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Introduction

IMAGE segmentation is a fundamental and challenging task in image processing and computer vision. It can serve as a preliminary step for object recognition and interpretation. The goal of image segmentation is to group parts of the given image with similar characteristics together. These characteristics include, for example, edges, intensities, colors and textures. For a human observer, image segmentation seems obvious, but consensus among different observers is seldom found. The problem is much more difficult to solve by a computer. A nice overview of region-based and edge-based segmentation methods is given in [16]. In our work we investigate the image segmentation problem for color images corrupted by different types of degradations: noise, information loss and blur.

Let Ω ⊂ R 2 be a bounded open connected set, and f : Ω → R d with d ≥ 1 be a given vector-valued image. For example, d = 1 for gray-scale images and d = 3 for the usual RGB (red-green-blue) color images. One has d > 3 in many cases such as in hyperspectral imaging [START_REF] Plaza | Recent advances in techniques for hyperspectral image processing[END_REF] or in medical imaging [START_REF] Townsend | Multimodality imaging of structure and function[END_REF]. In this paper, we are mainly concerned with color images (i.e. d = 3) though our approach can be extended to higher-dimensional vector-valued images. Without loss of generality, we restrict the range of f to [0, 1] 3 and hence f ∈ L ∞ (Ω) 3 .

In the literature, various studies have been carried out and many techniques have been considered for image segmentation [START_REF] Shi | Normalized cuts and image segmentation[END_REF]14,[START_REF] Grady | Random walks for image segmentation. Pattern Analysis and Machine Intelligence[END_REF][START_REF] Levinshtein | Turbopixels: fast superpixels using geometric flows[END_REF][START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF][START_REF] Storath | Fast partitioning of vector-valued images[END_REF][START_REF] Tai | Soft color segmentation and its applications[END_REF]. For grayscale images, i.e. d = 1, Mumford and Shah proposed in [START_REF] Mumford | Boundary detection by minimizing functionals[END_REF][START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] an energy minimization problem for image segmentation which finds optimal piecewise smooth approximations. More precisely, this problem was formulated in [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] as

E MS (g, Γ ) := λ 2 Ω (f -g) 2 dx + µ 2 Ω\Γ |∇g| 2 dx + Length(Γ ), (1) 
where λ and µ are positive parameters, and g : Ω → R is continuous in Ω \ Γ but may be discontinuous across the sought-after boundary Γ . Here, the length of Γ can be written as H 1 (Γ ), the one-dimensional Hausdorff measure in R 2 . Model [START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF] has attractive properties even though finding a globally optimal solution remains an open problem and it is an active area of research. A recent overview can be found in [START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF]. For image segmentation, the Chan-Vese model [14] pioneered a simplification of functional [START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF] where Γ partitions the image domain into two constant segments and thus ∇g = 0 on Ω \ Γ . More generally, for K constant regions Ω i , i ∈ {1, . . . , K}, the multiphase piecewise constant Mumford-Shah model [START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford and Shah model[END_REF] reads as

E PCMS {Ω i , c i } K i=1 = λ 2 K i=1 Ω i (f -c i ) 2 dx + 1 2 K i=1 Per(Ω i ), (2) 
where Per(Ω i ) is the perimeter of Ω i in Ω, all Ω i 's are pairwise disjoint and

Ω = K i=1 Ω i .
The Chan-Vese model where K = 2 in (2) has many applications for two-phase image segmentation. Model ( 2) is a nonconvex problem, so the obtained solutions are in general local minimizers. To overcome the problem, convex relaxation approaches [START_REF] Bresson | Fast global minimization of the active contour/snake model[END_REF][START_REF] Chambolle | A convex approach to minimal partitions[END_REF]12,[START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF], graph cut method [START_REF] Grady | Reformulating and optimizing the Mumford-Shah functional on a graph -faster, lower energy solution[END_REF] and fuzzy membership functions [START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF] were proposed.

After [14], many approaches have decomposed the segmentation process into several steps and here we give a brief overview of recent work in this direction.

