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Abstract. The paper deals with the statistical inverse problem for theidentification of a non-
Gaussian tensor-valued random field in high stochastic dimension. Such a random field can
represent the parameter of a boundary value problem (BVP). The available experimental data,
which correspond to observations, can be partial and limited. A general methodology and
some algorithms are presented including some adapted stochastic representations for the non-
Gaussian tensor-valued random fields and some ensembles of prior algebraic stochastic models
for such random fields and the corresponding generators. Three illustrations are presented: (i)
the stochastic modeling and the identification of track irregularities for dynamics of high-speed
trains, (ii) a stochastic continuum modeling of random interphases from atomistic simulations
for a polymer nanocomposite, and (iii) a multiscale experimental identification of the stochastic
model of a heterogeneous random medium at mesoscale for mechanical characterization of a
human cortical bone.
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1 INTRODUCTION

The problem related to the identification of a model parameter (scalar, vector, field) of a
boundary value problem (BVP) (for instance, the coefficients of a partial differential equation)
using experimental data related to a model observation (scalar, vector, field) of this BVP, is a
problem for which there exists a rich literature, includingnumerous textbooks. In general and
in the deterministic context, there is not a unique solutionbecause the function, which maps the
model parameter (that belongs to an admissible set) to the model observation (that belongs to
another admissible set) is not a one-to-one mapping, and consequently, cannot be inverted. It is
an ill-posed problem. However, such a problem can be reformulated in terms of an optimization
problem consisting in calculating an optimal value of the model parameter, which minimizes
a certain distance between the observed experimental data and the model observation that is
computed with the BVP and that depends on the model parameter. In many cases, the analysis
of such an inverse problem can have a unique solution in the framework of statistics, that is
to say when the model parameter is modeled by a random quantity, with or without external
noise on the model observation. In such a case, the random model observation is completely
defined by its probability distribution (in finite or in infinite dimension) that is the unique trans-
formation of the probability distribution of the random model parameter. This transformation
is defined by the functional that maps the model parameter to the model observation. Such a
formulation is constructed for obtaining a well-posed problem that has a unique solution in the
probability theory framework. We refer the reader to [1] and[2] for an overview concerning
the general methodologies for statistical and computational inverse problems, including general
least-square inversion and the maximum likelihood method [3], and including the Bayesian ap-
proach [4, 5, 6, 7, 8, 9].

A non-Gaussian second-order random field is completely defined by its system of marginal
probability distributions, which is an uncountable familyof probability distributions on sets of
finite dimension, and not only by its mean function and its covariance function as for a Gaus-
sian random field. The experimental identification of such a non-Gaussian random field then
requires the introduction of an adapted representation in order to be in capability to solve the
statistical inverse problem. For any non-Gaussian second-order random field, an important type
of representation is based on the use of the polynomial chaosexpansion, for which the devel-
opment and the use in computational sciences and engineering have been pioneered by Roger
Ghanem in 1990-1991 [10]. An efficient construction has beenproposed in [11, 12], which
consists in combining a Karhunen-Loève expansion (that allows for doing a statistical reduced
model) with a polynomial chaos expansion of the statisticalreduced model. This type of con-
struction has then been re-analyzed and used for solving boundary value problems using the
spectral approach (see for instance [13, 14, 15, 16, 17, 18, 19, 20, 21]). The polynomial chaos
expansion has also been extended for an arbitrary probability measure [22, 23, 24, 25, 26]. New
algorithms have been proposed for obtaining a robust computation of realizations of high de-
grees polynomial chaos [27, 28]. The polynomial chaos expansion has also been extended to the
case of the random coefficients [29], to the construction of abasis adaptation in homogeneous
chaos spaces [30], and for a multimodal random vector [31].

The statistical inverse problem for identifying a non-Gaussian random field as a model pa-
rameter of a BVP, using polynomial chaos expansion has been initialized in [32, 33], used in
[34, 35], and revisited in [36]. In [37], the construction ofthe probability model of the random
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coefficients of the polynomial chaos expansion is proposed by using the asymptotic sampling
Gaussian distribution constructed with the Fisher information matrix, and used for model val-
idation [38]. This work have been developed for statisticalinverse problems that are rather in
low stochastic dimension, and new ingredients have been introduced in [39, 40, 28] for statis-
tical inverse problems in high stochastic dimension. In using the reduced chaos decomposition
with random coefficients of random fields [29], a Bayesian approach for identifying the pos-
terior probability model of the random coefficients of the polynomial chaos expansion of the
model parameter of the BVP has been proposed in [41] for the low stochastic dimension and
in [42] for the high stochastic dimension. The experimentalidentification of a non-Gaussian
positive matrix-valued random field in high stochastic dimension, using partial and limited ex-
perimental data for a model observation related to the random solution of a stochastic BVP, is a
difficult problem that requires both adapted representations and methodologies [39, 40, 42, 43].
A complete development concerning advanced representations of non-Gaussian matrix-valued
random fields and their identification by solving a statistical inverse problem can be found in
[40, 43, 44, 45].

The present paper deals with the challenging problem related to the statistical inverse prob-
lem for the identification of a non-Gaussian tensor-valued random field in high stochastic di-
mension. Such a random field can, for instance, be the parameter of a boundary value problem.
The available experimental data can be, either a large experimental data base for the random
field itself that is to be identified, or can be a partial and limited experimental data base cor-
responding to an observation of the stochastic BVP. For the statistical inverse identification of
non-Gaussian tensor-valued random fields, the methodologyand the algorithms presented here-
inafter are extracted from [39, 40, 28, 46, 47, 43, 44]. An important step in the methodology
is the construction and the use of algebraic prior stochastic models (APSM) of such a non-
Gaussian random field for which some advanced generators have been developed. The APSM
and the associated generators presented and used hereinafter are those that have been published
in [44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 40, 56, 57, 58]. Threeillustrations are presented: the
stochastic modeling of track irregularities for high-speed trains and its experimental identifica-
tion [59], the stochastic continuum modeling of random interphases from atomistic simulations
for a polymer nanocomposite [60], and the multiscale identification of the random elasticity
field at mesoscale of a heterogeneous microstructure using multiscale experimental observa-
tions [61, 62, 63].

Notations. The following notations are used:
x = (x1, . . . , xd) is a vector inRd with d ≥ 1 an integer.
Mn,m(R) is the set of all the(n×m) real matrices.
Mn(R) is the set of all the(n× n) real matrices.
MS

n(R) is the set of all the symmetric(n× n) real matrices.
M+

n (R) is the set of all the positive-definite symmetric(n× n) real matrices.
M+

n (R) ⊂ MS
n(R) ⊂ Mn(R).

