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Abstract. The paper deals with the statistical inverse problem foritlentification of a non-
Gaussian tensor-valued random field in high stochastic dsim. Such a random field can
represent the parameter of a boundary value problem (BVRg.dvailable experimental data,
which correspond to observations, can be partial and lichiteA general methodology and
some algorithms are presented including some adapted asticlrepresentations for the non-
Gaussian tensor-valued random fields and some ensemblgsrcdlgebraic stochastic models
for such random fields and the corresponding generatorsed ltustrations are presented: (i)
the stochastic modeling and the identification of trackgtrarities for dynamics of high-speed
trains, (ii) a stochastic continuum modeling of random ipteases from atomistic simulations
for a polymer nanocomposite, and (iii) a multiscale expemal identification of the stochastic
model of a heterogeneous random medium at mesoscale foanieahcharacterization of a
human cortical bone.



C. Soize, J.M. Allain, C. Desceliers, D. Duhamel, C. Funilicly, H. Gharbi, J. Guilleminot, T.T. Le,
M.T. Nguyen, and G. Perrin

1 INTRODUCTION

The problem related to the identification of a model paramealar, vector, field) of a
boundary value problem (BVP) (for instance, the coeffigasfta partial differential equation)
using experimental data related to a model observationafsaeector, field) of this BVP, is a
problem for which there exists a rich literature, includimgnerous textbooks. In general and
in the deterministic context, there is not a unique solutiecause the function, which maps the
model parameter (that belongs to an admissible set) to tltehodservation (that belongs to
another admissible set) is not a one-to-one mapping, ansegoiently, cannot be inverted. It is
an ill-posed problem. However, such a problem can be reftat@d in terms of an optimization
problem consisting in calculating an optimal value of thedelgparameter, which minimizes
a certain distance between the observed experimental ddttha model observation that is
computed with the BVP and that depends on the model paranheterany cases, the analysis
of such an inverse problem can have a unique solution in #madwork of statistics, that is
to say when the model parameter is modeled by a random qganiib or without external
noise on the model observation. In such a case, the randorelrabservation is completely
defined by its probability distribution (in finite or in infir@ dimension) that is the unique trans-
formation of the probability distribution of the random nabgbarameter. This transformation
is defined by the functional that maps the model parametdraatodel observation. Such a
formulation is constructed for obtaining a well-posed peaibthat has a unique solution in the
probability theory framework. We refer the reader(to [1] 4BHfor an overview concerning
the general methodologies for statistical and computationerse problems, including general
least-square inversion and the maximum likelihood met3pdaind including the Bayesian ap-
proach[4] 5] B, 7,18,/9].

A non-Gaussian second-order random field is completely eléfioy its system of marginal
probability distributions, which is an uncountable fanutiyprobability distributions on sets of
finite dimension, and not only by its mean function and itsac@nce function as for a Gaus-
sian random field. The experimental identification of sucloa-Gaussian random field then
requires the introduction of an adapted representatiomdardo be in capability to solve the
statistical inverse problem. For any non-Gaussian secodér random field, an important type
of representation is based on the use of the polynomial clgesnsion, for which the devel-
opment and the use in computational sciences and engigdeaire been pioneered by Roger
Ghanem in 1990-1991 [10]. An efficient construction has beeposed inl[[11, 12], which
consists in combining a Karhunen-Loéve expansion (thaivalfor doing a statistical reduced
model) with a polynomial chaos expansion of the statistiedliced model. This type of con-
struction has then been re-analyzed and used for solvingdaoy value problems using the
spectral approach (see for instance [13, 14 15, 16, 17,9.20/21]). The polynomial chaos
expansion has also been extended for an arbitrary protyaiidiasure [22, 23, 24, P5,126]. New
algorithms have been proposed for obtaining a robust caatiputof realizations of high de-
grees polynomial chaos [27,/28]. The polynomial chaos esiparhas also been extended to the
case of the random coefficients [29], to the construction lvdsis adaptation in homogeneous
chaos spaces [30], and for a multimodal random vector [31].

The statistical inverse problem for identifying a non-Gaas random field as a model pa-
rameter of a BVP, using polynomial chaos expansion has begalized in [32, 33], used in
[34,[35], and revisited in [36]. IN_[37], the constructiontbk probability model of the random
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coefficients of the polynomial chaos expansion is proposedsing the asymptotic sampling
Gaussian distribution constructed with the Fisher infdramamatrix, and used for model val-
idation [38]. This work have been developed for statistinaérse problems that are rather in
low stochastic dimension, and new ingredients have beeodated in([39, 40, 28] for statis-
tical inverse problems in high stochastic dimension. Imgshe reduced chaos decomposition
with random coefficients of random fields [29], a Bayesianrapph for identifying the pos-
terior probability model of the random coefficients of thdymomial chaos expansion of the
model parameter of the BVP has been proposed ih [41] for thestochastic dimension and
in [42] for the high stochastic dimension. The experimeideahtification of a non-Gaussian
positive matrix-valued random field in high stochastic dnsien, using partial and limited ex-
perimental data for a model observation related to the narstdution of a stochastic BVP, is a
difficult problem that requires both adapted representatand methodologies [39,140, 42| 43].
A complete development concerning advanced represemsadionon-Gaussian matrix-valued
random fields and their identification by solving a statatioverse problem can be found in
[40,43,44] 45].

The present paper deals with the challenging problem cklatéhe statistical inverse prob-
lem for the identification of a non-Gaussian tensor-valiadiom field in high stochastic di-
mension. Such a random field can, for instance, be the pagawfed boundary value problem.
The available experimental data can be, either a large expetal data base for the random
field itself that is to be identified, or can be a partial anditéth experimental data base cor-
responding to an observation of the stochastic BVP. Fortidtesgcal inverse identification of
non-Gaussian tensor-valued random fields, the methodalogyhe algorithms presented here-
inafter are extracted fronh [39, 40,128,/46] 47| 43, 44]. Anamant step in the methodology
is the construction and the use of algebraic prior stochastidels (APSM) of such a non-
Gaussian random field for which some advanced generatoesldie®n developed. The APSM
and the associated generators presented and used hereanafthose that have been published
in [44,/45,48] 49, 50, 51, 52, 53,154,/55] 40| 56,/57, 58]. Tlihestrations are presented: the
stochastic modeling of track irregularities for high-spéins and its experimental identifica-
tion [59], the stochastic continuum modeling of randomripl&ses from atomistic simulations
for a polymer nanocomposite [60], and the multiscale idmation of the random elasticity
field at mesoscale of a heterogeneous microstructure usidisoale experimental observa-
tions [61, 62| 63].