The paper [START_REF] Kay | Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution[END_REF] performs a simultaneous segmentation of the input image into arbitrarily many pieces using a modified version of model ( 1) and the final segmented image results from a stopping rule using a multigrid approach. In [START_REF] Li | A level set method for image segmentation in the presence of intensity inhomogeneity with application to MRI[END_REF], after involving a bias field estimation, a level set segmentation method dealing with images with intensity inhomogeneity was proposed and applied to MRI images. In [START_REF] Cardelino | A contrario selection of optimal partitions for image segmentation[END_REF], an initial hierarchy of regions was obtained by greedy iterative region merging using model [START_REF] Benninghoff | Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes[END_REF]; the final segmentation is obtained by thresholding this hierarchy using hypothesis testing. The paper [START_REF] Benninghoff | Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes[END_REF] first determined homogeneous regions in the noisy image with a special emphasis on topological changes; then each region was restored using model [START_REF] Benninghoff | Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes[END_REF]. Further multistage methods extending model (2) can be found in [START_REF] Tai | Wavelet frame based multiphase image segmentation[END_REF] where wavelet frames were used, and in [START_REF] Cai | Multiclass segmentation by iterated ROF thresholding[END_REF] which was based on iterative thresholding of the minimizer of the ROF functional [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], just to cite a few. In the discrete setting, the piecewise constant Mumford-Shah model (2) amounts to the classical Potts model [START_REF] Potts | Some generalized order-disorder transformations[END_REF]. The use of this kind of functionals for image segmentation was pioneered by Geman and Geman in [19]. In [START_REF] Storath | Fast partitioning of vector-valued images[END_REF], a coupled Potts model was used for direct partitioning of images using a convergent minimization scheme. In [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF], a conceptually different two-stage method for the segmentation of gray-scale images was proposed. In the first stage, a smoothed solution g is extracted from the given image f by minimizing a non-tight convexification of the Mumford-Shah model [START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF]. The segmented image was obtained in the second stage by applying a thresholding technique to g. This approach was extended in [11] to images corrupted by Poisson and Gamma noises. Since the basic concept of our method in this paper is similar, we will give more details on [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF]11] in Section 2.

Extending or conceiving segmentation methods for color images is not a simple task since one needs to discriminate segments with respect to both luminance and chrominance information. The two-phase Chan-Vese model [14] was generalized to deal with vector-valued images in [13] by combining the information in the different channels using the data fidelity term. Many methods are applied in the usual RGB color space [START_REF] Cai | Variational image segmentation model coupled with image restoration achievements[END_REF]13,16,[START_REF] Jung | Multiphase image segmentation via Modica-Mortola phase transition[END_REF][START_REF] Kay | Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution[END_REF][START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF][START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF][START_REF] Storath | Fast partitioning of vector-valued images[END_REF], among others. It is often mentioned that the RGB color space is not well adapted to segmentation because for real-world images the R, G and B channels can be highly correlated. In [START_REF] Rotaru | Color image segmentation in HSI space for automotive applications[END_REF], RGB images are transformed into HSI (hue, saturation, and intensity) color space in order to perform segmentation. In [START_REF] Benninghoff | Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes[END_REF] a general segmentation approach was developed for gray-value images and further extended to color images in the RGB, the HSV (hue, saturation, and value) and the CB (chromaticity-brightness) color spaces. However, a study on this point in [START_REF] Paschos | Perceptually uniform color spaces for color texture analysis: an empirical evaluation[END_REF] has shown that the Lab (perceived lightness, red-green and yellow-blue) color space defined by the CIE (Commission Internationale de l'Eclairage) is better adapted for color image segmentation than the RGB and the HSI color spaces. In [START_REF] Cardelino | A contrario selection of optimal partitions for image segmentation[END_REF] RGB input images were first converted to Lab space. In [START_REF] Wang | A global/local affinity graph for image segmentation[END_REF] color features were described using the Lab color space and texture using histograms in RGB space.

A careful examination of the methods that transform a given RGB image to another color space (HSI, CB, Lab, ...) before performing the segmentation task has shown that these algorithms are always applied only to noise-free RGB images (though these images unavoidably contain quantization and compression noise). For instance, this is the case of [START_REF] Benninghoff | Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes[END_REF][START_REF] Cardelino | A contrario selection of optimal partitions for image segmentation[END_REF][START_REF] Rotaru | Color image segmentation in HSI space for automotive applications[END_REF][START_REF] Wang | A global/local affinity graph for image segmentation[END_REF], among others. One of the main reasons is that if the input RGB image is degraded, the degradation would be hard to control after a transformation to another color space [START_REF] Paschos | Perceptually uniform color spaces for color texture analysis: an empirical evaluation[END_REF]. Our goal is to develop an image segmentation method that has the following properties: i) work on vector-valued (color) images possibly corrupted with noise, blur and missing data; ii) initialization independent and non-supervised (the number of segments is not fixed in advance); iii) take into account perceptual edges between colors and between intensities so as to detect vector-valued objects with edges and also objects without edges; iv) obtain an image adapted for segmentation using convex methods; v) the segmentation is done at the last stage: no need to solve the previous stage when the number of segments required is changed.

Contributions. The main contribution of this paper is to propose a segmentation method having all these properties. Goals (a)-(d) lead us to explore possible extensions of the methods [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF]11] to vector-valued (color) images. Goal (e) requires finding a way to use information from perceptual color spaces even though our input images are corrupted; see goal (a). Let V 1 and V 2 be two color spaces. Our method has the following 3 steps: 1) Let the given degraded image be in V 1 . The convex variational model [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF]11] is applied in parallel to each channel of V 1 . This yields a restored smooth image.