[In] is the(n× n) real unity matrix.
tr{[A]} is the trace of the square matrix[A].

APSM: algebraic prior stochastic model.
BVP: boundary value problem.
KLE: Karhunen-Loëve expansion.
OAPSM: optimal algebraic prior stochastic model.
PCE: polynomial chaos expansion.

3



C. Soize, J.M. Allain, C. Desceliers, D. Duhamel, C. Funfschilling, H. Gharbi, J. Guilleminot, T.T. Le,
M.T. Nguyen, and G. Perrin

2 PROBLEM TO BE SOLVED AND DIFFICULTIES

2.1 Statistical inverse problem to be solved in high dimension

The statistical inverse problem consists in identifying a non-GaussianM+
n (R)-valued ran-

dom field{[A(x)], x ∈ Ω} indexed by a bounded subsetΩ of Rd, with d an integer greater or
equal to1. This identification is performed in using an experimental data set constituted ofνexp

deterministic vectorsuexp,1, . . . , uexp,νexp belonging toRnu, which correspond to independent
realizations of a random model observationU with values inRnu of a computational model,
which is written as

U = h([A(x1)], . . . , [A(xNp)]) , (1)

in which x1, . . . , xNp areNp given points inΩ, and whereh is a given deterministic nonlinear
mapping fromM+

n (R)× . . .×M+
n (R) intoRnu. In general, mappingh is not explicitly known

but is numerically constructed with the computational model. It should be noted that mapping
h could be re-parameterized in replacing the set of random matrices{[A(xk)], k = 1, . . . , Np}
by a random vectorY with values in an adapted subsetY of Rns with ns = Np n(n+ 1)/2.

2.2 An example of statistical inverse problem in high dimension

The experimental identification of the stochastic model of the elasticity field at mesoscale of
a material for which the elastic heterogeneous microstructure cannot be described in terms of
constituents, such as the cortical bone (see Figure 1) is an example of statistical inverse problem
in high dimension. In such a case, the experimental identification of the non-Gaussian matrix-
valued random field{[A(x)], x ∈ Ω} that models the apparent elasticity field at mesoscale is an
interesting illustration.

Figure 1: Cortical bone at mesoscale (left) and at microscale (right). Photo : Julius Wolff Institute, Charit -
Universittsmedizin Berlin.

2.3 Difficulties of the statistical inverse problem in high dimension

The non-Gaussian second-order matrix-valued random field{A(x), x ∈ Ω} must verify some
important algebraic properties such as a deterministic or random boundedness, symmetry, pos-
itiveness, some invariance properties (for instance, induced by material symmetries), etc. In
order to preserve a generality with respect to the chosen class in which the random field has to
be identified, the polynomial chaos expansion (PCE) of the second-order random field is pro-
posed, yielding a statistical inverse problem in high dimension. This is a challenging problem
due to the high dimension and due to the fact that the random field is with values in a subset
of M+

n (R), which can be very complicated to describe and to explore forcomputing the PCE
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coefficients from experimental data, and consequently, a direct approach cannot be used, and
some adapted parameterizations and efficient algorithms must be developed.

3 METHODOLOGY FOR THE STATISTICAL INVERSE PROBLEM

For the statistical inverse problem related to the identification of a non-Gaussian vector- or
matrix-valued random field in high dimension using partial and limited experimental data, the
methodology consists in

(1) constructing an algebraic prior stochastic model of therandom field and in identifying its
hyperparameters using experimental data (Step 1);

(2) choosing an adapted representation for performing its polynomial chaos expansion in
high dimension (Step 2);

(3) identifying a posterior stochastic model (Step 3).
This methodology is developed in details in [44, 45] for which the first developments and algo-
rithms have been published in [39, 42, 40], for which additional complements concerning the
algorithms that can be found in [27, 28], and for which mathematical developments concerning
representation of random fields and mathematical analysis of stochastic elliptic boundary value
problem are given in [43].

3.1 Step 1: Construction of an algebraic prior stochastic model (APSM) and its identifi-
cation using experimental data

(i) The first stage in Step 1 concerns the construction of an adapted family,{[AAPSM
(x; b)], x ∈

Ω}, of algebraic prior stochastic models for the non-GaussianM+
n (R)-valued random field

{[A(x)], x ∈ Ω}, defined on a probability space(Θ, T ,P), indexed by a bounded domainΩ
in Rd. This family of APSM depends on a vector-valued hyperparameter b belonging to an
admissible setBad that is assumed to be in low dimension. For instance, such a hyperparameter
is made up of the statistical mean matrix, some dispersion parameters, the spatial-correlation
lengths, etc. An important example of construction of a APSMwill be given after. It should be
noted that in high dimension, the real possibility to correctly identify random field[A], through
a stochastic boundary value problem, is directly related tothe capability of the constructed
APSM to represent fundamental properties such as lower bound, positiveness, invariance re-
lated to material symmetry, mean value, support of the spectrum, spatial-correlation lengths,
level of statistical fluctuations, etc.

(ii) The second stage is related to the calculation of an optimal value,bopt, of hyperparameter
b of the APSM using the maximum likelihood method for random model observationU of
the computational model, and the experimental data set,uexp,1, . . . , uexp,νexp for U. The optimal
value is written as

bopt = arg max
b∈Bad

νexp∑

ℓ=1

log pU(uexp,ℓ; b) , (2)

in which u 7→ pU(u; b) is the probability density function of random model observation U, es-
timated with the computational modelU = h([A

APSM
(x1; b)], . . . , [A

APSM
(xNp ; b)]). The optimal

PASM (OAPSM) of the random field[A] is denoted by[A
OAPSM

] and is such that, for allx in Ω,
[A

OAPSM
(x)] =: [A

APSM
(x, bopt)]. Finally, ν independent realizations of the OPASM can easily be

computed using the APSM withb = bopt,

{[AOAPSM
(x; θℓ)], x ∈ Ω} , ℓ = 1, . . . , ν , (3)
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in which θ1, . . . , θν are inΘ.

3.2 Step 2: Choosing an adapted representation for performing the polynomial chaos
expansion in high dimension and identification of a prior stochastic model using ex-
perimental data

Step 2 is devoted to the construction of a polynomial chaos expansion of random field[A
OAPSM

]
that is defined by an optimal algebraic prior stochastic model. Such a PCE will be used for ex-
tending the PCE representation in the set of all theM+

n (R)-valued non-Gaussian second-order
random fields by randomizing the coefficients (see Step3). However, such a PCE cannot be
carried out with a direct approach because all the algebraicproperties, such as the boundedness
and and the positiveness of the random field for which the PCE should be performed, must be
satisfied. Consequently, an indirect approach is performedconsisting in constructing, in a first
stage, an adapted representation for{[AOAPSM

(x)], x ∈ Ω} for which ν independent realizations
have been computed (see Eq. (3)).