Notations. The following notations are used:
X = (z1,...,24) is avector inR? with d > 1 an integer.
M, ..(R) is the set of all thén x m) real matrices.
M, (R) is the set of all thén x n) real matrices.
M?(R) is the set of all the symmetrig x n) real matrices.
M (R) is the set of all the positive-definite symmettic x n) real matrices.
M (R) ¢ M3(R) € M,(R).
[1,,] is the(n x n) real unity matrix.
tr{[A]} is the trace of the square matfiA].

APSM: algebraic prior stochastic model.

BVP: boundary value problem.

KLE: Karhunen-Loéve expansion.

OAPSM: optimal algebraic prior stochastic model.
PCE: polynomial chaos expansion.
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2 PROBLEM TO BE SOLVED AND DIFFICULTIES
2.1 Statistical inverse problem to be solved in high dimenen

The statistical inverse problem consists in identifyingea‘GaussiaVL, (R)-valued ran-
dom field{[A(x)],x € Q} indexed by a bounded subgetof R?, with d an integer greater or
equal tol. This identification is performed in using an experimenttbdset constituted of,
deterministic vectorsi®™P!, ... u®Prexr pelonging toR™«, which correspond to independent
realizations of a random model observatidrwith values inR"™ of a computational model,
which is written as

U= h([A(Xl)]a SRR [A(XNP)]) ) (1)

in whichx!, ..., x"» are N, given points inQ, and whereh is a given deterministic nonlinear
mapping fromM (R) x ... x M*(R) into R™. In general, mappin is not explicitly known
but is numerically constructed with the computational motteshould be noted that mapping
h could be re-parameterized in replacing the set of randomiceat [A(x*)], k = 1,..., N,}
by a random vectoy with values in an adapted subgéof R™s with ny, = N, n(n + 1)/2.

2.2 An example of statistical inverse problem in high dimenisn

The experimental identification of the stochastic modehefélasticity field at mesoscale of
a material for which the elastic heterogeneous microsiraatannot be described in terms of
constituents, such as the cortical bone (see Figure 1) issanm@e of statistical inverse problem
in high dimension. In such a case, the experimental ideatifino of the non-Gaussian matrix-
valued random field [A(x)], x € Q} that models the apparent elasticity field at mesoscale is an
interesting illustration.

Figure 1. Cortical bone at mesoscale (left) and at micres@aght). Photo : Julius Wolff Institute, Charit -
Universittsmedizin Berlin.

2.3 Difficulties of the statistical inverse problem in high dmension

The non-Gaussian second-order matrix-valued random{fie(#), x € Q2} must verify some
important algebraic properties such as a deterministiamdom boundedness, symmetry, pos-
itiveness, some invariance properties (for instance,dadwby material symmetries), etc. In
order to preserve a generality with respect to the choses atawhich the random field has to
be identified, the polynomial chaos expansion (PCE) of titers#-order random field is pro-
posed, yielding a statistical inverse problem in high disien. This is a challenging problem
due to the high dimension and due to the fact that the randddidievith values in a subset
of Mt (R), which can be very complicated to describe and to exploredonputing the PCE
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coefficients from experimental data, and consequentlyrectdapproach cannot be used, and
some adapted parameterizations and efficient algorithnss beudeveloped.

3 METHODOLOGY FOR THE STATISTICAL INVERSE PROBLEM

For the statistical inverse problem related to the idemtiit of a non-Gaussian vector- or
matrix-valued random field in high dimension using partiad dimited experimental data, the
methodology consists in

(1) constructing an algebraic prior stochastic model oféimelom field and in identifying its
hyperparameters using experimental data (Step 1);

(2) choosing an adapted representation for performingatgnomial chaos expansion in
high dimension (Step 2);

(3) identifying a posterior stochastic model (Step 3).

This methodology is developed in detailslin[44} 45] for whibe first developments and algo-
rithms have been published in [39,/42] 40], for which add@ilocomplements concerning the
algorithms that can be found in [27,/28], and for which mathBoal developments concerning
representation of random fields and mathematical analysi®ohastic elliptic boundary value
problem are given in [43].

3.1 Step 1: Construction of an algebraic prior stochastic mdel (APSM) and its identifi-
cation using experimental data

(i) The first stage in Step 1 concerns the construction of aptdl family{[A™"(x; b)], x €
Q}, of algebraic prior stochastic models for the non-Gaus3grR)-valued random field
{IA(X)],x € Q}, defined on a probability spa¢®, 7, P), indexed by a bounded domaih
in R¢, This family of APSM depends on a vector-valued hyperpatante belonging to an
admissible seB,q that is assumed to be in low dimension. For instance, suclperpgrameter
is made up of the statistical mean matrix, some dispersioanpeters, the spatial-correlation
lengths, etc. An important example of construction of a ARP&iNbe given after. It should be
noted that in high dimension, the real possibility to cotigeicientify random fieldA], through
a stochastic boundary value problem, is directly relateth&ocapability of the constructed
APSM to represent fundamental properties such as lowerdyquusitiveness, invariance re-
lated to material symmetry, mean value, support of the spegtspatial-correlation lengths,
level of statistical fluctuations, etc.

(i) The second stage is related to the calculation of amugitivalue b°", of hyperparameter
b of the APSM using the maximum likelihood method for randomdeloobservatiorl) of
the computational model, and the experimental dataug€t., . . ., u®®Pve® for U. The optimal
value is written as

Vexp

boP = 1 u®®: b 2
arg ggg;; og pu (U’ b) (2)

in whichu — py(u; b) is the probability density function of random model obséoraU, es-
timated with the computational model = h([A™*"(x!; bl...... [A™*"(xN?: b)]). The optimal
PASM (OAPSM) of the random fielfy] is denoted byA™"] and is such that, for a# in €,

[A”"(x)] =: [AT™"(x, b°PY)]. Finally, » independent realizations of the OPASM can easily be
computed using the APSM witth = b°P",
(M0, xe Q) £=1,...,v, 3)

5
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inwhiché,,....60, are in©.

