p(M) = Hr

p ⊕ Im∆(W 2,r
p (M))

where ⊕ means uniqueness of the decomposition.
So: ∀ω ∈ Lr

p(M) ∩Hr⊥
p , ∃u ∈ W 2,r

p (M) :: ∆u = ω.
From ∆ = dd∗ + d∗d we get ω = d(d∗u) + d∗(du) with du ∈ W 1,r

p (M) and d∗u ∈ W 1,r
p (M), so

∀ω ∈ Lr
p(M) ∩Hr⊥

p , ∃α ∈ W 1,r
p−1(M), ∃β ∈ W 1,r

p+1(M) :: ω = α+ β,

simply setting α = d(d∗u), β = d∗(du), which gives α ∈ d(W 1,r
p−1(M)) and β ∈ d∗(W 1,r

p+1(M)) and
this proves the existence.

The uniqueness is given by Lemma 6.3 in [12] and I copy this simple (but nice) proof here for the
reader’s convenience.

Suppose that α ∈ W 1,r
p−1(M), β ∈ W 1,r

p+1(M), h ∈ Hp satisfy dα+ d∗β + h = 0.
Let ϕ ∈ C∞

p (M), because of the classical C∞-Hodge decomposition, there are η ∈ C∞
p−1(M), ω ∈

C∞
p+1(M) and τ ∈ Hp satisfying ϕ = dη + d∗ω + τ.

Notice that 〈d∗β, dη〉 = 〈β, d2η〉 = 〈β, 0〉 = 0 and 〈h, dη〉 = 〈d∗h, η〉 = 0, by the duality between d
and d∗. Linearity then gives

〈dα, dη〉 = 〈dα + d∗β + h, dη〉 = 〈0, dη〉 = 0. (3.6)

Finally we have
〈dα, ϕ〉 = 〈dα, dη〉+ 〈dα, d∗ω〉+ 〈dα, τ〉

= 0 +
〈

α, d∗2ω
〉

+ 〈α, dτ〉 by (3.6)
= 〈α, 0〉+ 〈α, 0〉 because d∗2 = 0 and τ ∈ Hp

= 0.
Since C∞

p (M) is dense in Lr′

p (M), r′ being the conjugate exponent of r, and ϕ is arbitrary, we see
that dα = 0. Analogously, we see that d∗β = 0 and it follows that h = 0.

4 Case of Ω a domain in M.

Let Ω be a domain in a C∞ smooth complete riemannian manifold M, compact or non compact;
we want to show how the results in case of a compact boundary-less manifold apply to this case.

A classical way to get rid of a "annoying boundary" of a manifold is to use its "double". For
instance: Duff [4], Hörmander [9, p. 257]. Here we copy the following construction from [7, Appendix
B].

Let N be a relatively compact domain of M such that ∂N is a smooth hypersurface and Ω̄ ⊂ N.
The "Riemannian double" D := D(N) of N, obtained by gluing two copies of N along ∂N, is a
compact Riemannian manifold without boundary. Moreover, by its very construction, it is always
possible to assume that D contains an isometric copy of the original domain N, hence of the original
Ω. We shall also write Ω for its isometric copy to ease notations.
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We shall need the following difficult result by N. Aronszajn, A. Krzywicki and J. Szarski [3], a
strong continuation property, which says that if, for any compact set K ⊂ M, the p-form ω satisfies
the following inequality

〈dω, dω〉+ 〈d∗ω, d∗ω〉 ≤ C(K)〈ω, ω〉 (4.7)

uniformly on K, then if ω is zero to infinite order at a point x0 ∈ M, we have that ω ≡ 0. The
regularity conditions on ω are to be L2(M) with strong L2 derivatives. The p-form ω must vanish
at x0 with all derivatives in "L1 mean", which is also much weaker than the usual notion.
We shall apply it to the compact manifold D and with a C∞ harmonic p-form h, hence which
satisfies inequality (4.7), and which is zero on an open non void set, which also implies a zero of
infinite order.