(i) The change of representation for random field[A
OAPSM

] consists in introducing a class of
lower-bounded random fields, normalized, and releasing some constraints, such that

[A
OAPSM

(x)] = G([GOAPSM
(x)]) , ∀ x ∈ Ω , (4)

in which G is an invertible transformation fromMS
n(R) into M+

n (R). Consequently, from
Eq. (3),ν independent realizations of theMS

n(R)-valued random field,{[GOAPSM
(x)], x ∈ Ω},

can be deduced such that, for allx in Ω,

[G
OAPSM

(x, θℓ)] = G−1([A
OAPSM

(x, θℓ)]) , ℓ = 1, . . . , ν . (5)

Example of an invertible transformation. Some general invertible transformations and their
mathematical analyses can be found in [40, 43, 44]. For instance, we can consider the following
class of representation defined by

[A
OAPSM

(x)] =
1

1 + ε
[L(x)]T {ε[In] + expM([G

OAPSM
(x)])} [L(x)] , ∀x ∈ Ω , (6)

in which ε is a positive real number, where[L(x)] is a deterministic(n × n) real matrix that is
introduced for the normalization, and whereexpM denotes the exponential for symmetric ma-
trices, for which the inverse is the logarithmlogM of positive-definite matrices. In such a class,
the lower bound is the deterministic positive-definite matrix [Cℓ(x)] = ε

1+ε
[L(x)]T [L(x)], and

for all random matrix[G
OAPSM

(x)] with values inMS
n(R), the random matrix[A

OAPSM
(x)]− [Cℓ(x)]

is almost surely positive definite.

(ii) It is now possible to perform a PCE of theMS
n(R)-valued random field{[GOAPSM

(x)], x ∈
Ω}. The general methodology consists in performing a Karhunen-Loëve expansion (KLE) of
the random field, followed by a PCE of the coordinates of the KLE (see [10, 12]). Concerning a
new approach devoted to the KLE of vector-valued random fields with a scaling and the use of an
optimal basis, we refer the reader to [46, 47], and for the KLEof matrix-valued random fields, to
[40, 43, 44]. It should be noted that, in the framework of statistical inverse problem with partial
and limited experimental data, the covariance operator of random field[A] cannot be estimated
with nonparametric statistics due to the lack of data and consequently, the KLE of the random
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field cannot be constructed by this way. However, with the methodology that is proposed, the
covariance operator of random field[G

OAPSM
] can be estimated using the realizations computed

with Eq. (5). The truncated KLE of random field[G
OAPSM

] is constructed at the orderm, and then
the coordinates of this expansion are expressed as a truncated PCE. Assuming that[G

OAPSM
] is a

second-order and mean-square continuous random field, thenthe truncated KLE at orderm is
written as,

[G
OAPSM(m)(x)] = [G0(x)] +

m∑

i=1

√
λi [Gi(x)] ηOAPSM

i , ∀x ∈ Ω , (7)

in which, for all x in Ω, the random matrix[G0(x)] = E{[GOAPSM
(x)]} is the mean value in

M
S
n(R), and whereηOAPSM = (ηOAPSM

1 , . . . , ηOAPSM
m ) is a non-Gaussian random vector with values in

Rm, which is centered and for which its covariance matrix is[CηOAPSM] = [Im] (the components
of ηOAPSM are uncorrelated and normalized, but are statistically dependent). From Eqs. (5) and
(7), ν independent realizations of random vectorηOAPSM are computed,

ηOAPSM
i (θℓ) =

1√
λi

∫

Ω

tr{[Gi(x)]T ([G
OAPSM

(x, θℓ)]− [G0(x)])} dx , ℓ = 1, . . . , ν . (8)

The truncated PCE of the non-Gaussian random vectorηOAPSM is denoted byηchaos(N,Ng) and
is written as,

ηOAPSM ≃ ηchaos(N,Ng) = [z]T Ψ(Ξ) , (9)

in which the matrix[z] of the coefficients belongs to the compact Stiefel manifoldVm(R
N) ⊂

MN,m that is defined by

Vm(R
N) =

{
[z] ∈ MN,m(R) ; [z]

T [z] = [Im]
}
. (10)

In Eq. (9), the random vectorΞ = (Ξ1, . . . ,ΞNg
) with values inRNg has a probability distribu-

tionPΞ(dξ) = pΞ(ξ) dξ (onRNg) that is assumed to be given and that must verify,
∫

R
Ng

‖ξ‖m pΞ(ξ) dξ < +∞ , ∀m ∈ N .

The random vectorΨ(Ξ) = (Ψα(1)(Ξ), . . . ,Ψα(N)(Ξ)) is made up of the multivariate polyno-
mials (the chaos) that are orthonormal with respect toPΞ(dξ),

E{Ψ
α(j)(Ξ) Ψ

α(k)(Ξ)} =

∫

R
Ng

Ψ
α(j)(ξ) Ψα(k)(ξ) pΞ(ξ) dξ = δjk . (11)

If Nd ≥ 1 is the maximum degree of the polynomials, then the integerN is given by

N =
(Ng +Nd)!

Ng!Nd!
− 1 . (12)

♦ If Ξ is the normalized Gaussian random vector, thenΨ
α(j)(Ξ) = (Φ

α
(j)
1
(Ξ1)×. . .×Φ

α
(j)
Ng

(ΞNg
))

in whichΦ
α
(j)
k

(Ξk) is the usual normalized Hermite polynomial onR (see [10, 12]).
♦ If the Gaussian measure is replaced by an arbitrary probability measure for which the real-
valued random variablesΞ1, . . . ,ΞNg

are statistically independent, see [22].
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♦ For an arbitrary measure for whichΞ1, . . . ,ΞNg
are statistically dependent, see [31].

For these three cases, if the degreeNd of the polynomials is high, then the realizationsΨ(Ξ(θℓ)
cannot be computed with usual algorithms. An efficient algorithm must be used for obtaining
a robust computation of realizations for the high degrees polynomial chaos. For the details of
such an algorithm, see [27, 28, 31].

