
HAL Id: hal-01158323
https://hal.science/hal-01158323v1

Preprint submitted on 31 May 2015 (v1), last revised 3 Oct 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The raising steps method. Applications to the Lr Hodge
theory in a compact riemannian manifold.

Eric Amar

To cite this version:
Eric Amar. The raising steps method. Applications to the Lr Hodge theory in a compact riemannian
manifold.. 2015. �hal-01158323v1�

https://hal.science/hal-01158323v1
https://hal.archives-ouvertes.fr


The raising steps method. Applications to the Lr Hodge

theory in a compact riemannian manifold.

Eric Amar

Abstract

Let X be a smooth manifold and Ω a domain in X. The Raising Steps Method allows to
get from local results on solutions u of equation Du = ω global ones in Ω.

It was introduced in [1] to get good estimates on solutions of ∂̄ equation in domains in a
Stein manifold.

It is extended here to linear partial differential operator of any finite order.
As a simple application we shall get a Lr Hodge decomposition theorem for p forms in

a compact riemannian manifold without boundary, and then we retrieve known results of C.
Scott [7] by an entirely different method.

1 Introduction.

In all the sequel a domain of a smooth manifold X will be a connected open set Ω of X, relatively
compact and with C∞ smooth boundary.

The raising steps method allows to get from local results on solutions u of an equation Du = ω,
global ones in a domain Ω of a smooth manifold X. Precisely fix a threshold s > 1 such that you
have a global solution u on Ω of Du = ω with estimates Ls(Ω) → Ls(Ω) ; very often this threshold
will be s = 2, since Hilbert spaces are usually more tractable. Suppose that we have, for 1 ≤ r < s,
local solutions u on U ∩ Ω of Du = ω with estimates Lr(Ω) → Lt(U ∩ Ω) with a strict increase of

the regularity, i.e.
1

t
=

1

r
− δ, δ > 0 for any r ≤ s, then you get a global solution v of Dv = ω

which is essentially in Lt(Ω). I introduced this method in [1] to get solutions for the ∂̄ equation with
good estimates in domains in Stein manifold. I extend it here to linear partial differential operator
D of any finite order m.

We shall apply this method for the Poisson equation associated to the Hodge Laplacian in a
compact riemannian manifold (M, g) of dimension n. Then we derive from this result a Lr

p Hodge
decomposition for p differential forms on M. This way we recover already known results of C.
Scott [7] but by an entirely different method. The case r = 2 of this decomposition, which gives
us s = 2 as a threshold, goes to Morrey and essentially all results in the L2 case we use here are
coming from the basic work of Morrey [6].
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Precisely let Lr
p(M) be the set of p forms in the Lebesgue space Lr(M), W k,r

p (M) the Sobolev
space of p forms which have all their (covariant) derivatives up to order k in Lr(Ω), and Hp the set
of harmonic p forms on M. We get the following Hodge decomposition :

Theorem 1.1 Let (M, g) be a compact riemannian manifold without boundary ; we have the strong
Lr Hodge decomposition :
∀r, 1 ≤ r < ∞, Lr

p(M) = Hr
p ⊕ Im∆(W 2,r

p (M)) = Hr
p ⊕ Imd(W 1,r

p (M))⊕ Imd∗(W 1,r
p (M)).

We shall denote Λp(X) the set of C∞ p forms on X. Let dp be the exterior differential on Λp dp
→

Λp+1, then applications of this decomposition are well known and important. Fix a p in 0, 1, ..., n

and let Λp−1 dp−1

→ Λp dp
→ Λp+1 ; now consider the cohomology class Hp(M) := kerdp/Imdp−1 then

• any class in Hp(M) contains exactly one harmonic p form ;
• the dimension bp(M) of Hp(M) is finite and equals the dimension of the space of harmonic p

forms ;
and many other applications in cohomology theory and in other areas, see for instance C. Scott [7].

Finally we use a nice construction due to Guneysu and Pigola [4] to get good solutions for the
Poisson equation associated to the Hodge Laplacian in a relatively compact domain in a complete,
compact or non compact, riemannian manifold :

Theorem 1.2 Let Ω be a domain in the smooth complete riemannian manifold M and ω ∈ Lr
p(Ω),

then there is a form u ∈ W 2,r
p (Ω), such that ∆u = ω and ‖u‖W 2,r

p (Ω) ≤ c(Ω)‖ω‖Lr
p(Ω).

This work will be presented the following way :
• In the next section we state precisely the hypotheses we need for the method to work.
• In the third section we state and prove the raising steps theorem.
• In the fourth section we apply it in the case of a compact riemannian manifold.
• In section 5 we prove the Lr

p Hodge decomposition theorem.
• In the last section we get good solutions for the Poisson equation associated to the Hodge

Laplacian in a relatively compact domain in a complete, compact or not, riemannian manifold.

2 Hypotheses.

We shall deal with the following situation : we have a C∞ smooth manifold X admitting
partitions of unity and a measure µ equivalent to the Lebesgue measure in each coordinates patch,
so we have the associated Lebesgue spaces Lr(X).

We suppose we have a punctual norm on Λp(X), |ω(x)| and if Ω is an open set in X, the closure
of Λp(X) for this norm in the Lebesgue space Lr(Ω) will be denoted Lr

p(Ω) :

ω ∈ Lr
p(Ω) ⇐⇒ ‖ω‖rLr

p(Ω) :=

∫

Ω

|ω(x)|r dµ(x) < ∞.

