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Abstract: In this paper, the robust design with an uncertain model of a vibro-impact electromechanical system is done.
The electromechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous
current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component
and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the
cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts
can occur between these two elements. Some system parameters are uncertain, such as the stiffness and the damping
coefficients of the flexible barrier. The objective of the paper is to perform an optimization of this electromechanical
system with respect to design parameters (spring component, and barrier gap) in order to maximize the impact power
under the constraint that the electric power consumed by the DC motor is lower than a maximum value. This optimization
is formulated and solved in the framework of robust design due to the presence of uncertainties in the model.
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NOMENCLATURE

ν = source voltage, V
c = electric current, A
α̇ = angular speed of the motor, rad/s
l = electric inductance, H
jm = inertia moment, Kg m2

bm = damping ratio in the transmission
of the torque, Nm/(rad/s)
ke = constant of the motor electromag-
netic force, (rad/s) /V
r = electrical resistance, Ω

∆ = eccentricity of the pin, m
mc = cart mass, Kg
mh = hammer mass, Kg
h = hammer displacement, m
kh1 = linear hammer stiffness, N/m
kh3 = cubic hammer stiffness, N/m2

cpin = friction coefficient between the
pin and the slot, Ns/m
cext = friction coefficient between the
cart and the rail, Ns/m

cint = friction coefficient between the
cart and the hammer, Ns/m
ςint = damping ratio of friction between
the cart and the hammer, dimensionless
ki = barrier stiffness, N/m
ci = barrier damping coefficient, Ns/m
g = gap barrier, m
πimp = sum of the averages of the impact
power, W
πelec= average of the electric power, W

INTRODUCTION

The design of electro-mechanical systems is of a great interest in many areas. Many works have been done in this topic,
as Zhankui and Sun (2013), Sadeghian and Rezazadeh (2009) and Lee, Cho and Chang(2006), trying to characterize the
mutual interaction between electrical and mechanical parts. This interaction leads us to analyze very interesting nonlinear
dynamical systems (see for instance Cartmell (1990)) , in which the nonlinearities vary with the coupling conditions, and
also affects the two most important variables used to evaluate the performance of electro-mechanical systems, related to
the power consumed by the electrical part, and the power used into the movement of the mechanical part. As the mutual
interaction between electrical and mechanical parts affects the two powers used to evaluate the system performance, the
coupling effects must be analyzed in the design optimization problem for electro-mechanical systems.

The present work deals with the robust design optimization of a vibro-impact electric-mechanical system in order to
improve its performance. The electrical part of the system is a DC motor, and the mechanical part is a vibro-impact
system. It should be noted that, in Lima and Sampaio (2012), the equations and the numerical integration were presented
for a similar electric-mechanical system for which the embarked mass was replaced by a pendulum and for which there
was no impact. This first work has allowed the electro-mechanical coupling to be analyzed as a function of the mass of
the mechanical system.

The analysis of vibro-impact systems is not a new subject, and is frequently encountered in technical applications of
mechanisms. The interest of analyzing the optimization of their performance is reflected by the increasing amount of
research in this area (see for instance Luo et al (2008), Ostasevicius, Gaidys and Dauksevicius (2009), Yue, Xu and Wang
(2013)), and also the book Ibrahim (2009), which is completely devoted to this problem).

The objective of the paper is to perform an optimization of this electro-mechanical system with respect to design pa-
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rameters. The optimization consists in maximizing the impact power under the constraint that the electric power consumed
by the DC motor is lower than a maximum value. This optimization is formulated in the framework of robust design due
to the presence of uncertainties in the computational nonlinear dynamics model of the electro-mechanical system.

This paper is organized as follows. In Section 1 , the elements (motor, cart, hammer, and barrier) of the electro-
mechanical system are presented and the initial value problem is formulated for the vibro-impact electro-mechanical
system. In Section 2, we define the variables of interest for the design optimization. The construction of the probabilistic
models of the uncertain parameters, and the formulation of the robust design optimization problem are given in Section 3.
The robust design optimization consists in finding the optimal design point using the computational model in presence of
uncertainties. The numerical results of the robust design optimization problem are presented in Section 4.