(iii) The next stage consists in calculating (1) the coefficients that are represented by ma-
trix [z] and (2) the optimal values ofNg andN in order to obtain an error that is sufficiently
small betweenηOAPSM andηchaos(N,Ng). For each fixed value ofN andNg, an optimal value
[z0(N,Ng)] ∈ Vm(R

N) ⊂ MN,m of [z] is computed with the maximum likelihood method,

[z0(N,Ng)] = arg max
[z]∈Vm(RN )

ν∑

ℓ=1

log p
ηchaos(N,Ng)(η

OAPSM(θℓ) ; [z]) , (13)

in which the realizationsηOAPSM(θℓ) are given by Eq. (8) and where the probability density
function y 7→ p

ηchaos(N,Ng)(y ; [z]) of random vectorηchaos(N,Ng) is estimated at pointy =
ηOAPSM(θℓ) by the multidimensional kernel density estimator and by using a great number of
independent realizations that are generated with the stochastic model defined by Eq. (9). The
optimization problem defined by Eq. (13) is solved with the efficient random search algorithm
on the manifoldVm(R

N ), which is detailed in [39, 28]. The optimal valuesNopt andNopt
g of

N andNg can be computed as explained in [28], which corresponds to animprovement of the
following one that consists in minimizing the error function (N,Ng) 7→ err(N,Ng) defined by

err(N,Ng) =
1

m

m∑

i=1

∫

BIi

| log10 pηOAPSM
i

(e)− log10 pηchaos
i (N,Ng)

(e ; [z0(N,Ng)])| de , (14)

in which BIi is the support of the kernel density estimator ofpηOAPSM
i

. The error function defined
by Eq. (14) allows the accuracy of the tail of the distributions to be quantified. In order to
simplify the notation, the optimal valuesNopt andNopt

g are re-written asN andNg. Once the
optimal value[z0(N,Ng)] has been computed, the optimal representation{[AOAPSM

(x)], x ∈ Ω}
of the random field{[A(x)], x ∈ Ω} can then be deduced:

[A
OAPSM

(x)] = A(m,N,Ng)(x,Ξ, [z0]) , ∀ x ∈ Ω , (15)

in which the mapping(x,Ξ, [z0]) 7→ A(m,N,Ng)(x,Ξ, [z0]) is explicitly defined by Eqs. (4), (7),
and (9), in which[z0] means[z0(N,Ng)].

(iv) The last stage of Step 2 consists in performing the experimental identification of the
prior stochastic model{[Aprior(x)], x ∈ Ω} of random field{[A(x)], x ∈ Ω}, which is defined by

[Aprior(x)] = A(m,N,Ng)(x,Ξ, [zprior]) , (16)

in which [zprior] ∈ Vm(R
N) ⊂ MN,m is computed with the maximum likelihood method for

random model observationU of the computational model, using the experimental data set
uexp,1, . . . , uexp,νexp relative toU. We then have

[zprior] = arg max
[z]∈Vm(RN )

νexp∑

ℓ=1

log pU(m,N,Ng)(uexp,ℓ; [z]) , (17)
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in which u 7→ pU(m,N,Ng)(u; [z]) is the probability density function of random model observa-
tion U, estimated with the computational modelU = h([Aprior(x1)], . . . , [Aprior(xNp)]) in which
[Aprior(xk)] = A(m,N,Ng)(xk,Ξ, [zprior]) with k = 1, . . . , Np. The optimization problem defined
by Eq. (17) is solved with a random search algorithm that explores the neighborhood of a subset
of Vm(R

N ) centered in[z0]. For that, a parameterization

[z] = R[z0]([w], σ) (18)

of Vm(R
N) (based on [64]) depending of a positive parameterσ, is used. The function[w] 7→

[z] = R[z0]([w], σ) is a mapping fromMN,m(R) ontoVm(R
N) such thatR[z0]([0], σ) = [z0]

and, if [w] belongs to a subset ofMN,m(R) centered in[w] = [0] and with a sufficiently small
diameter controlled byσ, then[z] = R[z0]([w], σ) belongs to a subset ofVm(R

N ) approxima-
tively centered in[z] = [z0]. This parameterization allows for exploring a subset ofVm(R

N),
centered in[z0] ∈ Vm(R

N), and for which its ”diameter” is controlled byσ.

3.3 Step 3: Identifying a posterior stochastic model

For constructing a posterior stochastic model{[Apost(x)], x ∈ Ω} of random field{[A(x)], x ∈
Ω}, matrix[z] of the PCE is modeled by a random matrix[Z] with values inVm(R

N), for which
the statistical fluctuations are in a subset ofVm(R

N ) centered around[zprior] computed in Step 2.
A prior stochastic model[Zprior] of [Z] is thus introduced in using the representation defined by
Eq. (18),

[Zprior] = R[zprior]([W
prior], σ) (19)

in which [Wprior] is a centered and normalized random matrix whose probability distribution
and its generator are known. For a sufficiently small value ofσ, the statistical fluctuations of
theVm(R

N)-valued random matrix[Zprior] are approximatively centered around[zprior]. The
Bayesian update allows the posterior distribution of the random matrix[Wpost] with values
in MN,m(R) to be estimated using the experimental data setuexp,1, . . . , uexp,νexp and the prior
stochastic model of the random model observationU = h([Aprior,prior(x1)], . . . , [Aprior,prior(xNp)])
in which [Aprior,prior(xk)] = A(m,N,Ng)(xk,Ξ, [Zprior]) with k = 1, . . . , Np. The posterior stochas-
tic model[Apost] of random field[A] is then given by

[Apost(x)] = A(m,N,Ng)(x,Ξ,R[zprior]([W
post])) , ∀x ∈ Ω . (20)

The identification procedure can then be restarted from Step2 if necessary for improving the
identification.

4 ALGEBRAIC PRIOR STOCHASTIC MODEL

In this section, we present some elements related to the development of an algebraic prior
stochastic model for the non-Gaussian positive-definite matrix-valued random fields with sta-
tistical fluctuations in a given symmetry class and in the anisotropic class. All the details of this
development can be found in [48, 49] concerning the stochastic model for the anisotropic sta-
tistical fluctuations. The case for which dominant statistical fluctuations belong to the isotropic
class with anisotropic statistical fluctuations has been introduced in [65] and has been gener-
alized to all the symmetry classes in [56] and included references. A very general theory is
then proposed in [56, 58, 45, 44] for the general case for which there are simultaneously some
statistical fluctuations in a given symmetry class and statistical fluctuations in the anisotropic
class.
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4.1 Algebraic prior stochastic models for non-Gaussian matrix-valued random field

The construction of an algebraic prior stochastic model fora non-GaussianM+
n (R)-valued

random field{[AAPSM
(x)], x ∈ Ω} is defined hereinafter in the framework of the 3D linear elas-

ticity (n = 6). A symmetry class, induced by a material symmetry, is defined as a subset
M sym

n (R) of M+
n (R), whose algebraic dimension isns ≤ n(n + 1)/2 (see its construction in

[56]). For instance,ns = 2 for the isotropy,ns = 5 for the transverse isotropy, andns = 21
for the anisotropy. For allx fixed in Ω, theM+

n (R)-valued random matrix[A
APSM

(x)] is, in
mean, close to a given symmetry classM sym

n (R) that is independent ofx and exhibits dominant
statistical fluctuations in the symmetry classM sym

n (R) with some anisotropic statistical fluctua-
tions inM+

n (R) (around this symmetry class), which is controlled independently of the level of
statistical fluctuations in the symmetry class.