Let Dp(Ω) be the set of C∞ p forms of compact support in Ω. We are interested in solution of a
linear equation Du = ω, where D = Dp is a linear operator acting on p forms, with eventually the
constraint Cω = 0, where C is also a linear operator such that CD = 0. One aim is to apply this
to the Hodge Laplace equation with D = ∆.

Now on the degree p of the forms will be fixed and all the hypotheses will be made for this precise
degree ; so the explicit mention of the degree will be often omitted.
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2.1 Local regularity.

Let Ω be a domain in X. We shall make the following assumptions on Ω and on D. First if

u ∈ Dp(X), Du ∈ Dp(X). There is a τ ≥ δ with
1

t
=

1

r
− τ, such that :

(i) there is a covering {Uj}j=1,...,N of Ω̄ such that if ω ∈ Lr(Ω), Cω = 0, we can solve Duj = ω
in Ωj := Uj ∩ Ω with Lr(Ω)− Lt(Ωj) estimates, i.e. ∃cl > 0 such that

∃uj ∈ Lt(Ωj), Duj = ω in Ωj and ‖uj‖Lt(Ωj)
≤ cl‖ω‖Lr(Ωj)

.

If we have Sobolev spaces W k,r
p (U) defined for p forms on U ⊂ X, then we may also suppose that :

(i’) there is a β ≥ 1 such that we can solve Duj = ω in Ωj := Uj ∩ Ω and
∃cdl > 0, ∀j = 1, ..., N, ∃uj ∈ W β,r(Ωj), Duj = ω in Ωj and ‖uj‖W β,r(Ωj)

≤ cdl‖ω‖Lr(Ω).

Fix χj a C∞ smooth partition of unity subordinate to {Uj}j=1,...,N and relative to Ω̄, i.e. :

∀j = 1, ..., N, χj ∈ D(Uj), 0 ≤ χj ≤ 1, ∀x ∈ Ω̄,
∑N

j=1 χj(x) = 1.

Now ∀χ ∈ D0(X), ∀u ∈ Lt
p(Ω), we set B(χ, u) := D(χu)− χD(u) ; this operator is linear in χ and

u and we ask that :

(ii) we have ∀j = 1, ..., N, B(χj, uj) ∈ Lt′

p (Ωj), with
1

t′
=

1

r
−δ ; precisely, with the local solution

uj given by (i) :
‖B(χj , uj)‖Lt′(Ωj)

≤ c(χj)‖ω‖Lr(Ωj)
.

Again if we have Sobolev spaces W k,r
p (U) defined for p forms on U ⊂ X, then we may also suppose

that there is a constant csl > 0 :
(ii’) ∀j = 1, ..., N, B(χj , uj) ∈ W 1,r

p (Ωj) and ‖B(χj , uj)‖W 1,r(Ωj)
≤ csl‖ω‖Lr(Ωj)

.

We notice here that the estimate ‖B(χj, uj)‖Lt′(Ωj)
≤ c(χj)‖ω‖Lr(Ωj)

cannot be true for any u :

take D = ∆ the laplacian and u a harmonic function, then ω = Du = 0 but B(χ, u) 6= 0 if u 6= 0.
We ask this specifically for the given χj, uj.

Remark 2.1 Clearly the hypotheses done are valid for a strictly elliptic linear partial differential
operator (or a system) of finite order m, and Ω relatively compact.

2.2 Global solution.

(iii) We can solve Dw = ω globally in Ω with Ls − Ls estimates, i.e.
∃cg > 0, ∀ω ∈ Ls(Ω) ∃w ∈ Ls(Ω) s.t. Dw = ω in Ω and ‖w‖Ls(Ω) ≤ cg‖ω‖Ls(Ω)

provided that Cω = 0.
And again if we have Sobolev spaces defined on X,

(iii’) there is a 0 ≤ γ such that we can solve Dw = ω globally in Ω with Ls −W γ,s estimates, i.e.
∃cdg > 0, ∃w s.t. Dw = ω in Ω and ‖w‖W γ,s(Ω) ≤ cdg‖ω‖Ls(Ω) provided that Cω = 0.

3 The "raising steps" method.

Theorem 3.1 (Raising steps theorem) Under the assumptions above, there is a constant cf > 0,

such that for r ≥ 1, s ≥ r, if ω ∈ Lr(Ω), Cω = 0 there is a u = us ∈ Lt(Ω) with
1

t
=

1

r
− τ, such

that Du = ω + ω̃, with ω̃ ∈ Ls(Ω), Cω̃ = 0 and ‖u‖Lt(Ω) ≤ cf‖ω‖Lr(Ω), ‖ω̃‖Ls(Ω) ≤ cf‖ω‖Lr(Ω).
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If (i’), (ii’) are fulfilled we also have
u ∈ W β,r(Ω), ‖u‖W β,r(Ω) ≤ cf‖ω‖Lr(Ω).

Proof.
Let r ≤ s and ω ∈ Lr(Ω), Cω = 0 ; we start with the covering {Uj}j=1,...,N and the local solution

Duj = ω with
1

t
=

1

r
− τ, uj ∈ Lt(Ωj) given by hypothesis (i).