1 DYNAMIC OF THE COUPLED SYTEM

1.1 Electrical component: DC motor

The modeling of DC motors is based on the Kirchhoff law (see Karnopp (2006)), which is written as

l ċ(t) + r c(t) + ke α̇(t) = ν ,

jm α̈(t) + bm α̇(t)− ke c(t) = −τ(t) ,
(1)

where t is time, ν is the source voltage, c is the electric current, α̇ is the angular speed of the motor, l is the electric
inductance, jm is the inertia moment of the motor, bm is the damping ratio in the transmission of the torque generated
by the motor to drive the coupled mechanical system, ke is the constant of the motor electromagnetic force, and r is
the electrical resistance. Figure 1 shows a sketch of the DC motor. The available torque delivered to the mechanical
component, in the z-direction, is represented by τ (see Fig. 1).

Figure 1 – Sketch of the DC motor.

1.2 Mechanical component: cart and hammer

As described in the introduction, the mechanical component is composed by a cart whose movement is driven by the
DC motor, and by a hammer that is embarked into the cart. The motor is coupled to the cart through a pin that slides
into a slot machined in an acrylic plate that is attached to the cart, as shown in Fig. 2. The off-center pin is fixed on the
disc at distance ∆ of the motor shaft, so that the motor rotational motion is transformed into a cart horizontal movement.
To model the coupling between the motor and the mechanical system, the motor shaft is assumed to be rigid. Thus, the

Figure 2 – Vibro-impact electro-mechanical system. The nonlinear component spring is drawn as a linear spring
with constant kh1 and a nonlinear cubic spring with constant kh3.

available torque vector to the coupled mechanical system, τ , can be written as

τ (t) = ∆(t)× f(t) , (2)
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where ∆ = (∆ cosα(t), ∆ sinα(t), 0) is the vector related to the eccentricity of the pin, and where f is the coupling
force between the DC motor and the cart. Assuming that there is a viscous friction between the pin and the slot, the vector
f has two components: the horizontal force that the DC motor exerts in the cart, fx, and the vertical force, fy , induced by
the viscous friction. The available torque τ and vertical force fy are written as

τ(t) = fy(t) ∆ cosα(t)− fx(t) ∆ sinα(t) , (3)

fy(t) = cpin ∆ α̇(t) cosα(t) , (4)

where cpin is defined in Fig. 2. The embarked hammer is modeled as a rigid body of massmh and its relative displacement
is h with respect to the cart. In the adopted model, the constitutive equation of the spring component between the hammer
and the cart is written as fs(t) = kh1 h(t) + kh3 h(t)3. The rate of nonlinearity of the hammer stiffness is defined as
rh = kh3/kh1. The horizontal cart displacement is represented by x. Due to constraints, the cart is not allowed to move
in the vertical direction. The spring-damper element modeling the medium on which the impacts occur, is constituted of
a linear spring with stiffness coefficient ki and a damper with damping coefficient ci. The equations of the mechanical
component are

ẍ(t) (mc +mh) + ḧ(t) mh + cext ẋ(t) = −fimp(t) + fx(t) , (5)

ẍ(t) mh + ḧ(t) mh + cint ḣ+ kh1 h(t) + kh3 h
3(t) = −fimp(t) , (6)

where, cext is the viscous friction coefficient between the cart and the rail and cint = 2ςint
√
mhkh1 is the viscous friction

coefficient between the cart and the hammer (ςint is the damping ratio), and where fimp is the impact force between the
hammer and the barrier, which is written as

fimp(t) = −φ(t)
(
ki (x(t) + h(t) + g) + ci (ẋ(t) + ḣ(t))

)
, (7)

where

φ(t) =

{
1, if x(t) + h(t) + g < 0 and ḣ(t) + ẋ(t) < 0 ,

0, in all other cases ,
(8)

in which g is defined as the horizontal distance from the hammer (when α = π/2 rad) to the equilibrium position of the
barrier. In the model defined by Eq. (8), an impact starts when x(t)+h(t) is negative and equal to−g and, ḣ(t)−ẋ(t) < 0.
During an impact, the action of the barrier on the hammer stops as soon as the total velocity ḣ(t) + ẋ(t) becomes positive
(the return of the hammer).