The main lemma of this section is:

Lemma 4.1. Let ω ∈ Lr
p(Ω), then we can extend it to ω′ ∈ Lr

p(D) such that: ∀h ∈ Hp(D), 〈ω′, h〉D =
0.

Proof. Recall that Hp(D) is the vector space of harmonic p-form in D, it is of finite dimension Kp

and Hp(D) ⊂ C∞(D).
Make an orthonormal basis {e1, ..., eKp

} of Hp(D) with respect to L2
p(D), by the Gram-Schmidt

procedure.We get 〈ej, ek〉D :=
∫

D
ejekdV = δjk.

Set λj := 〈ω1Ω, ej〉 = 〈ω, ej1Ω〉, j = 1, ..., Kp, which makes sense since ej ∈ C∞(D) ⇒ ej ∈ L∞(D),
because D is compact.

We shall see that the system {ek1D\Ω}k=1,...,Kp
is a free one. Suppose this is not the case, then it will

exist γ1, ..., γKp
, not all zero, such that

∑Kp

k=1 γkek1D\Ω = 0 in D\Ω. But the function h :=

Kp
∑

k=1

γkek

is in Hp(D) so if h is zero in D\Ω which is non void, then h ≡ 0 in D by the N. Aronszajn, A.
Krzywicki and J. Szarski [3] result. This is not possible because the ek make a basis for Hp(D). So
the system {ek1D\Ω}k=1,...,Kp

is a free one.
We set γjk :=

〈

ek1D\Ω, ej1D\Ω

〉

hence we have that det{γjk} 6= 0. So we can solve the linear system
to get {µk} such that

∀j = 1, ..., Kp,

Kp
∑

k=1

µk

〈

ek1D\Ω, ej
〉

= λj. (4.8)

We put ω′′ :=
∑Kp

j=1 µjej1D\Ω and ω′ := ω1Ω − ω′′1D\Ω = ω − ω′′. From (4.8) we get

∀j = 1, ..., Kp, 〈ω′, ej〉D = 〈ω, ej〉 − 〈ω′′, ej〉 = λj −

Kp
∑

k=1

µk

〈

ek1D\Ω, ej
〉

= 0.

So the p-form ω′ is orthogonal to Hp. Moreover ω′
|Ω = ω and clearly ω′′ ∈ Lr

p(D) being a finite

combination of ej1D\Ω, so ω′ ∈ Lr
p(D) because ω itself is in Lr

p(D). The proof is complete.

Now let ω ∈ Lr(Ω) and see Ω as a subset of D; then extend ω as ω′ to D by Lemma 4.1.

11



By the results on the compact manifold D, because ω′ ⊥ Hp(D), we get that there exists u′ ∈
W 2,r

p (D), u′ ⊥ Hp(D), such that ∆u′ = ω′; hence if u is the restriction of u′ to Ω we get u ∈
W 2,r

p (Ω), ∆u = ω in Ω.
Hence we proved

Theorem 4.2. Let Ω be a domain in the smooth complete riemannian manifold M and ω ∈ Lr
p(Ω),

then there is a p-form u ∈ W 2,r
p (Ω), such that ∆u = ω and ‖u‖W 2,r

p (Ω) ≤ c(Ω)‖ω‖Lr
p(Ω).

As for domains in Rn, there is no constrain for solving the Poisson equation in this case.

Corollary 4.3. (Of the proof) Let M be a smooth compact riemannian manifold with smooth
boundary ∂M. Let ω ∈ Lr

p(M). There is a form u ∈ W 2,r
p (M), such that ∆u = ω and ‖u‖W 2,r

p (M) ≤

c‖ω‖Lr
p(M).

Proof. We can build the "double manifold" D := D(M) which is compact without boundary.
Copying the proof of Theorem 4.2 we extend the form ω defined on M, viewed as a subset in D, to
a form ω′ in Lr

p(D) orthogonal to Hp(D) so there is a u′ :: ∆u′ = ω′ in D. We just take u := u′
|M to

finish the proof.
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