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Abstract: We report here the thermal conductivity measurement of carbon nanotubes water-

based nanofluids stabilized by sodium dodecylbenzene sulfonate as a function of volume 

fraction and temperature. For the first time, we further show the existence of a sharp peak in 

thermal conductivity at very small volume fraction below theoretical percolation threshold 

which is temperature independent. This preliminary study evidences the potential of 

promising and useful nanofluid for practical applications in cooling and energy systems and 

heat exchangers, as viscosity penalty is obviously vanished at this concentration. 
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1. Introduction 

 
It is now well established that nanofluids – conventional fluids incorporating in low volume 

fraction nanoparticles with enhanced thermal properties - are promising candidates as heat 

transfer fluids in heat exchangers, cooling and energy systems. Most studies related to 

nanofluids have focused on the thermal performances of these suspensions investigating the 

effect of particle size, shape, material and concentration, temperature, nature of the base fluid, 
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use of surfactant, preparation methods [1-9]. The physical mechanisms responsible of thermal 

conductivity enhancement were also investigated [10]. Many attempts have also be made to 

model and predict the enhancement of nanofluids thermal conductivity [11-17] taking into 

account the presence of nanoparticle aggregates [18,19] and the influence of chain-like 

structures [20,21]. It is usually recognized that thermal conductivity enhancement of nanofluids 

produces under percolation threshold, i.e. for a critical nanoparticle loading when the 

conductive nanoparticles start to form a continual connected network. This thermal 

conductivity enhancement is also mainly governed by the increase in nanoparticle volume 

fraction and aspect ratio of nanoparticles.  

Nowadays, in addition to stability, the practical use of nanofluids remains still limited 

because the thermal conductivity enhancement of nanofluids is often penalized by the viscosity 

increase due to the addition of nanoparticles. However, nanofluid viscosity is related to 

resistance to flow and pumping power. This is why a tradeoff between enhanced thermal 

properties and reduced viscosity is needed for nanofluids. So, a simple solution to obtain useful 

and efficient nanofluids basically consists in dispersing a small amount of nanoparticles with 

high intrinsic conductivity and high aspect ratio within a low viscosity fluid.  

The purpose of this short communication is to report the thermal conductivity measurement 

of water-based nanofluids containing carbon nanotubes stabilized by SDBS as surfactant. As 

an extension of our previous works [17,22-24], we study the effect of nanoparticle volume 

fraction and temperature on thermal conductivity, considering unusually very low volume 

fraction below the critical concentration of theoretical percolation threshold. Unexpectedly, we 

find here the existence of a very small optimal concentration leading to a peak in thermal 

conductivity where the enhancement is similar to the one obtained at high volume fraction. 

 

2. Materials and experiments 
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The nanofluids used in this study were stable dispersions of MWCNT of 1.5 µm in average 

length and 9.2 nm in average diameter dispersed in a mixture of de-ionized water and SDBS as 

surfactant. The average aspect ratio of the nanotubes is about 160. This leads to a theoretical 

percolation threshold around 6.25x10-3%. This value is very low as the percolation threshold is 

a direct function of particle size and mainly scales with the inverse of nanoparticle aspect ratio 

[25,26]. As reported in [27], a starting suspension containing 1% in weight fraction of 

nanotubes and 2% in weight fraction of SDBS was prepared and provided by Nanocyl. The 

surfactant concentration was established by the manufacturer. Due to the hydrophobic surface 

of carbon nanotubes, the surfactant was used to disperse and stabilize the nanotubes within the 

suspension. Nanofluid suspensions with lower content in nanotube were obtained at ambient 

temperature by the dilution of the starting suspension with de-ionized water, keeping a constant 

weight ratio of SDBS/CNT equal to 2. Once diluted, each suspension was stirred with 

mechanical agitator to ensure a good dispersion of the nanotubes and reduce the possible 

presence of aggregates. Then, the nanofluids were stored in a container at ambient temperature 

before being used for thermal conductivity measurements. So, the nanoparticle volume fraction 

range investigated varies between 5.5x10-4 % to 0.55 % at ambient temperature. The initial base 

fluid was also prepared by Nanocyl, and used to produce from dilution the base fluids 

corresponding to the different nanofluids previously prepared. It should be noted that we have 

previously shown that under 0.0278%, the studied nanofluids behave in a Newtonian manner 

with a viscosity value similar to the one of de-ionized water23. 

We measured the thermal conductivity of nanofluids and base fluids by using a transient hot 

wire (KD2 Pro thermal property analyzer equipped with KS-1 probe). As previously reported 

in [17,22-24], the maximum uncertainty in the thermal conductivity measurement was 

estimated to be less than 3.5% using distilled water as calibration liquid for temperatures range 

from 20 to 50°C. Before each measurement, both the sample and the probe were maintained 30 
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min at the working temperature. Then, an average of over ten measurements was performed to 

reduce the experimental error. The time interval of measurements was 5 min. The thermal 

conductivity measurements were carried out at 20°C. 

 

3. Results and discussion 

Figure 1 shows the thermal conductivity ratio of nanofluids in comparison with base fluids 

as a function of volume fraction of MWCNT. It is worth noting that the thermal conductivity 

of the base fluids decreases when the amount of surfactant increases. At the lowest 

concentration, the thermal conductivity ratio is quite constant up to 0.055% (within the 

experimental uncertainty), and in this concentration range the enhancement in thermal 

conductivity was not really significant (about 5%). Above 0.055% in volume fraction, the 

thermal conductivity ratio increases with the volume fraction. As expected, the highest value 

of thermal conductivity ratio was observed for the highest tested volume fraction in 

nanoparticles and corresponds to an enhancement in thermal conductivity of about 26%. 