1.3 Coupled vibro-impact electro-machanical system

Due to the system geometry, we have the following constraint

x(t) = ∆ cos (α(t)) . (9)

Substituting Eqs. (3) to (9) into Eq. (1), we obtain the initial value problem for the vibro-impact electro-machanical system
that is written as follows. Given a constant source voltage ν, find (α, c, h) such that, for all t > 0,

lċ(t) + rc(t) + keα̇ = ν , (10)

α̈(t)
[
jm + (mc +mh)∆2sin (α(t))

2
]
− ḧ(t) [mh∆ sin (α(t))]− kec(t)

+α̇(t)
[
bm + α̇(t)(mc +mh)∆2 cos (α(t)) sin (α(t)) + cpin∆2 cos (α(t))

2 − cext∆2 sin (α(t))
2
]

= φ
(
ki(∆ cos (α(t)) + h+ g) + ci(−dα̇(t) sin (α(t)) + ḣ(t))

)
∆ sin (α(t)) ,

(11)

ḧ(t)mh − α̈(t) [mh∆ sin (α(t))]− α̇(t) [mh∆ α̇(t) cos (α(t))] + ḣ(t)cint + kh1h(t) + kh3h
3(t)

= φ(t)
(
ki(∆ cos (α(t)) + h+ g) + ci(−∆ α̇(t) sin (α(t)) + ḣ(t))

)
,

(12)

where φ(t) =

{
1, if ∆ cosα(t) + h(t) + g < 0 and ḣ(t)−∆ α̇(t) cos (α(t)) < 0

0, in all other cases ,
(13)

with the initial conditions, α(0) = 0, c(0) = ν/r, and h(0) = 0.
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2 POWERS OF THE SYSTEM

The average of the electric power consumed in an interval [0, T ] is written as

πelec =
1

T

∫ T

0

ν c(t) dt. (14)

Let tjb and tje be the instants of begin and end of the j-th impact, such that for all t belonging to [tjb , t
j
e], we have

ẋ(t) + ḣ(t) < 0. At time t, the impact power, πj
imp(t), is then written as

πj
imp(t) = ki (x(t) + h(t)) (ẋ(t) + ḣ(t)), tjb ≤ t ≤ t

j
e . (15)

The time average of the impact power during the j-th impact, πj
imp, is written as

πj
imp =

1

tje − tjb

∫ tje

tjb

πj
imp(t) dt . (16)

Let Nimp be the total number of impacts that occur during time interval [0, T ]. The sum of the averages of the impact
power is

πimp =

Nimp∑
j=1

πj
imp . (17)

The variables πimp and πelec are considered for measuring the system performance. More πimp is large and smaller is πelec,
better will be the system performance.

3 ROBUST DESIGN OPTIMIZATION PROBLEM

The three parameters that are assumed to be uncertain are kh1, ki and ci, which are modeled by the independent
random variables Kh1, Ki and Ci. The probability distribution of each one is constructed using the maximum en-
tropy principle. In order to formulate the robust design problem, the set of all the system parameters are divided
into three subsets. The first one is the family of the fixed parameters that are represented by the vector pfix = { ν,
l, r, jm, ke, bm, cpin, cext, ςint, rh, mc, mh, ∆ }. The second one is the family of the design parameters that
are represented by the vector pdes = {Kh1/mh, g}. The third one is the family of the uncertain parameters that are
represented by the random vector Punc = {Ki, Ci, Kh1}. Since Punc is a random vector, the outputs of the electro-
mechanical system are stochastic processes, and consequently, πimp(pdes,punc) and πelec(pdes,punc), become random
variables Πimp(pdes) = πimp(pdes,Punc) and Πelec(pdes) = πelec(pdes,Punc). The cost function of the robust design opti-
mization problem is defined by

J(pdes) = E{Πimp(pdes)} . (18)

The robust design optimization problem is written as

popt
des = arg max

pdes∈Cad

J(pdes) , (19)

in which Cad = {pdes ∈ Pdes; E{Πelec(pdes)} ≤ celec}, where Pdes is the admissible set of the values of pdes, and where
celec is an upper bound.

4 RESULTS OF THE ROBUST OPTIMIZATION PROBLEM

The hyperparameters δKi
, δCi

and δkh1
, which control the level of uncertainties for Ki, Ci and Kh1 are fixed to 0.1.