Let χj be the C∞ smooth partition of unity subordinate to {Uj}j=1,...,N and relative to Ω̄, fixed in
the hypotheses ; because Ωj = Ω ∩ Uj and χj ∈ D(Uj) we have χjuj ∈ Lt(Ω) with

‖χjuj‖Lt(Ω) ≤ ‖uj‖Ls(Ωj)
≤ cl‖ω‖Lr(Ωj)

≤ cl‖ω‖Lr(Ω). (3.1)

Moreover if (i’) is true, we have uj ∈ W β,r(Uj) ⇒ χjuj ∈ W β,r(Ω) and :
‖χjuj‖W β,r(Ω) ≤ c(χj)‖uj‖W β,r(Ωj)

≤ c(χj)cdl‖ω‖Lr(Ωj)
≤ c(χj)cdl‖ω‖Lr(Ω).

Set v0 :=

N
∑

j=1

χjuj. Then we have, setting now
1

t0
=

1

r
− τ,

• v0 ∈ Lt0(Ω) because χjuj ∈ Lt0(Ω) for j = 1, ..., N, and ‖v0‖Lt0 (Ω) ≤ c‖ω‖Lr(Ω) with c = Ncl
by (3.1).

Moreover if (i’) is true we have uj ∈ W β,r(Ωj), ‖uj‖W β,r(Ωj)
≤ cdl‖ω‖Lr(Ω) hence χjuj ∈ W β,r

p (Ω),

with ‖χjuj‖W β,r(Ω) ≤ c(χj)cdl‖ω‖Lr(Ω). But v0 :=
N
∑

j=1

χjuj so we get

‖v0‖W β,r(Ω) ≤

N
∑

j=1

‖χjuj‖W β,r(Ω) ≤ cpucdl‖ω‖Lr(Ω),

with cpu :=

N
∑

j=1

c(χj). Hence v0 ∈ W β,r
p (Ω) with ‖v0‖W β,r(Ω) ≤ cpucdl‖ω‖Lr(Ω).

• Dv0 =
N
∑

j=1

χjDuj +
N
∑

j=1

B(χj , uj) hence

∀x ∈ Ω, Dv0(x) =

N
∑

j=1

χj(x)ω(x) +

N
∑

j=1

B(χj , uj)(x) = ω(x) + ω1(x)

with ω1 :=
N
∑

j=1

B(χj , uj)(x).

By hypothesis (ii), B(χj , uj) ∈ Ls0(Uj) with
1

s0
=

1

r
− δ, hence ω1 ∈ Ls0(Ω), with

‖ω1‖Ls0 (Ω) ≤ G‖ω‖Lr(Ω) (3.2)

and G = cslN.
So the regularity of ω1 is higher by one step δ > 0 than that of ω. Moreover Cω1 = CDv0−Cω = 0

because CD = 0 and Cω = 0.
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If s0 ≥ s we notice that ω1 ∈ Ls(Ω) because then Ls0(Ω) ⊂ Ls(Ω) for Ω is relatively compact.
So we are done by setting us = v0, ω̃ = ω1.

If s0 < s we proceed by induction : setting t1 such that
1

t1
=

1

s0
− τ =

1

r
− δ− τ, using the same

covering {Uj}j=1,...,N and the same partition of unity {χj}j=1,...,N and with ω1 in place of ω, we get

∃v1 ∈ Lt1(Ω), Dv1 = ω1 + ω2 and, setting s1 such that
1

s1
=

1

s0
− δ =

1

r
− 2δ, we have that the

regularity of ω2 raises of 2 times δ from that of ω.
We still have Cω2 = CDv1 −Cω1 = 0, so by induction, after a finite number k of steps, we get a

sk ≥ s. The linear combination u :=
∑k−1

j=0 (−1)jvj now gives Du = ω + (−1)kωk with Cωk = 0.

So again we are done by setting ω̃ = (−1)kωk ∈ Ls
p(Ω).

If (i’) is true, then we have v0 ∈ W β,r(Ω) and
v1 ∈ W β,s0(Ω), ‖v1‖W β,s0(Ω) ≤ c‖ω1‖Ls0 (Ω),

hence by (3.2) we get
‖v1‖W β,s0(Ω) ≤ cG‖ω‖Lr(Ω).

So, a fortiori, v1 ∈ W β,r(Ω) because r < s0 with the same control of the norm. For the same reason
we have ∀j = 1, ..., k, ‖vj‖W β,r(Ω) ≤ c‖ω‖Lr(Ω) hence the same estimates for u. �

Corollary 3.2 Under the assumptions of the raising steps theorem and with the global assumption
(iii), there is a constant cf > 0, such that for r ≤ s, if ω ∈ Lr(Ω), Cω = 0 there is a v ∈ Lt(Ω)

with λ := min(τ,
1

r
−

1

s
), and

1

t
=

1

r
− λ, such that

Dv = ω and v ∈ Lt(Ω), ‖v‖Lt(Ω) ≤ c‖ω‖Lr(Ω).
Moreover, if (i’), (ii’) and (iii’) are fulfilled we have, with α = min (β, γ),

Dv = ω and v ∈ W α,r(Ω), ‖v‖Wα,r(Ω) ≤ cf‖ω‖Lr(Ω).

