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Abstract 1 

Ecosystem models are currently one of the most powerful approaches used to project and 2 

analyse the consequences of anthropogenic and climate-driven changes in food web structure 3 

and function. The modeling community is however still finding the effective representation of 4 

microbial processes as challenging and lacks of techniques for assessing flow uncertainty 5 

explicitly. A linear inverse model of the Bay of Biscay continental shelf was built using a 6 

Monte Carlo method coupled with a Markov Chain (LIM-MCMC) to characterize the 7 

system’s trophic food-web status and its associated structural and functional properties. By 8 

taking into account the natural variability of ecosystems (and their associated flows) and the 9 

lack of data on these environments, this innovative approach enabled the quantification of 10 

uncertainties for both estimated flows and derived food-web indices. This uncertainty 11 

assessment constituted a real improvement on the existing Ecopath model for the same area 12 

and both models results were compared. 13 

Our results suggested a food web characterized by main flows at the basis of the food web and 14 

a high contribution of primary producers and detritus to the entire system input flows. The 15 

developmental stage of the ecosystem was characterized using estimated Ecological Network 16 

Analysis (ENA) indices; the LIM-MCMC produced a higher estimate of flow specialization 17 

(than the estimate from Ecopath) owing to better consideration of bacterial processes. The 18 

results also pointed to a detritus-based food-web with a web-like structure and an intermediate 19 

level of internal flow complexity, confirming the results of previous studies. Other current 20 

research on ecosystem model comparability is also presented. 21 

 22 

Key words:  ecosystem; food web; Ecological Network Analysis indices; linear inverse 23 

model; Bay of Biscay 24 

  25 
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I. Introduction 26 

Natural systems are known to demonstrate strong spatial and temporal variability (Frontier et 27 

al., 2008), however scientists encounter problems relating to the quantification of uncertainty 28 

when trying to represent an environment at a particular point in space or time, especially in 29 

trophic modeling. Several methods have been developed to assess the food-web properties of 30 

an ecosystem; linear inverse models using a Monte Carlo method coupled with Markov Chain 31 

(LIM-MCMC; Van der Meersche et al., 2009; van Oevelen et al., 2010) are an innovative 32 

technique for quantifying uncertainty in both flows and indices relating to the structural and 33 

functional properties of an ecosystem (Niquil et al., 2012). The idea of using a LIM-MCMC 34 

to describe each flow in terms of a range of possible values rather than a single value, was 35 

first proposed by Donali et al. (1999) and developed further in more recent studies 36 

(Leguerrier, 2005; Kones et al., 2006). The LIM-MCMC approach makes it possible to take 37 

into account flow variability, which is usually the result of uncertainties in observational data 38 

(van Oevelen et al., 2010; Niquil et al., 2012). The uncertainty is integrated into the model by 39 

defining minimum and maximum boundaries for each flow. Because it takes into account 40 

uncertainty in flow, the method also permits a distinction to be drawn between local data 41 

(from the period or region for which a solution was tested) and data from a different but 42 

related ecosystem. This new approach enables minimum and maximum flow values and 43 

average estimates with standard deviations to be computed on the basis of a given number of 44 

flow solutions; a similar approach can be used with indices related to the structural and 45 

functional properties of an ecosystem (van Oevelen et al., 2010; Niquil et al., 2012).  46 

Linear inverse methods are also well suited to describing eco-physiological processes 47 

operating in the microbial food web, such as plankton excretion and bacterial uptake of 48 

dissolved organic carbon. This is important because there is also consensus amongst the 49 

scientific community on the urgent need for comprehensive incorporation of microbial 50 
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processes into models in order to provide a holistic understanding of ecosystem structure and 51 

function, from prokaryotes to top predators (Davidson, 1996; Li et al., 2011; Saint-Béat, 52 

2012). The LIM approach has been used quite frequently in aquatic plankton ecology (e.g., 53 

Vézina and Pace, 1994; Vézina and Savenkoff, 1999; Niquil et al., 2001; Marquis et al., 2007) 54 

but despite its advantages it has rarely been applied to larger marine ecosystems, an exception 55 

being a study of the Gulf of St Lawrence (Savenkoff et al., 2007; Rioual, 2012). 56 

The Marine Strategy Framework Directive (MSFD - Directive 2008/56/EC) established 57 

criteria and associated indicators (MSFD - Decision 2010/477/EC) for what the MSFD refers 58 

to as “Good Environmental Status” (GES) in European Waters. Evaluation of the initial list 59 

revealed that it was inadequate for determining whether a marine food web had reached GES 60 

(Rombouts et al., 2013). A list of nine food web indicators which would better capture food 61 

web characteristics (i.e., structure, functioning and dynamics), and thus complement the 62 

existing GES definition, was submitted to the OSlo and PARis (OSPAR) Intersessional 63 

Correspondence Group For Coordination Of Biodiversity Assessment and Monitoring (ICG-64 

COBAM; International Council for the Exploration of the Sea [ICES], 2013; Niquil et al., 65 

2014b). Two of these indices are related to the concept of fishing down the food-web (Pauly 66 

et al., 1998) by measures of size (Large Fish Index) or mean trophic level of predatory fishes 67 