4.2 Representation of the random field

The algebraic representation of the random field{[AAPSM
(x)], x ∈ Ω} is constructed such that

[A
APSM

(x)] = [Cℓ] + [A(x)] , ∀ x ∈ Ω , (21)

in which [Cℓ] is theM+
n (R)-valued deterministic lower bound assuring the uniform ellipticity

for the stochastic elliptic operator constructed with random field [A
APSM

]. The non-Gaussian
M+

n (R)-valued random field{[A(x)], x ∈ Ω} is written as

[A(x)] = [S]T [M(x)]1/2[G0(x)] [M(x)]1/2 [S] , (22)

in which{[M(x)], x ∈ Ω} is a non-GaussianM sym(R)-valued random field that models the dom-
inant statistical fluctuations in the symmetry class definedbyM sym(R) (see its construction and
its generator in [56]), where{[G0(x)], x ∈ Ω} is a non-GaussianM+

n (R)-valued random field
that models the anisotropic statistical fluctuations around the symmetry class (see its construc-
tion and its generator in [48, 49]). The random fields{[M(x)], x ∈ Ω} and{[G0(x)], x ∈ Ω}
are statistically independent. The invertible deterministic matrix [S] that belongs toMn(R) is
introduced for the normalization (see its construction in [56, 44]). It should be noted that the
generator of independent realizations of random field{[M(x)], x ∈ Ω} proposed in [56, 44]
is based on an efficient MCMC algorithm constructed in using anonlinear Itô stochastic dif-
ferential equation associated with a second-order Hamiltonian dissipative nonlinear dynamical
system.

5 APPLICATION 1

This application deals with the stochastic modeling in highdimension of track irregularities,
for nonlinear stochastic dynamic simulations of high speedtrains. All the details and the results
given for this application are extracted form the work published in [28, 46, 47, 59, 66]. The
objectives are the following. The first one consists in performing the experimental identifica-
tion of a stochastic modeling of the track geometry for portions of same length, using a set of
realizations corresponding to the experimental measurements of the track geometry for several
TGV lines (high speed train lines). The second one is the validation of the identified stochastic
model of the track geometry by using a comparison between theexperimental measurements
of the dynamical responses of a TGV train and the simulationsperformed with the nonlinear
stochastic dynamical model of the TGV train for which the track geometry is the identified
stochastic model.
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5.1 Description of track irregularities

The irregularities of the track geometry are parameterizedby 4 parameters,X1(s), X2(s),
X3(s), andX4(s), as a function of the curvilinear abscissas (see Figure 2-left). As an example,
Figure 2-right displays the values of the irregularities for the4 parameters. The track portions
have a same lengthS with S < 10, 000m and are sampled with a spatial step∆s. Consequently,
the track geometry is represented by a random vectorX = (X1,X2,X3,X4) with values in
NS = 4×(S/∆s+1) in whichXj = (Xj(0), Xj(∆s), . . . , Xj(S)). Random vectorX is in high
dimension (NS greater than10, 000). The experimental measurements of the track geometry
have been carried out forνexp = 1, 730 track portions of lengthS with spatial sampling∆s
yieldingνexp independent realizationsx1, . . . , xνexp in RNS of X.

X  (s)

X  (s)

X  (s)

1

2
X  (s)

3

4

x

y

titre

 

 

data1 data2 data3 data4 data5X1 X2 X 3 X4CH

Curvilinear abscissa  s

Figure 2: Parameterization of the irregularities of the track geometry (left figure). Example of track irregularities
for the four parametersX1(s), X2(s), X3(s), X4(s) as a function of curvilinear abscissas and CH is the horizontal
curvature.

5.2 Stochastic modeling and experimental identification ofthe track irregularities

The stochastic modeling of the track irregularities and itsexperimental identification are
performed following the methodology described hereinbefore and are detailed in [28, 66]. The
estimationŝX of the mean value and[ĈX] of the covariance matrix of random vectorX are calcu-
lated using the independent realizationsx1, . . . , xνexp with νexp = 1, 730. The principal compo-
nent analysis allows for writing the approximationX ≃ X̂+

∑m
i=1

√
λi ηi wi with m = 940 that

yields a relative error less than1%. The polynomial chaos expansion of the random vectorη =
(η1, . . . , ηm) with values inRm is written asη ≃ ηchaos(N,Ng) =

∑N
j=1 yj Ψ

α(j)(Ξ) in which
the components of the random vectorΞ = (Ξ1, . . .ΞNg

) are independent random variables uni-
formly distributed on[−1 , 1] and where the normalized multivariate polynomials are written as
Ψα(j)(Ξ) = Φ

α
(j)
1
(Ξ1) × . . . × Φ

α
(j)
Ng

(ΞNg
) with Φ

α
(j)
k

(Ξk) the normalized univariate Legendre

polynomial. The integersN andNg are identified in the statistical inverse procedure as ex-
plained in Section 3. The vector-valued coefficientsyj for j = 1, . . . , N are estimated using the
maximum likelihood method for which an algorithm adapted tothe high dimension is used (see
Section 3). The error is estimated with the following error function depending onN andNg,
which is written as err(N,Ng) =

∑m
i=1

∫
BIi

| log10 pηi(e)− log10 pηchaos
i (N,Ng)

(e ; y1, . . . , yN )| de,
in which BIi is the interval bounding the experimental valuesηexp

i . Figure 3 displays the graph
of functionN 7→ err(N,Ng) for Ng = 3 andNg = 4. The convergence is reached forNg = 3
andN = 2, 925.
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Figure 3: Graph of functionN 7→ err(N,Ng) for Ng = 3 (solid line) andNg = 4 (dash-dotted line).