3.2 Step 2: Choosing an adapted representation for perfornmg the polynomial chaos
expansion in high dimension and identification of a prior ste@hastic model using ex-
perimental data

OAPSM]

Step 2 is devoted to the construction of a polynomial chapaesion of random fielgh
that is defined by an optimal algebraic prior stochastic rhdsiech a PCE will be used for ex-
tending the PCE representation in the set of allMig(R)-valued non-Gaussian second-order
random fields by randomizing the coefficients (see Step3)weder, such a PCE cannot be
carried out with a direct approach because all the algeprajgerties, such as the boundedness
and and the positiveness of the random field for which the R@&Ild be performed, must be
satisfied. Consequently, an indirect approach is perfortoedisting in constructing, in a first
stage, an adapted representation{far” " (x)], x € Q} for which v independent realizations

have been computed (see Hg. (3)).

(i) The change of representation for random figdd "] consists in introducing a class of
lower-bounded random fields, normalized, and releasingesmmnstraints, such that

OAPSM

A

OAPSM

X =6(6" ") , vxeQ, (4)

in which G is an invertible transformation frovIS(R) into M} (R). Consequently, from

OAPSM

Eqg. (3), v independent realizations of thé? (R)-valued random field{[G" ~(x)],x € Q},
can be deduced such that, forxalh €,
GM(x, 0] = ¢ (A%, 0,)) ., (=1,...,v. (5)

Example of an invertible transformationrSome general invertible transformations and their
mathematical analyses can be found. in [40] 43, 44]. Formestave can consider the following
class of representation defined by

OAPSM 1

A™"00) = 1

OAPSM

(L] {el1n] + expyy (IG

CIDF L], vxeQ, (6)

in which ¢ is a positive real number, whef£(x)] is a deterministi¢n x n) real matrix that is
introduced for the normalization, and whesep,, denotes the exponential for symmetric ma-
trices, for which the inverse is the logarithng,, of positive-definite matrices. In such a class,

the lower bound is the deterministic positive-definite ixal€,(x)] = =[L(x)]" [L(x)], and

for all random matri¥G” " (x)] with values inVI¥ (R), the random matrigA™"*"(x)] — [C;(X)]
is almost surely positive definite.

(ii) It is now possible to perform a PCE of thé> (R)-valued random fieId[GOAPSM(x)], X €
2}. The general methodology consists in performing a Karhtre@ve expansion (KLE) of
the random field, followed by a PCE of the coordinates of th&K&ee[[10, 12]). Concerning a
new approach devoted to the KLE of vector-valued randomdieith a scaling and the use of an
optimal basis, we refer the reader(tol[46, 47], and for the KEEBatrix-valued random fields, to
[40,143]44]. It should be noted that, in the framework ofistetal inverse problem with partial
and limited experimental data, the covariance operatoarmdom field/A] cannot be estimated
with nonparametric statistics due to the lack of data angequently, the KLE of the random

6



C. Soize, J.M. Allain, C. Desceliers, D. Duhamel, C. Funilicly, H. Gharbi, J. Guilleminot, T.T. Le,
M.T. Nguyen, and G. Perrin

field cannot be constructed by this way. However, with theho@blogy that is proposed, the
covariance operator of random fie[OAP M] can be estimated using the realizations computed
with Eg. (8). The truncated KLE of random fie[IGOAPSM] is constructed at the ordet, and then

the coordinates of this expansion are expressed as a teane&tE. Assuming th@GOAPSM] isa
second-order and mean-square continuous random fieldtibaruncated KLE at order is
written as,

OAPSM

(C )] = [Go(9] + > VAIG vxe @, )

in which, for allx in €2, the random matriXGy(x)] = E{[GOAPSM(X)]} is the mean value in
M5 (R), and wher@)®sM = (p*°sM . n%PW) js a non-Gaussian random vector with values in
R™, which is centered and for which its covariance matrijigosrsv| = [1,,,] (the components
of n°***" are uncorrelated and normalized, but are statisticallyeddent). From Eqs[{5) and
(@), v independent realizations of random vecay8t™** are computed,

jy / tr{[GL )"

The truncated PCE of the non-Gaussian random veg¥sf" is denoted byp"*°{ N, N,) and
IS written as,

OAPSM
G

nAM(0,) = (X, 00)] — [Go(X))}ax , £=1,...,v. 8)

B N, N,) = [T W (E), ©

in which the matrix|z] of the coefficients belongs to the compact Stiefel manifdldRY) c
My ., that is defined by

Vi (RY) = {[2] € My,m(R); [2]" [2] = [In]} - (10)

In Eq. (9), the random vect& = (=, ..., Ey,) with values inR"s has a probability distribu-
tion P=(d¢) = p=(&) d¢ (onRYr) that is assumed to be given and that must verify,

[l p(@)de < +oo . vmenN.

The random vecto® (E) = (V) (E), ..., Y, (E)) is made up of the multivariate polyno-
mials (the chaos) that are orthonormal with respedtsQl¢),

E{¥ i) (B) Yoam (B)} = Vo (&) Vam (&) p=(§) d€ = 0j - (11)
RNg
If N, > 1isthe maximum degree of the polynomials, then the intégés given by

(Ng +Nd)!

N =
N,/ N,

1. (12)

o If Eisthe normalized Gaussian random vector, tgn) (E) = (®_ ) (Z1) ... x®_) (En,))
1 Ng :

inwhich®_;(Zy,) is the usual normalized Hermite polynomial Br(see [10; 12]).
k

o If the Gaussian measure is replaced by an arbitrary prababikasure for which the real-
valued random variables,, . . ., =y, are statistically independent, seel[22].

7
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o For an arbitrary measure for whi@h, . . ., =y, are statistically dependent, seel[31].

For these three cases, if the degiéeof the polynomials is high, then the realizatiob$=(6,)
cannot be computed with usual algorithms. An efficient ator must be used for obtaining
a robust computation of realizations for the high degredgnoonial chaos. For the details of
such an algorithm, see [27,128,/31].