Proof.
By the raising steps theorem 3.1 we have a u ∈ Lt(Ω) such that Du = ω + ω̃ with ω̃ ∈ Ls(Ω) and
Cω̃ = 0 ; by hypothesis (iii) we can solve Dṽ = ω̃ with ṽ ∈ Ls(Ω) ⊂ Lt(Ω) so it remains to set

v := u− ṽ to get v ∈ Lt(Ω) and Dv = ω.
Now if (iii’) is true then ṽ ∈ W γ,s(Ω) and because s ≥ r, we have ṽ ∈ W γ,r(Ω), so finally, with
α = min (β, γ), we get v ∈ W α,r(Ω) with the control of the norm, and we are done. �

4 Application to compact riemannian manifold.

Let (M, g) be a C∞ smooth compact riemannian manifold with metric g. We can define punctually,
for ω, ϕ ∈ Λp(M), a scalar product (ω, ϕ)(x) , see [6], hence a modulus ∀x ∈ M, |ω| (x) :=
√

(ω, ω)(x). By use of the canonical volume dvg on M we get a scalar product :

〈ω, ϕ〉 :=

∫

M

(ω, ϕ)(x)dvg(x),

for p forms in L2
p(M) i.e. such that

‖ω‖2L2(M) :=

∫

M

|ω|2 (x)dvg(x) < ∞.

The same way we define the spaces Lr
p(M), and also Lr

p(Ω), for Ω any open set in M.
The exterior differential d : Λp → Λp+1 on p forms admits a formal adjoint d∗ :
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∀ω ∈ L2
p(M), ∀ϕ ∈ Λp(M), 〈d∗ω, ϕ〉 = 〈ω, dϕ〉,

and we have
d∗ : Λ0 → 0 ; 1 ≤ p ≤ n, Λp → Λp−1.

Now we can define the Hodge laplacian :
∆ = dd∗ + d∗d.

This is a second order partial differential operator which is essentially self adjoint and positive and
it sends p forms into p forms.

On (M, g) we can define Sobolev spaces (see [5]) and because M is compact these spaces are in
fact independent of the metric. Moreover the Sobolev embeddings are true in this case and a chart
diffeomorphism makes a correspondence between Sobolev spaces in R

n and Sobolev spaces in M.
Let Ω be any open set in M, we shall denote these Sobolev spaces W s,r

p (Ω), meaning the set of p
forms which have all their (covariant) derivatives up to order s in Lr(Ω).

4.1 Basic facts.

Let H2
p be the set of harmonic p forms in L2(M), i.e. p form ω such that ∆ω = 0, which is

equivalent here to dω = d∗ω = 0.
The classical L2 theory of Morrey [6] gives, on a compact manifold M without boundary :

Hp := H2
p ⊂ C∞(M) ( [6], (vi) p. 296)

dimRHp < ∞ ( [6], theorem 7.3.1).
This gives the existence of a linear projection from Lr

p(M) → Hp :

∀v ∈ Lr
p(M), H(v) :=

Kp
∑

j=1

〈v, ej〉ej

where {ej}j=1,..., Kp
is an orthonormal basis for Hp. This is meaningful because v ∈ Lr(M) can be

integrated against ej ∈ H ⊂ C∞(M). Moreover we have v −H(v) ∈ Lr
p(M) ∩ H⊥ in the sense that

∀h ∈ Hp, 〈v −H(v), h〉 = 0.
We shall prove, as a consequence of the Calderon Zygmund inequalities, that for r < 2, if h ∈

Lr
p(M), ∆h = 0 then h ∈ C∞

p (M), hence in fact h ∈ Hp.

4.2 Local estimates.

In order to have the local result, for y ∈ M, we choose a chart (V ∋ y, ϕ := (x1, ..., xn)) so
that gij(y) = δij and ϕ(V ) = B where B is a Euclidean ball centered at ϕ(y) = 0 and gij are the
components of the metric tensor w.r.t. ϕ.

Lemma 4.1 For any y ∈ M, there are open sets V, W ⋐ V, y ∈ W, such that :
∀ω ∈ Lr(V ), ∃u ∈ W 2,r(W ) :: ∆u = ω, ‖u‖W 2,r(W ) ≤ C‖ω‖Lr(W ).

And a Calderon Zygmund inequality : there are constants c1, c2 such that
∀u ∈ W 2,r(V ), ‖u‖W 2,r(W ) ≤ c1‖u‖Lr(V ) + c2‖∆u‖Lr(V )

Proof.
Of course the operator d on p forms is local and so is d∗ as a first order partial differential operator.

So the Hodge laplacian ∆ϕ read by ϕ in B is not so different from that of Rn in B when acting
on forms in B ; hence we have
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∆ϕωϕ = ∆Rωϕ + Aωϕ,
where ωϕ is the p form ω read in the chart (V, ϕ) and A is a matrix valued second order operator
with C∞ smooth coefficients such that A : W 2,r(B) → Lr(B) with, for a B with a small enough
radius, ‖A‖ ≤ c‖∆R‖ with c < 1.

This is true because at the point y ∈ V we are in the flat case and if B is small enough, the
difference A := ∆ϕ −∆R in operator norm W 2,r(B) → Lr(B) goes to 0 when the radius of B goes
to 0, because ϕ ∈ C2 and the metric tensor g is also C2.

We know that ∆R operates component-wise on the p form γ, so we have
∀γ ∈ Lr

p(B), ∃v0 ∈ W 2,r
p (B) :: ∆Rv0 = γ, ‖v0‖W 2,r(B) ≤ C‖γ‖Lr(B),

simply setting the component of v0 to be the Newtonian potential of the corresponding component
of γ in U, these non trivial estimates coming from Gilbarg and Trudinger [3], Th 9.9, p. 230 and
the constant C = C(n, r) depends only on n and r.