We show that the model has unique solution.

2) The second stage consists of color dimension lifting: we transform the smooth color image obtained at Stage 1 to a secondary color space V 2 that provides us with complementary information. Then we combine these images as a new vector-valued image composed of all the channels from color spaces V 1 and V 2 . 3) According to the desired number of phases K, we apply a multichannel thresholding to the combined V 1 -V 2 image to obtain a segmented image.

We call our method "SLaT" for Smoothing, Lifting and Thresholding. Unlike the methods that perform segmentation in a different color space like [START_REF] Benninghoff | Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes[END_REF][START_REF] Cardelino | A contrario selection of optimal partitions for image segmentation[END_REF][START_REF] Rotaru | Color image segmentation in HSI space for automotive applications[END_REF][START_REF] Vandenbroucke | Color image segmentation by pixel classification in an adapted hybrid color space. application to soccer image analysis[END_REF][START_REF] Wang | A global/local affinity graph for image segmentation[END_REF], we can deal with degraded images thanks to Stage 1 which yields a smooth image that we can transform to another color space. We will fix V 1 to be the RGB color space since one usually has RGB color images. We use the Lab color space [START_REF] Luong | Color in computer vision[END_REF] as the secondary color space V 2 since it is often recommended for color segmentation [START_REF] Cardelino | A contrario selection of optimal partitions for image segmentation[END_REF]16,[START_REF] Paschos | Perceptually uniform color spaces for color texture analysis: an empirical evaluation[END_REF]. The crucial importance of the dimension lifting Stage 2 is illustrated in additional information on the color image so that in all cases we can obtain very good segmentation results. The number of phases K is needed only in Stage 3. Its value can reasonably be selected based on the RGB image obtained at Stage 1.

Extensive numerical tests on synthetic and real-world images have shown that our method outperforms state-of-the-art variational segmentation methods like [START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF][START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF][START_REF] Storath | Fast partitioning of vector-valued images[END_REF] in terms of segmentation quality, speed and parallelism of the algorithm, and the ability to segment images corrupted by different kind of degradations.

Outline. In Section 2, we briefly review the models in [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF]11]. Our SLaT segmentation method is presented in Section 3. In Section 4, we provide experimental results on synthetic and real-world images. Conclusion remarks are given in Section 5.

2 Review of the Two-stage Segmentation Methods in [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF]11] The methods in [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF]11] for the segmentation of gray-scale images are motivated by the observation that one can obtain a good segmentation by properly thresholding a smooth approximation of the given image. Thus in their first stage, these methods solve a minimization problem of the form inf

g∈W 1,2 (Ω) λ 2 Ω Φ(f, g)dx + µ 2 Ω |∇g| 2 dx + Ω |∇g|dx , (3) 
where Φ(f, g) is the data fidelity term, µ and λ are positive parameters. We note that the model ( 3) is a convex non-tight relaxation of the Mumford-Shah model in [START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF]. Paper [START_REF] Cai | A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[END_REF] considers Φ(f, g) = (f -Ag) 2 where A is a given blurring operator; when f is degraded by Poisson or Gamma noise, the statistically justified choice

Φ(f, g) = Ag -f log(Ag) is used in [11]
. Under a weak assumption, the functional in (3) has a unique minimizer, say ḡ, which is a smooth approximation of f . The second stage is to use the K-means algorithm [START_REF] Kanungo | An efficient k-means clustering algorithm: analysis and implementation[END_REF] to determine the thresholds for segmentation. These methods have important advantages: they can segment degraded images and the minimizer ḡ is unique. Further, the segmentation stage being independent from the optimization problem (3), one can change the number of phases K without solving (3) again.

3 SLaT: Our Segmentation Method for Color Images

Let f = (f 1 , . . . , f d ) be a given color image with channels f i : Ω → R, i = 1, • • • , d.
For f an RGB image, d = 3. This given image f is typically a blurred and noisy version of an original unknown image. It can also be incomplete: we denote by Ω i 0 the open nonempty subset of Ω where the given f i is known for channel i. Our SLaT segmentation method consists of three stages described next.

First Stage: Recovery of a Smooth Image

First, we restore each channel f i of f separately by minimizing the functional E below

E(g i ) = λ 2 Ω ω i • Φ(f i , g i )dx + µ 2 Ω |∇g i | 2 dx + Ω |∇g i |dx, i = 1, . . . , d, (4) 
where | • | stands for Euclidian norm and ω i (•) is the characteristic function of Ω i 0 , i.e.

