Local decay for the damped wave equation in the energy space
Résumé
We improve a previous result about the local energy decay for the damped wave equation on R^d. The problem is governed by a Laplacian associated with a long range perturbation of the flat metric and a short range absorption index. Our purpose is to recover the decay O(t^{−d+ε}) in the weighted energy spaces. The proof is based on uniform resolvent estimates, given by an improved version of the dissipative Mourre theory. In particular we have to prove the limiting absorption principle for the powers of the resolvent with inserted weights.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...