So we get ∆Rv0 + Av0 = γ + γ1, with
γ1 = Av0 ⇒ ‖γ1‖Lr(B) ≤ c‖∆Rv0‖Lr(B) = c‖γ‖Lr(B).

We solve again
∃v1 ∈ W 2,r

p (B) :: ∆Rv1 = γ1, ‖v1‖W 2,r(B) ≤ C‖γ1‖Lr(B) = Cc‖γ‖Lr(B),
and we set

γ2 := Av1 ⇒ ‖γ2‖Lr(B) ≤ c‖∆Rv1‖Lr(B) = c‖γ1‖Lr(B) ≤ c2‖γ‖Lr(B).
And by induction :

∀k ∈ N, γk := Avk−1 ⇒ ‖γk‖Lr(B) ≤ c‖∆Rvk−1‖Lr(B) = c‖γk−1‖Lr(B) ≤ ck‖γ‖Lr(B)

and
∃vk ∈ W 2,r

p (B) :: ∆Rvk = γk, ‖vk‖W 2,r(B) ≤ C‖γk‖Lr(B) = Cck‖γ‖Lr(B).
Now we set

v :=
∑

j∈N

(−1)jvj,

this series converges in norm W 2,r(B) and we have
∆ϕv = ∆Rv + Av =

∑

j∈N (−1)j(∆Rvj + Avj) = γ,
the last series converging in Lr(B).

As an alternative proof, we could have used the estimates for elliptic system done by Douglis and
Nirenberg [2] to work directly with ∆ϕ but this is too heavy for a case so near to the usual laplacian
in R

n.
Going back to the manifold M with γ := ωϕ and setting uϕ := v, W := ϕ−1(B), we get the right

estimates :
∃u ∈ W 2,r(W ) :: ∆u = ω in W, ‖u‖W 2,r(W ) ≤ C‖ω‖Lr(W ),

because the Sobolev spaces for B go to the analogous Sobolev spaces for W in M.
For the Calderon Zygmund (C-Z) inequality we proceed the same way ; by the classical C-Z

inequality for the usual laplacian ∆R in R
n, [3], Th. 9.11, p. 235, we have, with ρ = 1/2,

∀u ∈ W 2,r
p (B), ‖u‖W 2,r(ρB) ≤ c1‖u‖Lr(B) + c′2‖∆Ru‖Lr(B)

because the laplacian on forms in R
n is diagonal. Because ∆ϕ = ∆R + A with A a matrix valued

second order operator with C∞ smooth coefficients such that A : W 2,r(B) → Lr(B) with ‖A‖ ≤
c‖∆R‖ with c < 1, we get

∀u ∈ W 2,r
p (B), ‖∆Ru‖Lr(B) ≤ ‖∆ϕu−Au‖

Lr(B) ≤ ‖∆ϕ‖Lr(B) + ‖Au‖Lr(B) ≤

‖∆ϕu‖Lr(B) + c‖∆Ru‖Lr(B).
So

∀u ∈ W 2,r
p (B), (1− c)‖∆Ru‖Lr(B) ≤ ‖∆ϕu‖Lr(B)
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and finally

∀u ∈ W 2,r
p (B), ‖u‖W 2,r(ρB) ≤ c1‖u‖Lr(B) +

c′2
1− c

‖∆ϕu‖Lr(B).

It remains to set c2 :=
c′2

1− c
to get the C-Z inequality for ∆ϕ, so passing back to M,

we get the C-Z local inequality on M. �

Remark 4.2 (i) We notice that there is no compatibility condition for solving the system ∆u = ω
locally.

(ii) Of course we can regularize u by convolution in ρB so in fact we get :
∀u ∈ Lr(B), ∆ϕu ∈ Lr(B) ⇒ u ∈ W 2,r(ρB) and ‖u‖W 2,r(ρB) ≤ c1‖u‖Lr(B) + c2‖∆ϕu‖Lr(B)

and the analogous in M :
∀u ∈ Lr(V ), ∆u ∈ Lr(V ) ⇒ u ∈ W 2,r(W ) and ‖u‖W 2,r(W ) ≤ c1‖u‖Lr(V ) + c2‖∆u‖Lr(V ).

Proposition 4.3 We have the hypo-ellipticity of the Hodge laplacian :
∀r > 1, ∀u ∈ Lr(M), ∆u = 0 ⇒ u ∈ C∞(M).

Moreover if there is a solution u ∈ W t,r(M) of the equation ∆u = f in M then any solution
v ∈ Lr(M) of ∆v = f has the same regularity.

Proof.
By C-Z we have ∆u = 0 ⇒ ∀y ∈ M, ∃W ∋ y :: u ∈ W 2,r(W ) ; by Sobolev embeddings which are

true here, we get u ∈ Lt(W ),
1

t
=

1

r
−

2

n
, hence again, because ∆u = 0, u ∈ W 2,t(W ) ; so by

induction we get u ∈ W 2,2(W ) and by compactness u ∈ W 2,2(M). Now the L2 theory [6] implies
that u ∈ C∞(M).