The optimization problem is also considered without uncertainties in the systems parameters, that is, the deterministic case
(δKh1

= δKi
= δCi

= 0). For pdes ∈ Cad, the cost function is estimated by the Monte Carlo simulation method using 100
independent realizations of random vector Punc following its probability distribution. The optimization problem (defined
by Eq. (19)) is solved using the trial method for which the admissible set Cad is meshed as follows: forKh1/mh, 13 values
are non-uniformly selected in the interval [703 , 3, 830], and for g, 20 nonuniform values in [0 , 0.038]. For computation,
the initial value problem defined by Eqs. (10) to (13) has been rewritten in a dimensionless form. Duration is chosen as
T = 10.0 s. The 4th-order Runge-Kutta method is used for the time integration scheme for which we have implemented
a varying time-step. The time-step is adapted to the state of the dynamical system according to the occurrence or the not
occurrence of impacts. When the hammer is not impacting the barrier, the time step used is 10−4 s, but when the hammer
is approaching the barrier and when it is impacting it, the time step is chosen as the value 10−5 s. The values used for the
motor parameters, were obtained from the specifications of the motor Maxon DC brushless number 411, 678. The others
elements of pfix are: ν = 2.4 V, mc = 0.30 Kg, mh = 0.50 Kg, rh = 0.30 1/m2, cpin = cext = 5.00 Ns/m, ςint = 0.05,
and ∆ = 0.01 m. Upper bound celec is 6.00 W. For the deterministic case, the components of the optimal solution popt

des
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(a) (b)

Figure 3 – (a) Cost function as function of g with (Kh1/mh)opt. (b) Cost function as function of Kh1/mh with gopt.
In both graphs, the E{Πimp(popt

des)} is highlighted for the deterministic and stochastic cases with markers .

(a) (b)

Figure 4 – (a) Coefficient variation of Πimp as function of g with (Kh1/mh)opt (b) Coefficient variation of Πimp as
function of Kh1/mh with gopt. In both graphs, the δΠimp (popt

des) is highlighted with markers.

are (Kh1/mh)opt = 1, 580 rad2/s2 and gopt = 0.011 m. For case with uncertainties, it is Kh1/mh = 1, 950 rad2/s2

and g = 0.008 m. The role played by uncertainties on the optimal values of the design parameters can be analyzed
through Fig. 3, which display the graphs g 7→ E{Πimp((Kh1/mh)opt , g)}, and Kh1/mh 7→ E{Πimp(Kh1/mh , g

opt)}.
The robustness of the optimal design point, popt

des, can be analyzed in studying the evolution of the coefficient variation,
δΠimp(p

opt
des), of random variable Πimp(popt

des) as a function of the uncertainty level. However, in order to better analyze
the sensitivity of the responses with respect to the uncertainty level, we have constructed Fig. 4 that displays the graphs
g 7→ δΠimp((Kh1/mh)opt , g) and Kh1/mh 7→ δΠimp(Kh1/mh , g

opt). It can be seen that the value δΠimp(p
opt
des) occurs in

a region for which the two following functions g 7→ δΠimp((Kh1/mh)opt , g) and Kh1/mh 7→ δΠimp(Kh1/mh , g
opt) are

minima. This means the optimal design point is robust with respect to uncertainties.

5 CONCLUSIONS

In this paper, the formulation and the solution of a robust design optimization problem have been presented for a
nonlinear vibro-impact electro-mechanical system in presence of uncertainties in the computational model. Since this
nonlinear electro-mechanical system is devoted to the vibro-impact optimization, the time responses exhibit numerous
shocks that have to be identified with accuracy, and consequently, a very small time step is required. We have thus
chosen an explicit time-integration scheme and not an implicit one. Nevertheless, due to the presence of low-frequency
contributions in the time responses, a long time duration is required, which will imply a huge number of integration time
step if the time step were chosen constant. This is the reason why we have implemented an adaptive integration time
step. It was one of the difficulties encountered for the solver implementation. The design optimization problem of the
dynamical system without uncertainties yields an optimal design point that differs from the nominal values, and which
can not be determined, a priori, without solving the design optimization problem. In addition, the robust analysis that has
been presented demonstrates the interest that there is to take into account the uncertainties in the computational model.
The optimal design point that has been identified in the robust design framework significantly differs from design point
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obtained with the computational model without uncertainties. For this electro-mechanical system, it has been seen that,
the minimum value of the dispersion of the random output occurs in the region of the optimal design parameters, which
means that the optimal design point is robust with respect to uncertainties.
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