(iif) The next stage consists in calculating (1) the coediits that are represented by ma-
trix [z] and (2) the optimal values o¥, and N in order to obtain an error that is sufficiently
small betweem " andn°"°{ N, N,). For each fixed value ol and N,, an optimal value
[20(N, N,)] € V,,(RY) C My, of [z] is computed with the maximum likelihood method,

[z0(N, Ny)] = arg _ max N)Z 10g prenaog v, (1™ (6e) 5 [2]) (13)
m (=1

in which the realizationg;****V(6,) are given by Eq.[(8) and where the probability density
functiony — p,chaogy v, (Y5 [2]) Of random vectom®@°{ N, N,) is estimated at poiny =
n°**(0,) by the multidimensional kernel density estimator and byhgs great number of
independent realizations that are generated with the astichmodel defined by Ed.l(9). The
optimization problem defined by Ed. (13) is solved with thigcefnt random search algorithm
on the manifoldV,,(R"), which is detailed in[[39, 28]. The optimal valu@&® and N2 of

N andN, can be computed as explained|in![28], which corresponds tmprovement of the
following one that consists in minimizing the error funetiQV, N,) — err(N, N,) defined by

err(N, Ny) Z/ | logg pyoresu(e) — IOglopnghaO%N,Ng)(‘f% [20(N, Ng)))| de,  (14)

in which B; is the support of the kernel density estimatopgfes«. The error function defined
by Eq. [14) allows the accuracy of the tail of the distribn8do be quantified. In order to
simplify the notation, the optimal valugg° andNOpt are re-written asvV and N,. Once the

OAPSM

optimal value[z, (N, N,)] has been computed, the optimal representafjén ~ (x)],x € Q}
of the random field [A(X)], x € ©} can then be deduced:
AT ()] = AN (x B [2]) , YxeQ, (15)

in which the mappingx, E, [z]) — A™N:No) (x, B, [2]) is explicitly defined by Eqs[{4)[17),
and [9), in which(zy] meansgzy(V, Ny)].

(iv) The last stage of Step 2 consists in performing the erpantal identification of the
prior stochastic mod€l[AP™'(x)],x € Q} of random field{[A(X)], x € Q}, which is defined by

[Aprior(x)] _ A(m,N,Ng)(X’ =, [Zprior]) : (16)

in which [P € V,,(RY) C My, is computed with the maximum likelihood method for
random model observatiod of the computational model, using the experimental data set
ueerl . uePree relative toU. We then have

Vexp

[P = arg  max Z log pyym.~.ng) (U [2]) a7

[2]€Vm (RN) —1
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in whichu — pm.n.ny) (U; [2]) is the probability density function of random model observa
tion U, estimated with the computational modék= h([APT'(x)], ..., [APT"(xN7)]) in which
[APTor(xk)] = A(mNNa) (xk = [2PTON) with k& = 1,..., N,. The optimization problem defined
by Eq. [1T) is solved with a random search algorithm thatergs the neighborhood of a subset
of V,,,(RY) centered irjz|. For that, a parameterization

[Z] = R[zo]([w]a U) (18)

of V,.(RY) (based on[[64]) depending of a positive parametes used. The functiopu]
2] = Rpzy([w], 0) is @ mapping fromMy,,,,(R) onto V,,(RY) such thatR,;([0],0) = [z
and, if[w] belongs to a subset &l ,,,(R) centered iMw] = [0] and with a sufficiently small
diameter controlled by, then(z] = R, ([w], o) belongs to a subset &f,,(R") approxima-
tively centered inz] = [z]. This parameterization allows for exploring a subseVgf(RY),
centered inz] € V,,(RY), and for which its "diameter” is controlled by.

3.3 Step 3: Identifying a posterior stochastic model

For constructing a posterior stochastic modélP°si(x)], x € 2} of random field{[A(x)],x €
Q}, matrix[z] of the PCE is modeled by a random matt with values inV,,,(R"), for which
the statistical fluctuations are in a subseVgf(RY) centered around®™®] computed in Step 2.
A prior stochastic modgZP"] of [Z] is thus introduced in using the representation defined by

Eqg. (18),
(2P = R _prion ([WP™], ) (19)

in which [WP™7 is a centered and normalized random matrix whose probgabigtribution
and its generator are known. For a sufficiently small value,ahe statistical fluctuations of
the V,,,(RY)-valued random matrixz""'] are approximatively centered aroupd™]. The
Bayesian update allows the posterior distribution of thedcam matrix WP} with values
in My,,(R) to be estimated using the experimental datauS¥t', ..., u®P*e® and the prior
stochastic model of the random model observatioa h([APTOmPror(x)] . [APronprior(y Ny )]

in which [APTonPrior(xk)] — A(mN.No) (xk & [ZP™O) with k = 1,..., N,. The posterior stochas-
tic model[AP°%] of random field[A] is then given by

[APOS(x)] = AmNNo) (x =, Rizprion ([WP))) . ¥x € Q. (20)

The identification procedure can then be restarted from 3témecessary for improving the
identification.

4 ALGEBRAIC PRIOR STOCHASTIC MODEL

In this section, we present some elements related to thdagewent of an algebraic prior
stochastic model for the non-Gaussian positive-definiteimeaalued random fields with sta-
tistical fluctuations in a given symmetry class and in theaimopic class. All the details of this
development can be found in [48,/149] concerning the stozhagidel for the anisotropic sta-
tistical fluctuations. The case for which dominant stat&tfluctuations belong to the isotropic
class with anisotropic statistical fluctuations has beé&mduced in[[65] and has been gener-
alized to all the symmetry classes in [56] and included sxfees. A very general theory is
then proposed in [56, 58, 45, 44] for the general case for hivtiiere are simultaneously some
statistical fluctuations in a given symmetry class and diaél fluctuations in the anisotropic
class.
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4.1 Algebraic prior stochastic models for non-Gaussian maix-valued random field

The construction of an algebraic prior stochastic modebfaon-Gaussiab! (R)-valued
random field{[A""(x)],x € Q} is defined hereinafter in the framework of the 3D linear elas-
ticity (n = 6). A symmetry class, induced by a material symmetry, is ddfiag a subset
M>M(R) of Mt (R), whose algebraic dimensionig < n(n + 1)/2 (see its construction in
[56]). For instancen, = 2 for the isotropy,n, = 5 for the transverse isotropy, and = 21
for the anisotropy. For alk fixed in , the M:' (R)-valued random matrixA™*"(x)] is, in
mean, close to a given symmetry cl&d$'™(R) that is independent of and exhibits dominant
statistical fluctuations in the symmetry clag$*™(R) with some anisotropic statistical fluctua-
tions inM} (R) (around this symmetry class), which is controlled indegenly of the level of

statistical fluctuations in the symmetry class.