Suppose that ∆v = f then ∆(v − u) = 0 hence v − u ∈ C∞(M) so v has the same regularity as
u. �

Corollary 4.4 For any y ∈ M, there are open sets V, W ⋐ V, y ∈ W, such that we have :
∀ω ∈ Lr

p(V ), ∃u ∈ Lt
p(W ) :: ∆u = ω, ‖u‖Lt

p(W ) ≤ C‖ω‖Lr
p(V )

with
1

t
=

1

r
−

2

n
, and ∇u ∈ W 1,r

p (W ).

Proof.
The lemma 4.1 gives u ∈ W 2,r(W ) such that ∆u = ω, ‖u‖W 2,r(W ) ≤ C‖ω‖Lr(V ), hence we get that

∇u ∈ W 1,r
p (W ) with the same control : ‖∇u‖W 1,r(W ) ≤ C‖ω‖Lr(V ).

For the first statement it remains to apply the Sobolev embedding theorems which are true here.
�

4.3 Verification of the hypotheses.

Our operator is D := ∆ on a compact manifold M without boundary and we set Ω = M. The
compatibility condition is given by the linear operator H, i.e. to be globally solvable a p form ω
must be in H⊥, as we shall see in a moment, which is equivalent to H(ω) = 0. So here we set
C = H.
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4.3.1 Verification of the local hypotheses.

We have, in the sense of distributions, for any open set U :
∀χ ∈ D(U), ∀u ∈ W 2,r

p (U), B(χ, u) := ∆(χu)− χ∆u,
and because ∆ is a second order differential operator, we have that B(χ, u) is a first order differential
operator in u with C∞ coefficients.

By corollary 4.4 and the fact that M is compact, we can cover M by a finite set {Wj, Vj}j=1,...,N

such that, with
1

t
=

1

r
−

2

n
,

∀ω ∈ Lr
p(M), ∃uj ∈ Lt

p(Wj) :: ∆uj = ω, ‖uj‖Lt
p(Wj)

≤ C‖ω‖Lr(M).

So we set ∀j = 1, ..., N, Uj = Wj and we have here τ =
2

n
hence the (i).

The lemma 4.1 gives uj ∈ W 2,r(Wj) such that
∆uj = ω, ‖uj‖W 2,r(Wj)

≤ C‖ω‖Lr(M), hence we have (i’) with β = 2.

The corollary 4.4 gives ‖∇uj‖W 1,r(Wj)
≤ c‖ω‖Lr(M) but B(χ, u) is a first order differential operator

in u with C∞ coefficients so we have (ii’) :
‖B(χj , uj)‖W 1,r(Wj)

≤ c‖ω‖Lr(M).

Again we use the Sobolev embedding theorem to get
‖B(χj , uj)‖Lt(Wj)

≤ c‖B(χj, uj)‖W 1,r(Wj)
≤ c‖ω‖Lr(M),

with
1

t
=

1

r
−

1

n
. Hence we have here (ii) with δ =

1

n
.

It remains to check that H∆ = 0 which is easy :
∀u ∈ W 2,r(M), ∀h ∈ Hp, 〈∆u, h〉 = 〈u, ∆h〉 = 0 because ∆ is essentially self adjoint and

h ∈ C∞
c (M), M being compact. So H∆ = 0.

4.3.2 Verification of the global hypotheses.

The threshold here is L2
p(M) where the Hodge decomposition is well known [6], we have

Theorem 4.5 (The L2 Hodge Decomposition). Let M be a compact, C∞, riemannian manifold
without boundary ; we have :

L2(
∧l M) = Im∆⊕H.

Moreover ∆−1 is bounded from L2
p(M) ∩H⊥ into W 2,2

p (M) ∩H⊥.

This implies (iii) and (iii’) with γ = 2 :
∀ω ∈ L2

p(M), H(ω) = 0, ∃u ∈ W 2,2(M) ∩ H⊥ :: ∆u = ω.

4.4 Application of the raising steps method.

Now we are in position to apply the raising steps method, namely corollary 3.2, and it gives :

Theorem 4.6 Let M be a compact C∞, Riemannian manifold without boundary ; we have :
∀ω ∈ Lr

p(M), ω ∈ Hp(M)⊥, r < 2; ∃u ∈ Lt
p(M) :: ∆u = ω,

with λ := min(
2

n
,
1

r
−

1

2
),

1

t
=

1

r
− λ.

Moreover u ∈ W 2,r(Ω), ‖u‖W 2,r(Ω) ≤ c‖ω‖Lr(Ω).
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In order to get a Lp Hodge decomposition theorem, we shall improve a little bit this result :

Corollary 4.7 In the previous theorem we can choose v ⊥ H, ∆v = ω, and keeping the same
bounds.

Proof.
Take the previous solution u and set v := u−H(u). Then clearly v belongs to the same spaces as
u because H(u) ∈ Hp ⊂ C∞(M) and the norms are just slightly modified and we have

∆v = ∆u−∆(H(u)) = ∆u = ω. �

4.4.1 Case r > 2.

For this case we shall proceed by duality as we did in [1].
Let g ∈ Ls′

p (Ω) ∩H⊥
p , we want to solve ∆v = g, with s′ ≥ 2 and s′ conjugate to s.

We know by the previous part that :

∀f ∈ Lr
p(Ω) ∩H⊥

p , ∃u ∈ Ls
p(Ω), ∆u = f. (4.3)

Consider the linear form
∀f ∈ Lr

p(Ω), L(f) := 〈u, g〉,
where u is a solution of (4.3) ; in order for L(f) to be well defined, we need that if u′ is another
solution of ∆u′ = f, then 〈u− u′, g〉 = 0 ; hence we need that g must be "orthogonal" to harmonic
p forms which is precisely our assumption.