5.3 Validation using the nonlinear dynamical responses of aTGV train

A validation of the identified stochastic model of the track geometry can be obtained in com-
paring the experimental measurements and the simulations for the dynamical responses of a
TGV train. A track of5 km has been considered for which the track geometry has been mea-
sured and for which the dynamical responses of a TGV train hasalso been measured. The
simulation of the nonlinear stochastic dynamics of the TGV train exited by the general stochas-
tic model of the whole track geometry (which has been experimentally identified as described in
the previous section). Figure 4 displays the comparisons between experimental measurements
and the simulations. Two types of analysis are presented. The first one is related to a statistical
analysis in comparing the mean number of upcrossings. The second one deals with a spectral
analysis in comparing the power spectral density function.The observed responses of the train
are4 transverse contact forces between rail and wheel,C1, C2, C3 andC4, at wheelsets of bogies
in the TGV train. The experimental measurements are denotedby C exp

j and the corresponding
simulated quantities are denoted byC sim

j . It can be seen that the comparisons are really good
for mean number of upcrossings and for the power spectral density function.
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6 APPLICATION 2

This application is devoted to the stochastic continuum modeling of random interphases
from atomistic simulations for a polymer nanocomposite. All the details and results given for
describing this application are extracted form the work published in [60]. The objective is to
construct, in the framework of continuum mechanics, a priorstochastic model of the matrix-
valued random elasticity fieldx 7→ [Ameso(x)] describing the random elastic behavior of the
interphase between an amorphous polymer and a silicon nano-inclusion inserted in the polymer,
and to identify the hyperparameters of the prior stochasticmodel of[Ameso] by using the atomistic
simulations that are considered as some simulated experiments by solving a statistical inverse
problem.

6.1 Physical description, molecular dynamics modeling, and simulation procedure

The polymer nanocomposite is made up of an amorphous polymercontaining one silicon
nano-inclusion. The amorphous polymer is constituted of long chains with CH2 sites, repre-
sented through a coarse graining with stiffness potentialsand the Lennard Jones potential. The
silicon nano-inclusion is an amorphous bulk of SiO2 molecules for which a fully atomistic de-
scription is done in terms of Si and O atoms, for which the Coulomb potential is used. The
interaction CH2 - SiO2 is taken into account by the Lennard Jones potential. As an illustration,
Figure 5 displays 3D and 2D views.

Figure 5: Example: 3D view of the distribution for80 polymer chains (left figure) and a 2D view showing the
SiO2 nano-inclusion (right figure), for a domain that is a cube with a side of13.5 × 10−9m in which the silicon
sphere has a diameter6× 10−9m.

All the simulations are carried out with a target volume fraction of 4.7%. For computation,
the simulation domain is a cube with6.8× 10−9m side and contains10 polymer chains. Each
polymer chain has1, 000 CH2 sites yielding a total of10, 000 CH2 for the polymer bulk. The
SiO2 nano-inclusion is a sphere with3 × 10−9m diameter. The number of Si atoms is275 and
the the number of O atoms is644.

The simulation procedure is constituted of two main steps: the first one is related to atomistic
simulations of the polymer nanocomposite and the second oneto the statistical inverse problem
for the identification of a prior continuum stochastic modelof the random elasticity field that
describes the random elastic behavior of the interphase.

13



C. Soize, J.M. Allain, C. Desceliers, D. Duhamel, C. Funfschilling, H. Gharbi, J. Guilleminot, T.T. Le,
M.T. Nguyen, and G. Perrin

6.2 Atomistic simulations with 10 chains

Atomistic simulations are done for a set of configurations inorder to generate a set of realiza-
tions that are used for identifying the prior stochastic continuum model of the random elasticity
field of the interphase (in the framework of continuum mechanics). For the simulations, the
temperature isT = 100 oK and the pressureP is the control variable. The adapted conditions
are introduced for simulating6 traction and shear mechanical tests. A time-spatial averaging is
computed in order to estimate the apparent strain that allows for deducing the components of
the apparent elasticity matrix in the sense of continuum mechanics. The simulations have been
done with the molecular dynamics software, Lammps, for20 configurations that have required
4 months of computation with48 cores. The simulations have allowed for identifying the inter-
phase thickness,e, which is about2 × 10−9m. An analysis with respect to the diameter of the
silicon nano-inclusion (3, 6, and9.6nm) shows that the interphase thickness is independent of
the diameter.

Example of a partial result obtained with the atomistic simulation. As an example, Figure 6
displays the polymer densityρn in the nano-composite divided by the pure polymer density
ρp as a function of the distancer from the center of the sphere representing the silicon nano-
inclusion.
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Figure 6: Polymer densityρn in the nano-composite divided by the pure polymer densityρp as a function of the
distancer in nanometer from the center of the sphere representing the silicon nano-inclusion for the case of80
polymer chains in a domain that is a cube with a side of13.5× 10−9m in which the silicon nano-inclusion sphere
has a diameter6× 10−9m.

6.3 Statistical inverse problem for the identification of a prior stochastic continuum
model of the interphase

The prior stochastic model of the non-Gaussian matrix-valued random elasticity fieldx 7→
[Ameso(x)] is chosen is the class of transversally isotropic material symmetries [56]. Using the
spherical coordinates, there are5 dependent random fields that have to be identified as previ-
ously explained. The hyperparameters that have to be identified are the dispersion parameter
allowing for controlling the statistical fluctuations level and the spatial-correlation lengths. The
finite element method is used for solving the6 stochastic boundary value problems correspond-
ing to the6 mechanical tests. For the system with10 polymer chains, there are190, 310 four
nodes finite elements with one Gauss point,34, 187 nodes and102, 561 degrees of freedom
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(see Figure 7). The maximum likelihood method is used for estimating the optimal values of

Figure 7: Finite element mesh for modeling the interphase incontinuum mechanics.

the hyperparameters of the prior stochastic model of the non-Gaussian matrix-valued random
field x 7→ [Ameso(x)] defined in the interphase. For that, the observed random quantity is chosen
as the random apparent elasticity matrix[Aapp] related to the domain.The probability density
function of [Aapp] is estimated with200 realizations that are computed by stochastic homog-
enization, using the finite element solutions of the6 stochastic BVP with the prior stochastic
modelx 7→ [Ameso(x)] in the interphase. The likelihood function is evaluated for[Aapp, MD] com-
puted with the the molecular dynamics experiments. About2 days of computation are required
for computing one realization for each configuration, and one month of computation with8
cores is required for the total computation.

