Local decay for the damped wave equation in the energy space - Archive ouverte HAL
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2018

Local decay for the damped wave equation in the energy space

Résumé

We improve a previous result about the local energy decay for the damped wave equation on R^d. The problem is governed by a Laplacian associated with a long range perturbation of the flat metric and a short range absorption index. Our purpose is to recover the decay O(t^{−d+ε}) in the weighted energy spaces. The proof is based on uniform resolvent estimates, given by an improved version of the dissipative Mourre theory. In particular we have to prove the limiting absorption principle for the powers of the resolvent with inserted weights.
Fichier principal
Vignette du fichier
dld-energy-space.pdf (353.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01158244 , version 1 (30-05-2015)

Identifiants

Citer

Julien Royer. Local decay for the damped wave equation in the energy space. Journal of the Institute of Mathematics of Jussieu, 2018, 17 (3). ⟨hal-01158244⟩
399 Consultations
136 Téléchargements

Altmetric

Partager

More