Hence we have that L(f) is well defined and linear ; moreover
|L(f)| ≤ ‖u‖Ls(Ω)‖g‖Ls′ (Ω) ≤ c‖f‖Lr(Ω)‖g‖Ls′ (Ω)

so this linear form is continuous on f ∈ Lr
p(Ω) ∩ H⊥

p . By Hahn Banach it can be extended to the

whole of Lr
p(Ω), hence there is a p form v ∈ Lr′

p (Ω) such that :
∀f ∈ Lr

p(Ω) ∩H⊥
p , L(f) = 〈f, v〉 = 〈u, g〉.

But f = ∆u, and ∆ is essentially self adjoint so we have
〈f, v〉 = 〈∆u, v〉 = 〈u,∆v〉 = 〈u, g〉,

for any u ∈ C∞
p (M), hence we solved ∆v = g in the sense of distributions with v ∈ Lr′

p (Ω). So the
theorem

Theorem 4.8 For any r, 2 ≤ r ≤ n/2, if g ∈ Lr
p(M) ∩ H⊥

p there is a v ∈ Lt(M) such that

∆v = g, ‖v‖Lt
p(M) ≤ c‖g‖Lr

p(M) with
1

t
=

1

r
−

2

n
.

If r > n/2, there is a v ∈ W 2,r(M) such that ∆v = g, ‖v‖W 2,r(M) ≤ c‖g‖Lr
p(M).

For any r ≥ 2 any solution v of ∆v = g is in W 2,r(M).

It remains to prove the last assertion and for this if w is another solution ∆w = ω, then ∆(v−w) =
0, hence

h := v − w ∈ Hp ⇒ h ∈ C∞
p (M) ⇒ w = v − h ∈ W 2,r

p (M). �

Now, suppose that g ∈ Lt
p(M) ∩ H⊥

p we shall apply the raising steps theorem with, as threshold
global solution, the theorem 4.8 with s > t. So we get the theorem :
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Theorem 4.9 For any r, 1 ≤ r ≤ n/2, if g ∈ Lr
p(M) ∩ H⊥

p there is a v ∈ Lt(M) such that

∆v = g, ‖v‖Lt
p(M) ≤ c‖g‖Lr

p(M) with
1

t
=

1

r
−

2

n
.

If r > n/2, there is a v ∈ W 2,r(M) such that ∆v = g, ‖v‖W 2,r(M) ≤ c‖g‖Lr
p(M).

For any r ≥ 1 any solution v of ∆v = g is in W 2,r(M).

5 The Hodge decomposition.

We proved that
ω ∈ Lr

p(M), ω ∈ Hp(M)⊥, ∃u ∈ Ls
p(M) ∩Hp(M)⊥ :: ∆u = ω ;

we want to see that ∆−1 is bounded from Lr
p(M) to W 2,r(M).

First ∆ is injective from Hp(M)⊥ to Hp(M)⊥ : let u ∈ Hp(M)⊥ be such that ∆u = 0, the
ellipticity of ∆ implies that u ∈ C∞(M) by proposition 4.3 and u ∈ Hp(M) but u ∈ Hp(M)⊥ hence
〈u, u〉 = 0 ⇒ u = 0.

Now we have the operator ∆ which is bounded from W 2,r(M) ∩ H⊥ to Lr
p(M) ∩ H⊥ and which

is injective and onto by the corollary 4.7, so its inverse is also bounded.

This proves the Lr Hodge decomposition :
Lr
p(M) = Lr

p(M) ∩ Hp(M)⊥ ⊕ Lr
p(M) ∩ Hp(M),

with ∆−1 continuous from Lr
p(M) ∩Hp(M)⊥ → W 2,r

p (M) ∩Hp(M)⊥.

Theorem 5.1 If (M, g) is a compact riemannian manifold without boundary ; we have the strong
Lr Hodge decomposition :
∀r, 1 ≤ r < ∞, Lr

p(M) = Hr
p ⊕ Im∆(W 2,r

p (M)) = Hr
p ⊕ Imd(W 1,r

p (M))⊕ Imd∗(W 1,r
p (M)).

Proof.
We already have

Lr
p(M) = Hr

p ⊕ Im∆(W 2,r
p (M))

where ⊕ means uniqueness of the decomposition, and is given here by the fact that the operator H
is bounded on Lr

p(M).
So :

∀ω ∈ Lr
p(M) ∩Hr⊥

p , ∃u ∈ W 2,r
p (M) :: ∆u = ω.

From ∆ = dd∗ + d∗d we get ω = d(d∗u) + d∗(du) with du ∈ W 1,r
p (M) and d∗u ∈ W 1,r

p (M), so

∀ω ∈ Lr
p(M) ∩Hr⊥

p , ∃α ∈ W 1,r
p−1(M), ∃β ∈ W 1,r

p+1(M) :: ω = α+ β,

simply setting α = d(d∗u), β = d∗(du), which gives α ∈ d(W 1,r
p−1(M)) and β ∈ d∗(W 1,r

p+1(M)) and
this proves the existence.