4.2 Representation of the random field
The algebraic representation of the random fighd ™" (x)], x € } is constructed such that

APSM

AT =[Gl +[AK)] . Vxeq, (21)
in which [C,] is theM! (R)-valued deterministic lower bound assuring the unifornpgdity
for the stochastic elliptic operator constructed with mamdfield [A”""]. The non-Gaussian
M (R)-valued random field [A(x)], x € Q} is written as

[AX)] = [S]" M (X)]"2[Go(x)] [M (X)) [S], (22)

inwhich{[M (x)],x € Q} is a non-Gaussialil ¥™(R)-valued random field that models the dom-
inant statistical fluctuations in the symmetry class defime®*™(R) (see its construction and
its generator in[[56]), wheré[G,(x)],x € Q} is a non-Gaussiall (R)-valued random field
that models the anisotropic statistical fluctuations adotlve symmetry class (see its construc-
tion and its generator in [48, 49]). The random fie{dsl (x)],x € Q} and{[Gy(x)],x € Q}
are statistically independent. The invertible deterntioisiatrix [S] that belongs tdVl,,(R) is
introduced for the normalization (see its constructiori56,[44]). It should be noted that the
generator of independent realizations of random figM (x)],x € Q} proposed in[[56] 44]
is based on an efficient MCMC algorithm constructed in usingalinear Itd stochastic dif-
ferential equation associated with a second-order Hanigtodissipative nonlinear dynamical
system.

5 APPLICATION 1

This application deals with the stochastic modeling in ldghension of track irregularities,
for nonlinear stochastic dynamic simulations of high spegids. All the details and the results
given for this application are extracted form the work psibdd in [28] 46, 47, 59, 66]. The
objectives are the following. The first one consists in peniog the experimental identifica-
tion of a stochastic modeling of the track geometry for morsi of same length, using a set of
realizations corresponding to the experimental measuresd the track geometry for several
TGV lines (high speed train lines). The second one is thelaabn of the identified stochastic
model of the track geometry by using a comparison betweemtperimental measurements
of the dynamical responses of a TGV train and the simulatmarormed with the nonlinear
stochastic dynamical model of the TGV train for which theckkgeometry is the identified
stochastic model.

10
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5.1 Description of track irregularities

The irregularities of the track geometry are parametertaed parametersX; (s), Xs(s),
X3(s), andX,(s), as a function of the curvilinear abscissgsee Figure 2-left). As an example,
Figure 2-right displays the values of the irregularitiestfte 4 parameters. The track portions
have a same lengthiwith S < 10, 000 m and are sampled with a spatial st&p. Consequently,
the track geometry is represented by a random veXter (Xi, Xz, X3, X4) with values in
Ng =4x(S/As+1) inwhichX,; = (X;(0), X;(As), ..., X,(S)). Random vectoX is in high
dimension (Vs greater thari0,000). The experimental measurements of the track geometry
have been carried out fo®® = 1,730 track portions of lengttt with spatial sampling\s
yielding »®* independent realizations, . . ., x"e in R"s of X.

X, (s) —CH —X; — X; —X3 X4

M\Ahvwmmwmw)hm%v ! \\

XS(S)V;t“\
;(:25) 'g> 'f *(e)

Curvilinear abscissa s

Figure 2: Parameterization of the irregularities of thekrgeometry (left figure). Example of track irregularities
for the four parameter (s), X2(s), X3(s), X4(s) as a function of curvilinear abscissand CH is the horizontal
curvature.

5.2 Stochastic modeling and experimental identification athe track irregularities

The stochastic modeling of the track irregularities andeitperimental identification are
performed following the methodology described hereintetind are detailed in [28, 66]. The
estimations of the mean value ar{d‘x] of the covariance matrix of random vecimare calcu-
lated using the independent realizations. . . , x*e with v = 1, 730. The principal compo-
nent analysis allows for writing the approximatign~ X+ ST VA WEwith m = 940 that
yields a relative error less thafi. The polynomial chaos expansion of the random vengter
(71, - - - mm) With values inR™ is written asn ~ 7N, N,) = Z] LY W6 () inwhich

the components of the random veclr= (=, ... Zy,) are independent random variables uni-
formly distributed ori—1, 1] and where the normalized multivariate polynomials aretemis
V,»h(E) =2 m(ul) oxXd o) (En,) With @ m(uk) the normalized univariate Legendre

polynomial. The integersv andN are |dent|f|ed in the statistical inverse procedure as ex-
plained in Section 3. The vector- valued coefficigritfor j = 1, ..., N are estimated using the
maximum likelihood method for which an algorithm adaptethmhigh dimension is used (see
Section 3). The error is estimated with the following ernandtion depending oW and V,,,
which is written as eftV, N,) = > (€) —logyg pyehaog v, (€5 Y- YY) de,

in which BI; is the interval bounding the experimental valy&¥. Figure 3 displays the graph
of function N — err(NV, N,) for N, = 3 andN, = 4. The convergence is reached f¥) = 3
andN = 2,925.

11
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0 1000 2000 3000 4000 5000
DimensionN

Figure 3: Graph of functiod&v — err(N, N,) for N, = 3 (solid line) andN, = 4 (dash-dotted line).

5.3 Validation using the nonlinear dynamical responses of &GV train

A validation of the identified stochastic model of the traglometry can be obtained in com-
paring the experimental measurements and the simulatwrnfé dynamical responses of a
TGV train. A track of5 £m has been considered for which the track geometry has been mea
sured and for which the dynamical responses of a TGV trainafss been measured. The
simulation of the nonlinear stochastic dynamics of the T@&\htexited by the general stochas-
tic model of the whole track geometry (which has been expemialy identified as described in
the previous section). Figure 4 displays the comparisotwsdmn experimental measurements
and the simulations. Two types of analysis are presentee fiidt one is related to a statistical
analysis in comparing the mean number of upcrossings. T¢endeone deals with a spectral
analysis in comparing the power spectral density functidre observed responses of the train
are4 transverse contact forces between rail and whieel(s, C3 andC'y, at wheelsets of bogies
in the TGV train. The experimental measurements are derhytéZpr and the corresponding
simulated quantities are denoted (ﬁ’y‘m. It can be seen that the comparisons are really good
for mean number of upcrossings and for the power spectraityemnction.