ω i (x) = 1, x ∈ Ω i 0 , 0, x ∈ Ω \ Ω i 0 . (5) 
For Φ in (4) we consider the following options:

i) Φ(f, g) = (f -Ag) 2 , the usual choice; ii) Φ(f, g) = Ag -f log(Ag) if data are corrupted by Poisson noise.

Theorem 1 below proves the existence and the uniqueness of the minimizer of (4).

In view of ( 4) and ( 5), we define the linear operator (ω i A) by

(ω i A) : u(x) ∈ L 2 (Ω) → ω i (x)(Au)(x) ∈ L 2 (Ω). ( 6 
)
Theorem 1 Let Ω be a bounded connected open subset of R 2 with a Lipschitz boundary. Let A : L 2 (Ω) → L 2 (Ω) be bounded and linear. For i ∈ {1, . . . , d}, assume that f i ∈ L 2 (Ω) and that Ker(ω i A) Ker(∇) = {0} where Ker stands for null-space. Then (4) with either

Φ(f i , g i ) = (f i -Ag i ) 2 or Φ(f i , g i ) = Ag i - f i log(Ag i ) has a unique minimizer ḡi ∈ W 1,2 (Ω). Proof First consider Φ(f i , g i ) = (f i -Ag i ) 2 .
Using (6), E(g i ) defined in ( 4) can be rewritten as

E(g i ) = λ 2 Ω (ω i • f i -(ω i A)g i ) 2 dx + µ 2 Ω |∇g i | 2 dx + Ω |∇g i |dx. (7) 
Noticing that 

ω i • f i ∈ L 2 (Ω) and that (ω i A) : L 2 (Ω) → L 2 (Ω)
i ) = Ag i -f i log(Ag i ). Then E(g i ) = λ 2 Ω ω i • (Ag i ) -(ω i • f i ) log(Ag i )dx + µ 2 ∇g i 2 L 2 (Ω) + ∇g i L 2 (Ω) . (8) 
1) Existence: Since W 1,2 (Ω) is a reflective Banach space and E(g i ) is convex lower semi-continuous, by [17, Proposition 1.2] we need to prove that E(g i ) is coercive on W 1,2 (Ω), i.e. that E(g i ) → +∞ as

g i W 1,2 (Ω) := g i L 2 (Ω) + ∇g i L 2 (Ω) → +∞.
The function Ag i → (Ag i -f log Ag i ) is strictly convex with a minimizer pointwisely satisfying 2 (Ω) and f = 0. Using the Poincaré inequality, see [18], we have:

Ag i = f ∈ [0, 1], hence Φ(f i , g i ) ≥ 0. Thus ∇g i L 2 (Ω) is upper bounded by E(g i ) > 0 for any g i ∈ W 1,
g i -g i Ω L 2 (Ω) ≤ C 1 ∇g i L 2 (Ω) ≤ C 1 E(g i ), (9) 
where C 1 > 0 is a constant and

g i Ω = 1 |Ω| Ω g i dx. Let us set C 2 := 1 -1 e f i ∞ . We have C 2 > 0 because f i ∞ ≤ 1.
Recall the fact that t e ≥ log t for any t > 0 which can be easily verified by showing that t/e -log t is convex for t > 0 with minimum at e. Hence we have

ω i • Φ(f i , g i ) ≥ (ω i A) g i - 1 e (ω i • f i )Ag i = ω i • (1 - 1 e f i )Ag i ≥ C 2 (ω i A) g i
which should be understood pointwisely. Hence,

(ω i A) g i L 1 (Ω) ≤ 2 C 2 λ E(g i ). ( 10 
)
Let C 3 := (ω i A)1 L 1 (Ω) where 1(x) = 1 for any x ∈ Ω. Using Ker(∇) = {u ∈ L 2 (Ω) : u = c 1 a.e. for x ∈ Ω, c ∈ R} together with the assumption Ker(ω i A) Ker(∇) = {0} one has C 3 > 0. Using [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] together with the fact that g i Ω > 0 yields

|g i Ω | (ω i A)1 L 1 (Ω) = |g i Ω | C 3 = ω i • (A1g i Ω ) L 1 (Ω) ≤ 2 C 2 λ E(g i ),
and thus

|g i Ω | ≤ 2 C 2 C 3 λ E(g i ).
Applying the triangular inequality in [START_REF] Chambolle | A convex approach to minimal partitions[END_REF] gives

g i L 2 (Ω) -|g i Ω | ≤ C 1 ∇g i L 2 (Ω)
. Hence

g i L 2 (Ω) ≤ |g i Ω | + C 1 ∇g i L 2 (Ω) ≤ 2 C 2 C 3 λ + 1 E(g i ).
Comparing with (9) yet again shows that we have obtained

g i W 1,2 (Ω) = g i L 2 (Ω) + ∇g i L 2 (Ω) ≤ 2 C 2 C 3 λ + 1 + C 1 E(g i ).
Therefore, E is coercive.