The uniqueness is given by lemma 6.3 in [7] and I copy this simple (but nice) proof here for the
reader’s convenience.
Suppose that α ∈ W 1,r

p−1(M), β ∈ W 1,r
p+1(M), h ∈ H satisfy

dα+ d∗β + h = 0.
Let ϕ ∈ C∞

p (M), because of the classical C∞ -Hodge decomposition, there are η ∈ C∞
p−1(M), ω ∈

C∞
p+1(M) and τ ∈ H satisfying

ϕ = dη + d∗ω + τ.
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Notice that 〈d∗β, dη〉 =
〈

β, d2η
〉

= 〈β, 0〉 = 0 and 〈h, dη〉 = 〈d∗h, η〉 = 0, by the duality between
d and d∗. Linearity then gives

〈dα, dη〉 = 〈dα+ d∗β + h, dη〉 = 〈0, dη〉 = 0. (5.4)

Finally we have
〈dα, ϕ〉 = 〈dα, dη〉+ 〈dα, d∗ω〉+ 〈dα, τ〉

= 0 +
〈

α, d∗2ω
〉

+ 〈α, dτ〉 by (5.4)
= 〈α, 0〉+ 〈α, 0〉 because d∗2 = 0 and τ ∈ H
= 0.

Since C∞
p (M) is dense in Lr′

p (M), r′ being the conjugate exponent of r, and ϕ is arbitrary, we see
that dα = 0. Analogously, we see that d∗β = 0 and it follows that h = 0. �

6 Case of Ω a domain in M.

Let Ω be a domain in a C∞ smooth complete riemannian manifold M, compact or non compact;
we want to show how the results in case of a compact boundary-less manifold apply to this case.
We copy the following construction from [4].

Let N be a relatively compact domain of M such that ∂N is a smooth hypersurface and Ω̄ ⊂ N.
The "Riemannian double" D := D(N) of N, obtained by gluing two copies of N along ∂N, is a
compact Riemannian manifold without boundary. Moreover, by its very construction, it is always
possible to assume that D contains an isometric copy ΩN of the original domain Ω. We shall write
Ω for ΩN to ease notations.

Lemma 6.1 Let ω ∈ Lr
p(Ω), then we can extend it to ω′ ∈ Lr

p(D) such that
∀h ∈ Hp(D), 〈ω′, h〉D = 0.

Proof.
Recall that Hp(D) is the vector space of harmonic p forms in D, it is of finite dimension and
Hp(D) ⊂ C∞(D).

Make an orthonormal basis {e1, ..., eKp
} of Hp(D) with respect to L2

p(D), by the Gram-Schmidt
procedure, so we get :

〈ej , ek〉D :=

∫

D

ejekdV = δjk.

Set λj := 〈ω1Ω, ej〉 = 〈ω, ej1Ω〉, j = 1, ..., Kp, which makes sense since ej ∈ C∞(D) ⇒ ej ∈ L∞(D),

because D is compact and put ω′′ :=

Kp
∑

j=1

µjej1D\Ω. Then we set

ω′ := ω1Ω − ω′′1D\Ω = ω − ω′′.
We have

∀j = 1, ..., Kp, 〈ω′, ej〉D = 〈ω, ej〉 − 〈ω′′, ej〉 = λj‖ej‖
2
L2(Ω) − µj‖ej‖

2
L2(D\Ω) = 0,

by the choice of

∀j = 1, ..., Kp, µj := λj

‖ej‖
2
L2(Ω)

‖ej‖
2
L2(D\Ω)

.
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This choice is relevant because if ‖ej‖L2(D\Ω) = 0, then ej ≡ 0 for ej is harmonic and D\Ω̄ is open

non void. In fact set δ := inf j‖ej‖L2(D\Ω) ⇒ δ > 0 and

Hω =

Kp
∑

j=1

λjej ⇒ ‖Hω‖22 ≤ ‖ω‖22 ⇒

Kp
∑

j=1

|λj|
2 ≤ ‖ω‖22 ⇒ ‖ω′′‖

2
2 ≤

1

δ2
‖ω‖22.

Of course ω′′ ∈ Lr
p(D) because

|λj | ≤ ‖ω‖Lr(Ω)‖ej‖Lr′(Ω) ⇒ |µj| ≤
1

δ2
‖ω‖Lr(Ω)‖ej‖Lr′(Ω),

and ‖ej‖Lr′(Ω) ≤ Cp(Ω). Because ‖ej‖L2(D) = 1, a priori ‖ej‖Lr′(D) is bigger than 1 for r < 2,

hence Cp(Ω) depends actually on Ω unless r ≥ 2.
So we have ‖ω′‖Lr(D) ≤ KpCp(Ω)‖ω‖Lr

p(Ω). �

Now let ω ∈ Lr(Ω) and see it on Lr(ΩN ) ; then extend it as ω′ to D by lemma 6.1.
By the results on the compact manifold D, because ω′ ⊥ Hp(D), we get that there exists u′ ∈
W 2,r

p (D), u′ ⊥ Hp(D), such that ∆u′ = ω′ ; hence if u is the restriction of u′ to Ω we get

u ∈ W 2,r
p (Ω), ∆u = ω in Ω.

Hence we proved

Theorem 6.2 Let Ω be a domain in the smooth complete riemannian manifold M and ω ∈ Lr
p(Ω),

then there is a form u ∈ W 2,r
p (Ω), such that ∆u = ω and ‖u‖W 2,r

p (Ω) ≤ c(Ω)‖ω‖Lr
p(Ω).

As in domains in R
n, there is no constraint for solving the Poisson equation in this case.
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