10000y

=
o
5}

8000t}

6000 4}

[
AN

=
o

4000

2000r

Power Spectral Density

Mean number of upcrossings

YY1y, o, TSRO 10° ‘
0 10 20 30 \ :

Level u(x10" S) Wavelength (x 10° S)

Figure 4: Comparisons between experimental measurerggitsand simulatioerSim for 4 transverse contact
forces. Mean number of upcrossings (left figure). Powertsaldensity function (right figure).
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6 APPLICATION 2

This application is devoted to the stochastic continuum elind of random interphases
from atomistic simulations for a polymer nanocompositel. tAé¢ details and results given for
describing this application are extracted form the worklighied in [60]. The objective is to
construct, in the framework of continuum mechanics, a ptochastic model of the matrix-
valued random elasticity field — [A™qx)] describing the random elastic behavior of the
interphase between an amorphous polymer and a siliconinahgsion inserted in the polymer,
and to identify the hyperparameters of the prior stochastidel ofA™*9 by using the atomistic
simulations that are considered as some simulated expeisrbg solving a statistical inverse
problem.

6.1 Physical description, molecular dynamics modeling, ahsimulation procedure

The polymer nanocomposite is made up of an amorphous polgorgaining one silicon
nano-inclusion. The amorphous polymer is constituted n§lohains with CH sites, repre-
sented through a coarse graining with stiffness poterdiadsthe Lennard Jones potential. The
silicon nano-inclusion is an amorphous bulk of Si@olecules for which a fully atomistic de-
scription is done in terms of Si and O atoms, for which the @oll potential is used. The
interaction CH - SiQ; is taken into account by the Lennard Jones potential. Adastiation,
Figure 5 displays 3D and 2D views.

Pt AR

5%

g
%25
N
g

Figure 5: Example: 3D view of the distribution f80 polymer chains (left figure) and a 2D view showing the
Si0, nano-inclusion (right figure), for a domain that is a cubehvetside oft3.5 x 10~ m in which the silicon
sphere has a diametérx 10~ m.

All the simulations are carried out with a target volume fiat of 4.7%. For computation,
the simulation domain is a cube with8 x 10~ m side and contains0 polymer chains. Each
polymer chain hag, 000 CH; sites yielding a total ot0, 000 CH, for the polymer bulk. The
SiO, nano-inclusion is a sphere withx 10~ m diameter. The number of Si atoms2i85 and
the the number of O atoms (€4.

The simulation procedure is constituted of two main stepsfitst one is related to atomistic
simulations of the polymer nanocomposite and the secontiocthe statistical inverse problem
for the identification of a prior continuum stochastic modethe random elasticity field that
describes the random elastic behavior of the interphase.

13
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6.2 Atomistic simulations with 10 chains

Atomistic simulations are done for a set of configurationsroter to generate a set of realiza-
tions that are used for identifying the prior stochastictcmrum model of the random elasticity
field of the interphase (in the framework of continuum meatgn For the simulations, the
temperature i§" = 100 °K and the pressur® is the control variable. The adapted conditions
are introduced for simulatingtraction and shear mechanical tests. A time-spatial auegag
computed in order to estimate the apparent strain that alfowdeducing the components of
the apparent elasticity matrix in the sense of continuumhaeics. The simulations have been
done with the molecular dynamics software, Lammps2fbconfigurations that have required
4 months of computation with8 cores. The simulations have allowed for identifying thernt
phase thickness, which is abou® x 10~? m. An analysis with respect to the diameter of the
silicon nano-inclusiond, 6, and9.6 nm) shows that the interphase thickness is independent of
the diameter.

Example of a partial result obtained with the atomistic siation. As an example, Figure 6
displays the polymer density* in the nano-composite divided by the pure polymer density
pP as a function of the distancefrom the center of the sphere representing the silicon nano-
inclusion.

1.5

p"/ pP

0.5¢

r (nm)
0 L L L L
2 3 4 5 6 Bulk 7

Silica Interphase polymer
—_— > <————>

Figure 6: Polymer density™ in the nano-composite divided by the pure polymer dengitas a function of the
distancer in nanometer from the center of the sphere representingltbensnano-inclusion for the case 66
polymer chains in a domain that is a cube with a sid&3$ x 10~? m in which the silicon nano-inclusion sphere
has a diametes x 10~ m.

6.3 Statistical inverse problem for the identification of a pior stochastic continuum
model of the interphase

The prior stochastic model of the non-Gaussian matrixe@ikandom elasticity field —
[A™*qx)] is chosen is the class of transversally isotropic mateyiairsetries[56]. Using the
spherical coordinates, there d@relependent random fields that have to be identified as previ-
ously explained. The hyperparameters that have to be faehtire the dispersion parameter
allowing for controlling the statistical fluctuations léwad the spatial-correlation lengths. The
finite element method is used for solving thstochastic boundary value problems correspond-
ing to the6 mechanical tests. For the system withpolymer chains, there an®0, 310 four
nodes finite elements with one Gauss pobit, 187 nodes and 02, 561 degrees of freedom

14
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(see Figure 7). The maximum likelihood method is used fameging the optimal values of

Figure 7: Finite element mesh for modeling the interphas®tinuum mechanics.

the hyperparameters of the prior stochastic model of the@amssian matrix-valued random
field x — [A™*x)] defined in the interphase. For that, the observed randontituisrchosen

as the random apparent elasticity mafey” related to the domain.The probability density
function of [A¥F is estimated with200 realizations that are computed by stochastic homog-
enization, using the finite element solutions of thstochastic BVP with the prior stochastic
modelx — [A™9x)] in the interphase. The likelihood function is evaluated[f&t***°] com-
puted with the the molecular dynamics experiments. ARalays of computation are required
for computing one realization for each configuration, and aronth of computation witlg
cores is required for the total computation.

