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Abstract. In structural dynamics, the use of the vibration eigenmodes (elastic modes) allows
for obtaining an accurate small-dimension reduced-order model (ROM) for the low-frequency
range analysis. For some complex structures with distinct structural levels (presence of flexible
parts attached to a stiff master part), numerous local elastic modes are intertwined with the usual
global elastic modes, yielding high-dimension ROM. To circumvent this difficulty, a general
method is proposed in order to construct a small-dimension ROM whose reduction vector basis
is constituted of the global displacements only. The method is applied to an automobile complex
structure.

1 Introduction

In structural dynamics, the low-frequency (LF) range is classically characterized by fre-
quency response functions (FRF) exhibiting well separated resonance peaks that are associated
with large-wavelength global shapes. Instead, the high-frequency range, for which the FRF
are rather smooth, presents a constant high modal density, which is associated with the pres-
ence of numerous elastic modes that are constituted of small-wavelength displacements. An
intermediate band, the medium-frequency (MF) band, exists for complex structures [1]. The
modal analysis method [2, 3, 4] consists in projecting the dynamics equations onto the elastic
modes associated with the first eigenfrequencies. Since in general the LF band presents only a
few elastic modes, classical modal analysis is then an efficient tool for constructing a predic-
tive small-dimension reduced-order model (ROM). In this work, we are interested in complex
structures for which the modal density can be very high, as soon as low frequencies, due to the
presence of numerous local elastic modes intertwined with the usual global elastic modes. This
feature is related to the presence of small-scale flexible parts, such as panels, that are attached
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to a stiff master part. Subsequently, such flexible parts are responsible for the presence of elas-
tic modes dominated by local displacements. Furthermore, in such complex structures, small
geometrical heterogeneities, although not clearly identified as flexible structural elements, are
also responsible for the apparition of numerous local elastic modes.

Recently, some researches [5, 6, 7] have been carried out for dealing with this problematic,
whose major objective is to reduce the dimension of the ROM. The present work accounts for
the last developments made, which constitute a general framework for the construction of a
ROM that is adapted, for the LF and MF bands, to complex structures, and whose reduced di-
mension is related to its controlled accuracy. Since the contributions of the local displacements
are not necessarily significant for predicting the response of the stiff master part (in this work,
we are not interested in predicting the small-scale local displacements), we propose a general
method for constructing a small-dimension ROM whose reduction vector basis is constituted
only of the global displacements. The extraction of the global displacements is based on a
filtering strategy that is constituted of two steps. Firstly, an approximation subspace is intro-
duced. This subspace is associated with displacements of reduced kinematics. Secondly, the
usual generalized eigenvalue problem, associated with the homogeneous conservative system
and spanning the reduction vector basis, is modified: the mass matrix is modified such that
it corresponds to the reduced kinematics. It should be noted that, in this unusual eigenvalue
problem, the elastic energy is kept exact. The method, whose implementation is well adapted
to an efficient use in the context of commercial softwares, is applied to the automobile complex
structure introduced in [6].

2 Theory

2.1 Context

We are interested in calculating the frequency response functions (FRF) Upωq of a fixed
linear structure, for ω in the frequency band of analysis B “ rωmin, ωmaxs , with ωmin ą 0. In the
context of finite element analysis [8], vector Upωq is the discretization of the displacement field
and is the solution, for all ω in B, of the following matrix equation,

p´ω2
rM s ` iω rD s ` rK s qUpωq “ Fpωq , (1)

where rM s, rD s, and rK s are the mass, damping, and stiffness matrices, with Fpωq the dis-
cretization of the external forces. These matrices are pm ˆmq real positive-definite matrices,
where m denotes the number of degrees of freedom (DOF) of the finite element model. The
first n elastic modes tϕαuα, which are associated with the n smallest eigenvalues tλαuα such
that λα “ ω2