2) Uniqueness: Suppose ḡi 1 and ḡi 2 are both minimizers of E(g i ). The convexity of E and the strict convexity of Ag i → (Ag i -f log Ag i ) entail Aḡ i 1 = Aḡ i 2 on Ω i 0 and ∇ḡ i 1 = ∇ḡ i 2 . Further, the assumption on Ker(ω i A) Ker(∇) shows that ḡi 1 = ḡi 2 . The condition Ker(ω i A) Ker(∇) = {0} is mild which means that Ker(ω i A) does not contain constant images.

The discrete model. In the discrete setting, Ω is an array of pixels, say of size M × N , and our model (4) reads as

E(g i ) = λ 2 Ψ (f i , g i ) + µ 2 ∇g i 2 F + ∇g i 2,1 , i = 1, . . . , d. (11) 
Here

Ψ (f i , g i ) := j∈Ω ω i • (f i -Ag i ) 2 j , or Ψ (f i , g i ) := j∈Ω ω i • Ag i -f i log(Ag i ) j .
The operator ∇ = (∇ x , ∇ y ) is discretized using backward differences with Neumann boundary conditions. Further, • 2 F is the Frobenius norm, so

∇g i 2 F = j∈Ω (∇ x g i ) 2 j + (∇ y g i ) 2 j ,
and ∇g i 2,1 is the usual discretization of the TV semi-norm given by

∇g i 2,1 = j∈Ω (∇ x g i ) 2 j + (∇ y g i ) 2 j .
For each i, the minimizer ḡi can be computed easily using different methods, for example the primal-dual algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]15], alternating direction method with multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], or the split-Bregman algorithm [20]. Then we rescale each ḡi onto [0, 1] to obtain

{ḡ i } d i=1 ∈ [0, 1] d .

Second Stage: Dimension Lifting with Secondary Color Space

For the ease of presentation, in the following, we assume V 1 is the RGB color space. The goal in color segmentation is to recover segments both in the luminance and in the chromaticity of the image. It is well known that the R, G and B channels can be highly correlated. For instance, the R, G and B channels of the output of Stage 1 for the noisy pyramid image in Fig. 1 are depicted in Fig. 2 (a)-(c). One can hardly expect to make a meaningful segmentation based on these channelssee the result in Fig. 1 (b), as well as Fig. 8 where other contemporary methods are compared. Stage 1 provides us with a restored smooth image ḡ. In Stage 2, we perform dimension lifting in order to acquire additional information on ḡ from a different color space that will help the segmentation in Stage 3. The choice is delicate. Popular choices of less-correlated color spaces include HSV, HSI, CB and Lab, as described in the Introduction. The Lab color space was created by the CIE with the aim to be perceptually uniform [START_REF] Luong | Color in computer vision[END_REF] in the sense that the numerical difference between two colors is proportional to perceived color difference. This is an important property for color image segmentation, see e.g. [START_REF] Cardelino | A contrario selection of optimal partitions for image segmentation[END_REF]16,[START_REF] Paschos | Perceptually uniform color spaces for color texture analysis: an empirical evaluation[END_REF]. For this reason in the following we use the Lab as the additional color space. Here the L channel correlates to perceived lightness, while the a and b channels correlate approximately with red-green and yellow-blue, respectively. As an example we show in Fig. 2 (d Remark 1 The transformation from RGB to Lab color space is based on the intermediate CIE XYZ tristimulus values. The transformation of ḡ (in RGB color space) to g in XYZ is given by a linear transform g = H ḡ. Then the Lab transform ḡ of ḡ, see e.g., [29, chapter 1], is defined in terms of g as

ḡ 1 = 116 3 g2 /Y r , if g2 /Y r > 0.008856, 903.3g 2 /Y r , otherwise, ḡ 2 = 500 (ρ(g 1 /X r ) -ρ(g 2 /Y r )) , ḡ 3 = 200 (ρ(g 2 /Y r ) -ρ(g 3 /Z r )) ,
where ρ(x) = 3 √ x, if x > 0.008856, otherwise ρ(x) = (7.787x + 16)/116, and X r , Y r and Z r are the XYZ tristimulus values of the reference white point. The cube root function compresses some values more than others and the transform corresponds to the CIE chromaticity diagram. The transform takes into account the observation that the human eye is more sensitive to changes in chroma than to changes in lightness. As mentioned before, the Lab space is perceptually uniform [START_REF] Paschos | Perceptually uniform color spaces for color texture analysis: an empirical evaluation[END_REF]. So the Lab channels provide important complementary information to the restored RGB image ḡ. Following an aggregation approach, we use all channels of the two color spaces.