Surprisingly, we also observed that the thermal conductivity ratio suddenly increased when the 

volume fraction of nanoparticles reaches a volume fraction of about 1.1x10-3 %. At this 

concentration, the enhancement in thermal conductivity is about 13 %. This is similar to the 

enhancement in thermal conductivity for a volume fraction of 0.278%. 

In order to investigate the effect of temperature on thermal conductivity of the tested 

nanofluids, we perform another series of experiments at 46°C. This temperature was chosen as 

it has been recognized that the bonding between SDBS and nanoparticles can be damaged at 

elevated temperature higher than 50°C, thus limiting the stability of the nanofluids [28]. Figure 

2 shows the thermal conductivity ratio of nanofluids in comparison with base fluids as a 

function of volume fraction of MWCNT at 46°C. Figure 2 confirms the findings reported above, 

since we observe an increase in thermal conductivity ratio with the nanoparticle loading within 

the range 0.0055% to 0.55%. The highest conductivity ratio occurs also at the highest nanotubes 



5 

 

volume fraction, where enhancement in thermal conductivity is about 50%. At the lowest 

volume fractions, the thermal conductivity enhancement is low except at about 1.1x10-3%, 

where a peculiar behavior is observed again. At this concentration, the enhancement in thermal 

conductivity is about 28%. Finally, it is shown by both figures 1 and 2 that the thermal 

conductivity of nanofluids increase when the temperature is increased, as generally reported 

with nanofluids1. 

The previous observations and results raise the following question: What is the reason for 

the enhancement in the thermal conductivity at particle loading of 1.1x10-3%? We attempt to 

address this question from SEM characterization of the studied nanofluids. Thus, the 

morphology and the dispersion state of the nanofluids was determined by scanning electron 

microscopy (SEM-JEOL-JSM-6301F) performed on dried nanofluid, using an accelerating 

voltage ranging from 7 to 10 kV and a working distance of 8 mm. It is worth noting that SEM 

characterization of the starting suspension with a volume fraction of 0.5% was previously 

performed, showing that at this concentration the nanotubes are mainly entangled and can form 

aggregates [29]. This can explain, at least partially, the substantial thermal conductivity 

enhancement at this particle loading. Figure 3 shows the microscopy images of CNT water-

based nanofluids taken at three different lower volume fractions of 0.278%, 0.0055% and 

1.1x10-3% respectively.  

We can note several features from images reported in figure 3. The nanotubes appear 

randomly oriented with no apparent preferential directions whatever the volume fraction, and 

form a connected network of conducting nanotubes allowing the concept of percolation to be 

used. At 0.278% in volume fraction, the nanotubes are highly entangled without significant 

presence of agglomerates. For lower volume fraction of 0.005%, figure 3 shows, as expected, 

that the nanotubes are better dispersed, but multiple tube-tube interactions are also observed. 
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For the critical volume fraction of 1.1x10-3%, the nanotubes are interconnected with a limited 

number of contacts. 

These results suggest that there exists a preferential spatial distribution of nanotubes 

probably linked to their aspect ratio where the inter-nanotubes interaction and the number of 

contacts are more important that the formation of a percolated network. This agrees with the 

results reported in [30] from numerical analysis. So, A peculiar dynamic heat conductive 

structural path is also formed that seems to be responsible of the great thermal conductivity 

enhancement at very low volume fraction in CNT. 

 

4. Concluding remarks 

In summary, we reported thermal conductivity measurement of water-based nanofluids 

containing carbon nanotubes stabilized by SDBS as surfactant as a function of volume fraction 

up to 0.55%, considering also very small particle loading typically less than 0.055%. Our results 

showed the thermal conductivity increase with volume fraction within the range 0.055% to 

0.55%, which is enhanced with temperature increase. Our findings especially showed for the 

first time the existence of a peak in thermal conductivity at very small volume fraction around 

1.1x10-3%, e.g. below theoretical percolation threshold, which is temperature independent.  

While further work is required to investigate the interplay between the peak in thermal 

conductivity, the size of nanotubes and the potential role of surfactant as thermal resistance and 

clearly understand the mechanisms responsible for such intriguing behavior, our results 

established that the nanofluid presently investigated can be a real candidate for heat transport 

applications. It obviously exhibits relative large thermal conductivity enhancement at very 

small volume fraction without viscosity penalty.  
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Figures Captions 

 

Fig. 1. Relative thermal conductivity of nanofluids at 20°C as a function of volume fraction in 
nanoparticle. 
 
Fig. 2. Relative thermal conductivity of nanofluids at 46°C as a function of volume fraction in 
nanoparticle. 
 
Fig. 3. SEM pictures taken from dried nanofluids with various volume fractions in CNT, from 
top to bottom 0.278%, 0.0055% and 1.1x10-3%. 
  



11 

 

 
 

Fig. 1. Relative thermal conductivity of nanofluids at 20°C as a function of volume fraction in 
nanoparticle. 
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Fig. 2. Relative thermal conductivity of nanofluids at 46°C as a function of volume fraction in 
nanoparticle. 
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Fig. 3. SEM pictures taken from dried nanofluids with various volume fractions in CNT, from 
top to bottom 0.278%, 0.0055% and 1.1x10-3%. 

 