α, are the solutions of the following generalized eigenvalue problem,

rK sϕα “ λα rM sϕα , (2)

for obtaining the pm ˆ nq real matrix rΦ s “ rϕ1 . . . ϕn s, which constitutes the reduction
vector basis used in the classical modal analysis method, for which vector Upωq is written, for
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ω in B and with n ! m, as

Upωq » Uelas
pωq “

n
ÿ

α“1

qαpωqϕ
α
“ rΦ sqpωq , (3)

in which the n-dimensional complex vector qpωq of generalized coordinates is the solution of
the following reduced-order matrix equation,

p´ω2
rM s ` iω rD s ` rK s qqpωq “ Fpωq , (4)

in which Fpωq “ rΦ sJFpωq, and where, for A in tM,D,Ku and A in tM,D,Ku, we have
rA s “ rΦ sJ rA s rΦ s.

For the complex structures dealt with, dimension n for obtaining convergence in B can be
very high. In addition to the increased cost required for computing, in such a case, the first n
elastic modes, the main issue is the high dimension of the classical ROM.

2.2 Methodology proposed

The first step of the method consists in introducing, for the kinetic energy, an approximation
(reduced kinematics) that is adapted to the filtering of the local displacements. In the next sec-
tion, the construction of the mass matrix associated with such a reduced kinematics is presented.

2.2.1 Reduced-kinematics mass matrix

Let Ag denote a given vector subspace of Rm and letNg denote its dimension. This subspace
defines a reduced kinematics. Let also rB s be a pmˆNgq real matrix whose columns span Ag.
For all V in Rm, the associated vector VAg in Ag is defined as the orthogonal projection of
V onto Ag. Using the inner-product ă x, y ąM “ yJ rM s x, the orthogonal-projection matrix
rPAg s, which is such that

VAg “ rPAg sV , (5)

is written as

rPAg s “ rB s
´

rB sJ rM s rB s
¯´1

rB sJ rM s . (6)

Introducing the approximation of Eq. (5) for the kinetic energy, the associated reduced-kinematics
mass matrix rMAg s is written as

rMAg s “ rPAg s
J
rM s rPAg s . (7)

The pmˆmq real matrix rMAg s is symmetric positive semidefinite, of rank Ng. This matrix is
generally not sparse.
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2.2.2 Global-displacements ROM

The first ng global eigenvectors tψα
uα, associated with the ng smallest eigenvalues tσαuα ,

are the solutions of the following generalized eigenvalue problem,

rK sψα
“ σα rMAg sψ

α , (8)

for obtaining the pm ˆ ngq real matrix rΨ s “ rψ1 . . . ψng s, which constitutes the reduction
vector basis used in the proposed method, for which vector Upωq is written, for ω in B and with
ng ď n, as

Upωq » Uglob
pωq “

ng
ÿ

α“1

qgαpωqψ
α
“ rΨ sqgpωq , (9)

and in which the ng-dimensional complex vector qgpωq of generalized coordinates is the solu-
tion of the following small-dimension matrix equation,

p´ω2
rM g

s ` iω rDg
s ` rKg

s qqgpωq “ F g
pωq , (10)

in which F g
pωq “ rΨ sJFpωq, and where, for A in tM,D,Ku and A in tM,D,Ku, we have

rAg s “ rΨ sJ rA s rΨ s.

2.2.3 Computational aspects

Although pm ˆmq matrix rMAg s is full, its assembly can be avoided by using a subspace
iteration algorithm for solving Eq. (8). Nevertheless, access to stiffness matrix rK s may not
be possible in the context of the use of commercial softwares. In order to circumvent both
these difficulties, a method (that we will call the indirect method) is proposed. For all α in
t1, . . . , ngu, eigenvector ψα is approximated such that