Third Stage: Thresholding

Given the vector-valued image ḡ * ∈ [0, 1] 2d for d = 3 from Stage 2 we want now to segment it into K segments. Here we design a properly adapted strategy to partition vector-valued images into K segments. It is based on the K-means algorithm [START_REF] Kanungo | An efficient k-means clustering algorithm: analysis and implementation[END_REF] because of its simplicity and good asymptotic properties. According to the value of K, the algorithm clusters all points of {ḡ * (x) :

x ∈ Ω} into K Voronoi-shaped cells, say Σ 1 ∪Σ 2 • • •∪Σ K = Ω.
Then we compute the mean vector

c k ∈ R 6 on each cell Σ k by c k = Σ k ḡ * dx Σ k dx , k = 1, . . . , K. (12) 
We recall that each entry c k [i] for i = 1, • • • , 6 is a value belonging to {R, G, B, L, a, b}, respectively. Using {c k } K k=1 , we separate ḡ * into K phases by

Ω k := x ∈ Ω : ḡ * (x) -c k 2 = min 1≤j≤K ḡ * (x) -c j 2 , k = 1, . . . , K. (13) 
It is easy to verify that {Ω k } K k=1 are disjoint and that K k=1 Ω k = Ω. The use of the 2 distance here follows from our model (4) as well as from the properties of the Lab color space [START_REF] Luong | Color in computer vision[END_REF][START_REF] Cardelino | A contrario selection of optimal partitions for image segmentation[END_REF].

The SLaT Algorithm

We summarize our three-stage segmentation method for color images in Algorithm 1. Like the Mumford-Shah model, our model ( 4) has two parameters λ and µ. Extensive numerical tests have shown that we can fix µ = 1. We choose λ empirically; the method is quite stable with respect to this choice. We emphasize Algorithm 1: Three-stage Segmentation Method (SLaT) for Color Images

Input: Given color image f ∈ V 1 and color space V 2 . Output:Phases Ω k , k = 1, . . . , K. 1: Stage one: compute ḡi the minimizer in (4), rescale it on [0, 1] for i = 1, 2, 3 and set ḡ = (ḡ 1 , ḡ2 , ḡ3 ) in V 1 2: Stage two:
compute ḡ ∈ V 2 , the transform of ḡ in V 2 , to obtain ḡt = (ḡ t 1 , ḡt 2 , ḡt 3 ); form ḡ * = (ḡ 1 , ḡ2 , ḡ3 , ḡt 1 , ḡt 2 , ḡt 3 ) 3: Stage three: choose K, apply the K-means algorithm to obtain {c k } K k=1 in (12) and find the segments Ω k , k = 1, . . . , K using (13).

that our method is quite suitable for parallelism since {ḡ i } 3 i=1 in Stage 1 can be computed in parallel.

Experimental Results

In this section, we compare our SLaT method with three state-of-the-art variational color segmentation methods [START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF][START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF][START_REF] Storath | Fast partitioning of vector-valued images[END_REF]. Method [START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF] uses fuzzy membership functions to approximate the piecewise constant Mumford-Shah model [START_REF] Benninghoff | Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes[END_REF]. Method [START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF] uses a primal-dual algorithm to solve a convex relaxation of model ( 2) with a fixed code book. Method [START_REF] Storath | Fast partitioning of vector-valued images[END_REF] uses an ADMM algorithm to solve the model (2) (without phase number K) with structured Potts priors. These methods were originally designed to work on color images with degradation such as noise, blur and information loss. The codes we used were provided by the authors, and the parameters in the codes were chosen by trial and error to give the best results of each method. For our model (4), we fix µ = 1 and only vary λ. In the segmented figures below, each phase is represented by the average intensity of that phase in the image. All the results were tested on a MacBook with 2.4 GHz processor and 4GB RAM, and Matlab R2014a. We present the tests on two synthesis and seven real-world images given in Fig. 3 (images (v) -(ix) are chosen from the Berkeley Segmentation Dataset and Benchmark1 ). The images are all in RGB color space. We considered combinations of three different forms of image degradation: noise, information loss, and blur. The Gaussian and Poisson noisy images are all generated using Matlab function imnoise. For Gaussian noisy images, the Gaussian noise we added are all of mean 0 and variance 0.001 or 0.1. To apply the Poisson noise, we linearly stretch the given image f to [START_REF] Bar | Mumford and Shah model and its applications to image segmentation and image restoration[END_REF]255] first, then linearly stretch the noisy image back to [0, 1] for testing. The mean of the Poisson distribution is 10. For information loss case, we deleted 60% pixels values randomly. The blur in the test images were all obtained by a vertical motion-blur with 10 pixels length. In Stage 1 of our method, the primal-dual algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]15] and the split-Bregman algorithm [20] are adopted to solve (4) for Φ(f, g) = Ag -f log(Ag) and Φ(f, g) = (f -Ag) 2 , respectively. We terminate the iterations when Example 2. Four-phase segmentation. Our next test is on a four-phase synthetic image containing four rectangles with different colors, see Fig. 5. The variable illumination in the figure make the segmentation very challenging. The results shows that in all cases (noise, information loss and blur) all three competing methods [START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF][START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF][START_REF] Storath | Fast partitioning of vector-valued images[END_REF] fail while our method gives extremely good results. Table 2 shows further that the time cost of our method is the least. 