Result of the identification. The optimal values of the hyperparameters are the following: 0.2
for the dispersion parameter,e/4 = 5 × 10−10m for the radial spatial correlation length, and
3.5×10−9m for the (average) angular spatial correlation length. Figure 8 displays a realization
of the random fieldx 7→ [Ameso(x)]11 in the interphase (inGPa) yielding a mean value in the
interphase of5.4GPa while [Ameso] is constant in the inclusion and in matrix, and such that
[Ameso]11 = 72GPa in the inclusion, and[Ameso]11 = 5GPa in the matrix.
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Figure 8: Realization of the random fieldx 7→ [Ameso(x)]11 in the interphase (inGPa).
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7 APPLICATION 3

This application is devoted to the multiscale identification [61, 63] of the prior stochastic
model of the apparent material properties at mesoscale, using a multiscale experimental digital
image correlation [61, 62], at macroscale and at mesoscale.

7.1 Difficulties and multiscale identification

The problem consists of the experimental identification of the vector-valued hyperparameter
b of the prior stochastic model of the non-Gaussian matrix-valued random field{[Ameso(x; b)],
x ∈ Ωmeso} that models the apparent elasticity field at mesoscale. The hyperparameterb is
made up of the statistical mean matrix,E{[Ameso(x)]}, and other parameters that control the
statistical fluctuations such as the spatial-correlation lengths and a dispersion coefficient. The
difficulties of this problem are induced by the fact that the mean valueE{[Ameso(x)]} cannot
directly be identified using only the measurements of the displacement fieldumeso

exp at mesoscale
in Ωmeso, and requires macroscale measurements. Consequently, some experimental multiscale
measurements are required and must be made simultaneously at macroscale and at mesoscale.

7.2 Experimental digital image correlation at macroscale and at mesoscale

Only a single specimen, submitted to a given load applied at macroscale, is tested (see Figure
9). A measurement of the strain field at macroscale is carriedout inΩmacro (spatial resolution
10−3m, for instance). Simultaneously, the measurement of the strain field at mesoscale is
carried out inΩmeso(spatial resolution10−5m, for instance).

Figure 9: Macroscale and mesoscale measurements of the strain field of a single specimen.

7.3 Hypotheses and strategy for solving the statistical inverse problem

The hypotheses used for solving the statistical inverse problem are the following: (i) there
is a separation of macroscaleΩmacro from mesoscaleΩmeso that is thus a representative volume
element (RVE); (ii) at macroscale, the elasticity tensor isconstant (independent ofx); (iii) at
mesoscale, the random apparent elasticity field is homogeneous.
The strategy for solving the statistical inverse problem consists in constructing (i) a prior deter-
ministic model of the macro elasticity matrix,[Amacro(a)], at macroscale, depending on a vector-
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valued parametera belonging to an admissible setAmacro, and (ii) a prior stochastic model of the
non-Gaussian matrix-valued random field{[Ameso(x; b)], x ∈ Ωmeso} that represents the apparent
elasticity field at mesoscale and that depends on a vector-valued hyperparameterb belonging to
an admissible setBmeso.

7.4 Defining numerical indicators for solving the multiscale statistical inverse problem

For solving the multiscale statistical inverse problem, three numerical indicators are intro-
duced, which are:

• a macroscopic numerical indicatorJ1(a) that allows for minimizing the distance between
the experimental strain deformation at macroscale and the computed strain deformation
at macroscale.

• a mesoscopic numerical indicatorJ2(b) that allows for minimizing the distance between
the experimental statistical fluctuations of the strain deformation at mesoscale and the
statistical fluctuations of the computed random strain deformation at mesoscale.

• a macroscopic-mesoscopic numerical indicatorJ3(a, b) that allows for minimizing the
distance between the elasticity matrix[Amacro(a)] at macroscale and the effective elasticity
matrix [Aeff(b)] constructed by a stochastic homogenization using the RVEΩmeso.

Macroscopic numerical indicator. The macroscopic numerical indicatorJ1(a) that allows for
minimizing the distance between the experimental strain deformation at macroscale and the
computed strain deformation at macroscale, is defined by

J1(a) =
∫

Ωmacro
‖εmacro

exp (x)− εmacro(x; a)‖2F dx , (23)

in which εmacro
exp (x) is the strain field measured inΩmacro and whereεmacro(x; a) is computed in

solving the following boundary value problem at macroscale,

−divσmacro= 0 in Ωmacro,

σmacronmacro= fmacro on Σmacro,

umacro= 0 on Γmacro,

σmacro= C
macro(a) : εmacro , a ∈ Amacro,

in whichCmacro(a) is the fourth-order elasticity tensor whose matrix representation is the(6×6)
symmetric matrix[Amacro(a)], and where the prior deterministic model of the macro elasticity
matrix, [Amacro(a)], at macroscale, depends on vector-valued parametera ∈ Amacro.

Mesoscopic numerical indicator. The mesoscopic numerical indicatorJ2(b) allows for mini-
mizing the distance between (i) the normalized dispersion coefficient,δmeso(x; b), which charac-
terizes the statistical fluctuations of the computed randomstrain deformation at mesoscale, and
(ii) the corresponding normalized dispersion coefficient,δmeso

exp , deduced from the experimental
strain deformation at mesoscale. This numerical indicatoris written as,

J2(b) =
∫

Ωmeso
(δmeso

exp − δmeso(x; b))2 dx . (24)
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The quantitiesδmeso(x; b) andδmeso
exp are defined by

δmeso(x; b) =

√
V meso(x; b)
‖εmeso

exp ‖F
, V meso(x; b) = E{‖εmeso(x; b)− εmeso(b)‖2F}

δmeso
exp =

√
V meso

exp

‖εmeso
exp ‖F

, V meso
exp =

1

|Ωmeso|

∫

Ωmeso
‖εmeso

exp (x)− εmeso
exp ‖2F dx

in which‖ · ‖F is the Frobenius norm, and where the spatial averagingsεmeso(b) andεmeso
exp on the

RVE,Ωmeso, are defined by

εmeso(b) =
1

|Ωmeso|

∫

Ωmeso
εmeso(x; b) dx , εmeso

exp =
1

|Ωmeso|

∫

Ωmeso
εmeso

exp (x) dx .

For allb fixed inBmeso, the mesoscale strain fieldεmeso(x; b) is calculated by solving the mesoscale
boundary value problem,

−divσmeso= 0 in Ωmeso,

Umeso= umeso
exp on ∂Ωmeso,

σmeso= C
meso(b) : εmeso , b ∈ Bmeso,

in which umeso
exp is the displacement field measured on the boundary∂Ωmeso of the mesoscale do-

mainΩmeso, whereCmeso(b) is the non-Gaussian fourth-order tensor-valued elasticity field whose
matrix representation is the prior stochastic model of the non-Gaussian matrix-valued random
field {[Ameso(x; b)], x ∈ Ωmeso} (random apparent elasticity field at mesoscale) that depends on
vector-valued hyperparameterb ∈ Bmeso. SinceΩmeso is assumed to be an RVE, then for allb in
Bmeso, we haveεmeso(b) = εmeso

exp almost surely (a.s).