Result of the identificationThe optimal values of the hyperparameters are the follgwir

for the dispersion parameter/4 = 5 x 107'%m for the radial spatial correlation length, and
3.5 x 10~? m for the (average) angular spatial correlation length. F@udisplays a realization
of the random fieldk — [A™*9X)];; in the interphase (iidr Pa) yielding a mean value in the
interphase ob.4 G Pa while [A™*J is constant in the inclusion and in matrix, and such that
[A™e9,; = 72 GPa in the inclusion, andA™s9,; = 5 G Pa in the matrix.

Figure 8: Realization of the random fietd— [A™®S9x)];; in the interphase (iG/ Pa).
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7 APPLICATION 3

This application is devoted to the multiscale identificat[61, 63] of the prior stochastic
model of the apparent material properties at mesoscaleg asmultiscale experimental digital
image correlation [61, 62], at macroscale and at mesoscale.

7.1 Difficulties and multiscale identification

The problem consists of the experimental identificatiorhefiector-valued hyperparameter
b of the prior stochastic model of the non-Gaussian matrikedrandom field [A™s9x; b)],
x € QM=% that models the apparent elasticity field at mesoscale. Vperparameteb is
made up of the statistical mean matri&{[A™=(x)|}, and other parameters that control the
statistical fluctuations such as the spatial-correlatemgths and a dispersion coefficient. The
difficulties of this problem are induced by the fact that theam valueE'{[A™*9x)|} cannot
directly be identified using only the measurements of thpldeement fieldifs° at mesoscale
in Qmes° and requires macroscale measurements. Consequently,esgrarimental multiscale
measurements are required and must be made simultanebuslgscale and at mesoscale.

7.2 Experimental digital image correlation at macroscale ad at mesoscale

Only a single specimen, submitted to a given load appliedeatrascale, is tested (see Figure
9). A measurement of the strain field at macroscale is caoigdn 2M2°"° (spatial resolution
10~3m, for instance). Simultaneously, the measurement of thansfield at mesoscale is
carried out i)™ (spatial resolutioi0—° m, for instance).

fmacro

Fmacro

Figure 9: Macroscale and mesoscale measurements of tivefgtd of a single specimen.

7.3 Hypotheses and strategy for solving the statistical irerse problem

The hypotheses used for solving the statistical inversblgno are the following: (i) there
is a separation of macroscdM'@°° from mesoscal&m™°that is thus a representative volume
element (RVE); (ii) at macroscale, the elasticity tensardastant (independent a); (iii) at
mesoscale, the random apparent elasticity field is homagesne
The strategy for solving the statistical inverse problemststs in constructing (i) a prior deter-
ministic model of the macro elasticity matri},"2“%(a)]|, at macroscale, depending on a vector-
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valued parametex belonging to an admissible sdt"°"®, and (ii) a prior stochastic model of the
non-Gaussian matrix-valued random fig¢[d™**(x; b)], x € Q™% that represents the apparent
elasticity field at mesoscale and that depends on a vecloed/ayperparametdrbelonging to
an admissible sgf™°,

7.4 Defining numerical indicators for solving the multiscag statistical inverse problem

For solving the multiscale statistical inverse problemme¢hnumerical indicators are intro-
duced, which are:

e amacroscopic numerical indicatg (a) that allows for minimizing the distance between
the experimental strain deformation at macroscale anddhguated strain deformation
at macroscale.

e a mesoscopic numerical indicatgs(b) that allows for minimizing the distance between
the experimental statistical fluctuations of the strainod®ftion at mesoscale and the
statistical fluctuations of the computed random strain ae&tion at mesoscale.

e a macroscopic-mesoscopic numerical indicafgfa, b) that allows for minimizing the
distance between the elasticity matidx"“"%(a)| at macroscale and the effective elasticity
matrix [A®"(b)] constructed by a stochastic homogenization using the RV,

Macroscopic numerical indicatorThe macroscopic numerical indicatgt(a) that allows for
minimizing the distance between the experimental strafordetion at macroscale and the
computed strain deformation at macroscale, is defined by

File) = [ ) — me ) [ dx, (23
Q

in which eg&(x) is the strain field measured 2"“° and where="*Ux; a) is computed in

solving the following boundary value problem at macroscale

H macro __ H macro
—divo =0 in Q ,

O_macronmacro — fmacro on Zmacro’

umacro — 0 on Fmacro’

O,macro: Cmacm(a) . 8macro , ac Amacr07

in whichC™a“9a) is the fourth-order elasticity tensor whose matrix repnésgon is the(6 < 6)
symmetric matriA™“%a)], and where the prior deterministic model of the macro etagti
matrix, [A™“%(a)], at macroscale, depends on vector-valued pararaeter M,

Mesoscopic numerical indicatoiThe mesoscopic numerical indicat@(b) allows for mini-
mizing the distance between (i) the normalized dispersi&fficient,d™(x; b), which charac-
terizes the statistical fluctuations of the computed randain deformation at mesoscale, and
(i) the corresponding normalized dispersion coefficiéfif;, deduced from the experimental
strain deformation at mesoscale. This numerical indidataritten as,

Tu(b) = / (5550 — §™x; b)) . (24)
Qmeso
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The quantitieg™*1x; b) andig,;°are defined by

s by = YV TIUED) sy ) g |emes: by — e ) 2

legsdle
VVer®
meso __ meso __ mes mes
5eXp - ||€g$o|| ) Vexp |Qmest1 exp eXpOH dx

in which || - || is the Frobenius norm, and where the spatial averagiffg¥b) andsgs°on the
RVE, Q)™° are defined by

1 1
‘Qmesq meso meso(x; b) dX , 8meso_ meso(x)

=exp ‘ Qmesol Qmeso “ep

meso(b)

For allb fixed in 5™, the mesoscale strain fiettl*sYx; b) is calculated by solving the mesoscale
boundary value problem,

H meso H meso
—dive™*°=0 in QM

meso __ meso meso
U™ =ugs® on  9Qm™,

meso Cmeso(b) meso , b 6 Bmeso’

in which uggs®is the displacement field measured on the bound&@*° of the mesoscale do-
main{2mes, where@mes"(b) is the non-Gaussian fourth-order tensor-valued elagfieild whose
matrix representation is the prior stochastic model of the-Gaussian matrix-valued random
field {[A™9x; b)],x € Q™= (random apparent elasticity field at mesoscale) that depend
vector-valued hyperparameter Bm° Since(2™*°is assumed to be an RVE, then for lalin
B, we havesm*1b) = g5° almost surely (a.s).