g (k) i -g (k+1) i 2 g (k+1) i 2 < 10 -4 for i = 1,

Segmentation of Real-world Color Images

In this section, we compare our method with the three competing methods for 7 real-world color images in two-phase and multiphase segmentations, see Figs. 6-12. Moreover, for the images from the Berkeley Segmentation Dataset and Benchmark used in Figs. 8-12, the segmentation results by humans are shown in Fig. 13 as ground truth for visual comparison purpose. We see from the figures that our method is far superior than those by the competing methods, and our results are consistent with the segmentations provided by humans. The timing of the methods given in Table 2 shows that our method in most of the cases gives the least timing. Again, we emphasize that our method is easily parallelizable. All presented experiments clearly show that all goals listed in Introduction are fulfilled.

Conclusions

In this paper we proposed a three-stage image segmentation method for color images. At the first stage of our method, a convex variational model is used in parallel on each channel of the color image to obtain a smooth color image. Then in the second stage we transform this smooth image to a secondary color space so

Fig. 1 Fig. 1

 11 Fig. 1 Segmentation results for a noisy image (a) without the dimension lifting in Stage 2 (b) and with Stage 2 (c).

  )-(f) the L, a and b channels of the smooth ḡ in Stage 1 for the noisy pyramid in Fig.1(a). From Fig.2one can see that the collection of 6 channels gives different information with respect to a further segmentation. The result in Fig.1 (c) have shown that this additional color space helps the segmentation significantly.Let ḡ denote Lab transform of ḡ. In order to compare ḡ with ḡ ∈ [0, 1] 3 , we rescale on [0,1] the channels of ḡ which yields an image denoted by ḡt ∈ [0, 1] 3 . By stacking together ḡ and ḡt we obtain a new vector-valued image ḡ * with 2d = 6 channels:ḡ * := (ḡ 1 , ḡ2 , ḡ3 , ḡt 1 , ḡt 2 , ḡt 3 ). Our segmentation in Stage 3 is done on this ḡ * .

1 (e) a channel ḡt 2 (f) b channel ḡt 3 Fig. 2

 1232 Fig. 2 Channels comparison for the restored (smoothed) ḡ in Stage 1 used in Fig. 1. (a)-(c): the R, G and B channels of ḡ; (d)-(f): the L, a and b channels of ḡt -the Lab transform of ḡ. Both ḡ and ḡt were used to obtain the result in Fig. 1 (c).

Fig. 3

 3 Fig. 3 Images used in our tests.

Fig. 5

 5 Fig. 5 Four-phase synthetic image segmentation (size: 256 × 256). (A): Given Gaussian noisy image with mean 0 and variance 0.001; (B): Given Gaussian noisy image with 60% information loss; (C): Given blurry image with Gaussian noise; (A1-A4), (B1-B4) and (C1-C4): Resultsof methods[START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF],[START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF],[START_REF] Storath | Fast partitioning of vector-valued images[END_REF], and our SLaT on (A), (B) and (C), respectively.

Table 1

 1 2, 3 or when the maximum iteration number 200 is reached. In Stage 2, the transformation from RGB to Lab color spaces is implemented by Matlab build-in function makecform('srgb2lab'). In Stage 3, given the user defined number of phases K, the thresholds are determined automatically by Matlab K-means function kmeans. Since ḡ * is calculated prior Comparison of percentage of correct pixels for the 6-phase synthetic image. Methods 1-3 are the methods in[START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF],[START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF],[START_REF] Storath | Fast partitioning of vector-valued images[END_REF], respectively.

			Method 1	Method Method 3	Our SLaT method
		(A)	70.11%	99.53%	82.55%	99.51%
	Fig. 4	(B)	13.90%	16.92%	85.04%	99.25%
		(C)	28.08%	98.58%	74.77%	98.88%
	Average	37.36%	71.68%	80.79%	99.21%

Table 2

 2 Iteration numbers and CPU time in seconds. Methods 1-3 are the methods in[START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF],[START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF],[START_REF] Storath | Fast partitioning of vector-valued images[END_REF], respectively.