Macroscopic-mesoscopic numerical indicator. The macroscopic-mesoscopic numerical indica-
torJ3(a, b) allows for minimizing the distance between the macro elasticity tensorCmacro(a) at
macroscale and the effective elasticity matrix[Aeff(b)] constructed by a stochastic homogeniza-
tion using the RVEΩmeso. This indicator is written as,

J3(a, b) = ‖[Amacro(a)]−E{[Aeff(b)]}‖2F . (25)

The stochastic homogenization (from meso to macro) is formulated in homogeneous constraints
(that is better adapted for the 2D plane stresses) withσmeso= Cmeso(b) : εmeso.

7.5 Statistical inverse problem formulated as a multi-objective optimization problem

The statistical inverse problem then consists in identifying the optimal valuesamacro of the
vector-valued parametera in Amacroandbmesoof the vector-valued hyperparameterb in Bmesoby
solving the following multi-objective optimization problem,

(amacro, bmeso) = arg min
a∈Amacro,b∈Bmeso

J (a, b) , (26)

in whichminJ (a, b) = (minJ1(a),minJ2(b),minJ3(a, b)). For solving this multi-objective
optimization problem (see [61, 63]):
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• the deterministic BVP at macroscale is discretized using the FEM;

• the stochastic BVP at mesoscale is discretized using the FEMand is solved using the
Monte Carlo method;

• the multi-objective optimization problem is solved using the genetic algorithm, and a
Pareto front is iteratively constructed at each generationof the genetic algorithm;

• the initial valuea(0) of a ∈ Amacro is computed by solving the optimization problem,
a(0) = argmina∈Amacro J1(a), using the simplex algorithm;

• the hyperparameterb is chosen inBmeso as the point on the Pareto front that minimizes
the distance between the Pareto front and the origin.

7.6 Multiscale experimental measurements of a cortical bone in 2D plane stresses

The experimental measurements for the identification of theelasticity field at mesoscale of a
heterogeneous microstructure by multiscale digital imagecorrelation [61, 63] have been carried
out at LMS of Ecole Polytechnique [61, 62] (see Figure 10). The specimen is a cubic bovine
cortical bone with dimensions0.01 × 0.01 × 0.01m3. The dimensions, the spatial resolution
and the applied force to the specimen for the multiscale measurements (see Figure 11) are the
following:

• Ωmacro : 0.01× 0.01m2 meshed with a10× 10-points grid yielding a spatial resolution of
10−3 × 10−3m2;

• Ωmeso : 0.001×0.001m2 meshed with a100×100-points grid yielding a spatial resolution
of 10−5 × 10−5m2.

• Applied force:9, 000N .

A comparison between a reference image and a deformed image obtained by digital image
correlation experimental method is shown in Figure 12 for the cubic bovine cortical bone sample
at macroscale. The experimental displacement field measured at macroscale is shown in Figure
13, and the experimental displacement field measured at mesoscale is shown in Figure 14.

Figure 10: Specimen of the cubic bovine cortical bone (left)and measuring bench (right).
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Figure 11: Dimensions, applied force and boundary conditions of the specimen for the multiscale measurements.

Figure 12: Comparison between a reference image (left) and adeformed image (right) at macroscale for the cubic
bovine cortical bone sample.

7.7 Stochastic computational model and results obtained bythe multiscale identification
procedure

Stochastic computational model. The details concerning the construction of the stochas-
tic computational model can be found in [61, 63]. A 2D-plane-stresses modeling is used. At
macroscale, the material is assumed to be homogeneous, transverse isotropic, linear elastic,
and the parametera is defined asa = (Emacro

T , νmacro
T ) in whichEmacro

T is the transverse Young
modulus andνmacro

T is the Poisson coefficient. At mesoscale, the material is assumed to be
heterogeneous, anisotropic, linear elastic, the statistical mean value is assumed to be transverse
isotropic, and the statistical fluctuations are anisotropic. The prior stochastic model of the appar-
ent elasticity field at mesoscale is deduced from the full anisotropic stochastic case previously
described and coincides with the prior stochastic model introduced in [49, 40, 44]. The hyper-
parameterb is defined byb = (ET , νT , L, δ) in whichET is the statistical mean value of the
transverse Young modulus,νT is the statistical mean value of the Poisson coefficient,L is the
spatial-correlation length that is assumed equal for the three cartesian directions, and whereδ
is the dispersion parameter that allows the statistical fluctuations of the apparent elasticity field
to be controlled.
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Figure 13: Component{umacro
exp }1 in directionx1 (left figure) and component{umacro

exp }2 in directionx2 (right) for
the experimental displacement at macroscale.
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exp }1 in directionx1 (left figure) and component{umeso

exp }2 in directionx2 (right figure)
for the experimental displacement at mesoscale.

Results obtained by the multiscale identification procedure[61, 63]. The optimal valueamacro=
(Emacro

T , νmacro
T ) is such thatEmacro

T = 6.74 × 109 Pa andνmacro
T = 0.32. The optimal values

of the components ofbmeso = (Emeso
T , νmeso

T , Lmeso, δmeso) areEmeso
T = 6.96 × 109 Pa, νmeso

T =
0.37, Lmeso = 5.06 × 10−5m, andδmeso = 0.28. The identified spatial-correlation length is
in agreement with the assumption introduced concerning theseparation of the macroscopic and
the mesoscopic scales, and is of the same order of magnitude than the distance between adjacent
lamellae or osteons in bovine cortical femur. The identifiedvalues ofa andb are coherent with
the values published in the literature.

8 CONCLUSION

A general methodology and some algorithms have been presented for identifying a non-
Gaussian tensor-valued random field in high stochastic dimension. This random field can con-
stitute the parameter of a boundary value problem (BVP) for which only partial and limited
experimental data are available for the observation. Taking into account the high dimension-
ality and the non-Gaussian character of the random field thathas to be identified by solving a
statistical inverse problem, an algebraic prior stochastic modeling and/or an adapted stochastic
representation must be constructed so that the inverse problem can be effectively solved. Three
applications in different domains have been presented and demonstrates the efficiency of the
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methodology proposed.
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