Macroscopic-mesoscopic numerical indicatdhe macroscopic-mesoscopic numerical indica-
tor J3(a, b) allows for minimizing the distance between the macro aetéagtiensorC™"9a) at
macroscale and the effective elasticity maffif™(b)] constructed by a stochastic homogeniza-
tion using the RVE2™*°. This indicator is written as,

Js(a,b) = [[AT*(a)] — E{[A% ()]} (25)

The stochastic homogenization (from meso to macro) is fétated in homogeneous constraints
(that is better adapted for the 2D plane stresses) aVitft = C™*qb) : e,
7.5 Statistical inverse problem formulated as a multi-objetive optimization problem

The statistical inverse problem then consists in identgyihe optimal valueg™#" of the
vector-valued parametarin AM2°andb™**°of the vector-valued hyperparamekein Bm*°by
solving the following multi-objective optimization pradh,

@O —arg i T(@b), 2o

ac.AMacropc gmeso

inwhichmin J (a,b) = (min J;(a), min J5(b), min J3(a, b)). For solving this multi-objective
optimization problem (seé [61, 63]):
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e the deterministic BVP at macroscale is discretized usied~BM,;

¢ the stochastic BVP at mesoscale is discretized using the &EdMis solved using the
Monte Carlo method;

e the multi-objective optimization problem is solved usirng tgenetic algorithm, and a
Pareto front is iteratively constructed at each generatifdhe genetic algorithm;

e the initial valuea® of a € A™°is computed by solving the optimization problem,
a® = arg minge 4macro J;(a), using the simplex algorithm;

¢ the hyperparametdy is chosen in3™° as the point on the Pareto front that minimizes
the distance between the Pareto front and the origin.

7.6 Multiscale experimental measurements of a cortical bamin 2D plane stresses

The experimental measurements for the identification oétasticity field at mesoscale of a
heterogeneous microstructure by multiscale digital imageelation([61, 63] have been carried
out at LMS of Ecole Polytechniqué [61,162] (see Figure 10)e Epecimen is a cubic bovine
cortical bone with dimensions01 x 0.01 x 0.01m3. The dimensions, the spatial resolution
and the applied force to the specimen for the multiscale oreagents (see Figure 11) are the
following:

e QMac: () 01 x 0.01 m? meshed with 40 x 10-points grid yielding a spatial resolution of
1073 x 1073 m?;

e Qmes°: (0.001 x 0.001 m? meshed with 400 x 100-points grid yielding a spatial resolution
of 1075 x 1075 m?2.

e Applied force:9,000 N.

A comparison between a reference image and a deformed intagsed by digital image
correlation experimental method is shown in Figure 12 ferdahbic bovine cortical bone sample
at macroscale. The experimental displacement field medstireacroscale is shown in Figure
13, and the experimental displacement field measured atstaeds shown in Figure 14.

Figure 10: Specimen of the cubic bovine cortical bone (kfifi measuring bench (right).
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Figure 11: Dimensions, applied force and boundary comtitiaf the specimen for the multiscale measurements.

Figure 12: Comparison between a reference image (left) aledlaamed image (right) at macroscale for the cubic
bovine cortical bone sample.

7.7 Stochastic computational model and results obtained biyre multiscale identification
procedure

Stochastic computational modeThe details concerning the construction of the stochas-
tic computational model can be found in [61, 63]. A 2D-platesses modeling is used. At
macroscale, the material is assumed to be homogeneousydraa isotropic, linear elastic,
and the parametex is defined as = (E72°° v2°°) in which E?°is the transverse Young
modulus and/)?° is the Poisson coefficient. At mesoscale, the material iaraed to be
heterogeneous, anisotropic, linear elastic, the steigtean value is assumed to be transverse
isotropic, and the statistical fluctuations are anisotrophe prior stochastic model of the appar-
ent elasticity field at mesoscale is deduced from the fub@inopic stochastic case previously
described and coincides with the prior stochastic modebchtced in[[49, 40, 44]. The hyper-
parameteb is defined byb = (E;, v, L,0) in which £ is the statistical mean value of the
transverse Young modulusy. is the statistical mean value of the Poisson coefficiéris the
spatial-correlation length that is assumed equal for theetlcartesian directions, and whére
is the dispersion parameter that allows the statisticalifitons of the apparent elasticity field
to be controlled.
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Figure 13: Componeruz2cl, in directionz; (left figure) and componedqui2r°}, in directionz, (right) for
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the experimental displacement at macroscale.
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Figure 14: Componerque°}, in directionz; (left figure) and componeRuXese}, in directionz. (right figure)
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for the experimental displacement at mesoscale.

Results obtained by the multiscale identification procejfid,[63]. The optimal valua™™® =
(Eacr pymacto) js such thatEla™® = 6.74 x 10° Pa and /2 = (.32. The optimal values
of the components o™ = (E7°% y1ese [Mes0 jmes9) gre F1°° = 6.96 x 10° Pa, v7*° =
0.37, L™s° = 5.06 x 107°m, anddé™s° = 0.28. The identified spatial-correlation length is
in agreement with the assumption introduced concerningeparation of the macroscopic and
the mesoscopic scales, and is of the same order of magnitadéite distance between adjacent
lamellae or osteons in bovine cortical femur. The identifiallies ofa andb are coherent with
the values published in the literature.

8 CONCLUSION

A general methodology and some algorithms have been pexbémt identifying a non-
Gaussian tensor-valued random field in high stochasticmsima. This random field can con-
stitute the parameter of a boundary value problem (BVP) foictv only partial and limited
experimental data are available for the observation. Takito account the high dimension-
ality and the non-Gaussian character of the random fieldiasito be identified by solving a
statistical inverse problem, an algebraic prior stocbastideling and/or an adapted stochastic
representation must be constructed so that the inverséepnatan be effectively solved. Three
applications in different domains have been presented antbdstrates the efficiency of the
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methodology proposed.
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