ψα
“ rΦ s sα , (11)

in which tsαuα are ng-dimensional real vectors, which are the solutions of the following reduced-
order generalized eigenvalue problem,

rΛ s sα “ σαrMAg s sα , (12)

in which rΛ s “ rΦ sT rK s rΦ s and rMAg s “ rΦ s
T
rMAg s rΦ s. Since the contributions of

the discarded local displacements are neglected, a residual error is introduced in the global-
displacements ROM. A convergence analysis with respect to subspace Ag allows for reaching
a compromise between dimension ng and accuracy of the ROM. Using the indirect method, the
overall numerical cost for performing such a convergence analysis is then nearly reduced to the
computation of the n elastic modes.
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3 Application to an automobile complex structure

We use the indirect method proposed, in order to construct a small-dimension ROM for the
automobile complex structure whose computational model is displayed in Fig. 1 (in which the
gray intensity is related to the level of rigidity).

obs

exc1

exc2

xy
z

Figure 1: Computational model, with location of excitation nodes exc1 and exc2, and of observation node obs.
Gray intensity is related to the level of rigidity (the darker is the stiffer).

There are well identified flexible parts (such as the roof and the floor panels) as well as
numerous structural heterogeneities (see for example in the front of the car) that are both re-
sponsible for the presence of numerous local elastic modes. The computational model has
m “ 1, 462, 698 DOF and there are 1, 048 elastic modes in the frequency band of analysis
B “ 2πˆs0, 500s rad/s, while the classical ROM is converged with n “ 1, 457. Figure 2
displays, on the left, a purely local elastic mode and, on the right, a purely global elastic mode.

Figure 2: Left: elastic mode ϕ1 (24Hz), right: elastic mode ϕ3 (39Hz). Gray intensity is related to the level of
amplitude of the displacements (the greater amplitude is the lighter)

In the method proposed, the global-displacements basis, represented by matrix rΨ s, is entirely
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defined upon the subspace Ag chosen, as well as upon truncation order ng. In this application,
Ag is spanned by vectors that consist in discrete multivariate Legendre polynomials whose de-
gree, Nd, allows for controlling the filtering of the local displacements. The ROM convergence
is analyzed in studying the FRF obtained under the application of unit forces in the x- and z-
directions and unit moments around the x- and y- axes, relative to the excitation nodes exc1 and
exc2 (depicted in Fig. 1). This convergence analysis of the global-displacements ROM is done
with respect to Nd, and, for fixed Nd, with ng chosen as the smallest value such that the asso-
ciated highest eigenfrequency is greater than 525 Hz. Figure 3 displays the FRF of observation
node obs (norm of the displacements of the node, in log scale) obtained using Eq. (2) for the
reference, and using Eq. (9) for the small-dimension ROM in which Nd is successively chosen
as equal to 5, 10, 15, and 20. The resulting dimensions ng are 168, 355, 479, and 624.

Figure 3: Logarithm of the norm of the displacements (m) versus frequency (Hz): reference Uelas
obs (black solid

line), ROM response Uglob
obs for Nd equal to either 5, 10, 15, or 20 (gray dashed line).

It can be seen in Fig. 3 that the differences with respect to the reference are decreasing with
respect to the increase of Nd (and thus ng). The differences are larger in the high part of the
frequency band, while it is known that the experimental variabilities are generally larger in this
band, too. For ng “ 479 or ng “ 624, the error introduced in the computation of the response
is not as important as the experimental variabilities may be [9, 10].

4 Conclusions

A general and efficient method for constructing a reduced-order computational model, which
is adapted to predicting the global displacements of complex structures for which there are
numerous local elastic modes intertwined with the global elastic modes, has been presented.
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The strategy relies on the filtering of the local displacements in order to construct a small-
dimension ROM. The filtering is obtained by reducing the kinematics of the kinetic energy in
the usual eigenvalue problem. A convergence analysis with respect to the reduced-kinematics
responsible for the filtering of the local displacements allows to control, with a reduced cost,
the compromise between the ROM accuracy and dimension.
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