			Method 1	Method 2	Method 3	Our SLaT method
		Fig.	iter.	time	iter.	time	iter.	time	iter. for {g i } 3 i=1	time
		(A)	200	5.03	150	6.02	20	4.40	(92, 86, 98)	2.53
	4	(B)	200	5.65	150	4.01	16	3.65	(98, 95, 106)	2.73
		(C)	200	6.54	150	4.03	17	4.18	(97, 95, 94)	2.48
		(A)	200 13.92	150	13.89	17	16.89	(54, 54, 51)	5.47
	5	(B)	200 13.16	150	14.32	14	13.62	(101, 92, 88)	7.74
		(C)	200 17.68	150	16.37	16	15.75	(154, 147, 142)	9.89
		(A)	200 10.58	150	7.53	19	11.62	(50, 73, 93)	5.11
	6	(B)	200	9.59	150	7.36	20	14.64	(84, 105, 115)	6.43
		(C)	200 10.39	150	7.39	19	9.76	(200, 200, 200)	17.75
		(A)	200 44.26	150	66.01	19 106.35	(97, 106, 109)	25.13
	7	(B)	200 52.12	150	54.76	20 110.68	(148, 161, 171)	38.30
		(C)	200 44.51	150	55.09	18 101.09	(116, 125, 124)	30.00
		(A)	200 17.76	150 19.02	16	25.08	(80, 83, 99)	20.99
	8	(B)	200 18.41	150 16.45	16	28.33	(109, 114, 129)	22.45
		(C)	200 18.02	150 18.21	15	31.93	(127, 120, 144)	30.92
		(A)	200 18.47	150	19.62	15	27.56	(47, 42, 62)	10.98
	9	(B)	200 17.35	150	16.63	15	26.63	(86, 85, 93)	15.93
		(C)	200 18.07	150	17.61	15	23.13	(48, 48, 52)	15.02
		(A)	200 24.57	150	31.64	20	56.28	(101, 95, 94)	27.29
	10	(B)	200 27.15	150	28.92	21	63.02	(154, 142, 131)	27.89
		(C)	200 26.54	150 29.79	20	55.45	(161, 147, 141)	33.79
		(A)	200 26.62	150	32.87	17	87.13	(35, 35, 36)	14.23
	11	(B)	200 24.77	150	26.39	16	60.98	(102, 102, 103)	18.99
		(C)	200 25.26	150	31.16	18	77.73	(48, 50, 58)	18.15
		(A)	200 32.23	150	41.91	19	47.12	(106, 102, 108)	21.93
	12	(B)	200 34.83	150	44.70	20	53.48	(116, 116, 117)	23.95
		(C)	200 35.01	150	49.93	19	49.14	(67, 65, 63)	21.04
	Average	200 22.17	150	25.25	18	41.69	(99, 99, 104)	17.67

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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to the choice of K, users can try different K and segment the image all without re-computing ḡ * .

Segmentation of Synthetic Images

Example 1. Six-phase segmentation. 4 gives the result on a six-phase synthetic image containing five overlapping circles with different colors. The image is corrupted by Gaussian noise, information loss, and blur, see Fig. 4 (A), (B), and (C) respectively. From the figures, we see that method Li et al. [START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF] and method Storath et al. [START_REF] Storath | Fast partitioning of vector-valued images[END_REF] both fail for the three experiments while method Pock et al. [START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF] fails for the case of information lost. Table 1 shows the segmentation accuracy by giving the ratio of the number of correctly segmented pixels to the total number of pixels. The best ratios are printed in bold face. From the table, we see that our method gives the highest accuracy for the case of information loss and blur. For denoising, method [START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF] is 0.02% better. Table 2 gives the iteration numbers of each method and the CPU time cost. We see that our method outperforms the others compared. Moreover, if using parallel technique, the time can be reduced roughly by a factor of 3. of methods [START_REF] Li | A multiphase image segmentation method based on fuzzy region competition[END_REF], [START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF], [START_REF] Storath | Fast partitioning of vector-valued images[END_REF], and our SLaT on (A), (B) and (C), respectively. as to obtain additional information of the image in the less-correlated color space.

In the last stage, multichannel thresholding is used to threshold the combined image from the two color spaces. The new three-stage method, named SLaT for Smoothing, Lifting and Thresholding, has the ability to segment images corrupted by noise, blur, or when some pixel information is lost. Experimental results on RGB images coupled with Lab secondary color space demonstrate that our method gives much better segmentation results for images with degradation than some stateof-the-art segmentation models both in terms of quality and CPU time cost. Our future work includes finding an automatical way to determine λ and possibly an improved model ( 4) that can better promote geometry. It is also interesting to optimize channels from the selected color spaces, and analyze the effect in color image segmentation.