(Marine Trophic Index). Two other are related to trophic guilds, either composed of fish or 68 

plankton. The Ecological Network Analysis indices were among these candidate indicators 69 

and are currently being assessed, in order to look for holistic and functional indicators. 70 

Ecological network analysis (ENA; Ulanowicz, 1986) was developed to identify holistic 71 

structural and functional properties which are not directly observable and can only be detected 72 

by analysis of within-system interactions (Fath et al., 2007). The main challenge for ENA is 73 

to capture an ecosystem’s entire food web in terms of a limited number of indices. Previous 74 

research has suggested that the values of ENA indices varied according to the pressures on a 75 
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given ecosystem, and among habitats (Patrício et al., 2004; Dame and Christian, 2007; Coll et 76 

al., 2009; Pranovi and Link, 2009; Baeta et al., 2011; Niquil et al., 2014a). ENA index values 77 

derived from a LIM-MCMC include a measure of the uncertainty of the estimates, unlike 78 

those derived from other over-constrained models. Information about uncertainty can be 79 

crucial as some changes in the variance of such indices may reflect an important shift in the 80 

trophic status of an ecosystem, e.g., changes in the Baltic Sea (Tomczak et al., 2013) and, 81 

more recently, changes in the Ionian Sea in response to climate changes (Niquil et al., 82 

submitted).  83 

The present work was methodological; our focus was on documenting a non-familiar 84 

modeling approach when considering large marine ecosystems. The LIM-MCMC method 85 

would address two of the main weaknesses typical of food web modeling, i.e., the model 86 

should include an uncertainty assessment and provide a better representation of low-trophic-87 

level processes. A LIM-MCMC was set up for the Bay of Biscay continental shelf. The full 88 

presentation of steps and issues related to the LIM-MCMC construction and uncertainty 89 

analysis were provided. Then, the food web status of the Bay of Biscay and its structural and 90 

functional properties were characterized through the calculation of a range of ENA indices. 91 

Finally, ecological conclusions derived from the LIM-MCMC were compared with those 92 

obtained with a pre-existing Ecopath model of the same ecosystem (Lassalle et al., 2011).   93 



6 
 

2. Material and Methods  94 

2.1. Study area 95 

The Bay of Biscay is a Gulf of the North-East Atlantic Ocean, located off the west coast of 96 

France and the northern coast of Spain (Figure 1) between 48.5°N and 43.5°N; 008°W and 97 

003°W. This ecoregion is subject to a wide variety of environmental processes such as coastal 98 

upwelling, coastal run-off and river plumes, seasonal currents, eddies, internal waves and tidal 99 

fronts (Planque et al., 2004). Five main rivers supply fresh water to the sea: the Loire, the 100 

Garonne–Dordogne, the Adour, the Vilaine and the Charente; these rivers modulate the 101 

salinity of the plume regions. All these processes influence the biological communities of the 102 

Gulf, especially the plankton communities, and affect the functioning of the whole food-web 103 

(Varela, 1996; Lampert, 2001). The Bay of Biscay supports a multifleet fishery, primarily 104 

operated by French and Spanish boats, which exploits a wide range of species using diverse 105 

types of fishing gear (Rochet et al., 2012). For this study we considered only ICES divisions 106 

VIIIa and VIIIb (ICES; www.ices.dk), between the 30m and 150m isobaths, giving a total 107 

surface area of 102,585 km². 108 

 109 

2.2. Model complexity 110 

Some of the input parameters for the LIM-MCMC were taken from the Ecopath model (diet 111 

composition, pedigrees, Production/Biomass (P/B) ratios). These parameters were used to 112 

define compartment interactions, mass balances and some flows constraints (e.g., production 113 

constraints).  114 

The first step in compartment model construction is to define the protagonists of the various 115 

interactions and how they are aggregated into compartments (Johnson et al., 2009; Niquil et 116 

al., 2012). The species composition of our model (Tables 1 and 2) varied very little from that 117 

presented by Lassalle et al. (2011; supplementary material); the main differences between the 118 
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two models are structural. In this study the number of compartments was reduced by a factor 119 

of roughly two, from 32 to 18 (Tables 1 and 2). The aim of this simplification of structure was 120 

threefold: (i) to describe and constrain the flows without applying the same constraints to 121 

different compartments; (ii) to characterize all compartments with the same precision; there 122 

was not sufficient ecological data from all the 32 Ecopath compartments to include them as 123 

stand-alone compartments in the LIM; and (iii) to achieve a sensible balance between the time 124 

required to run simulations and the level of detail in which flow values were explored. 125 

Ecopath compartments which were mono-specific, and for which there was either (i) 126 

insufficient physiological data, or (ii) which occupied the same trophic position in the upper 127 

food web (i.e., the five marine mammal compartments, the two seabird compartments and two 128 

cephalopod groups), were combined (Tables 1 and 2). The Ecopath model used four 129 

compartments for demersal fish on the basis of their trophic ecology; we chose to distinguish 130 

strictly benthivorous demersal fishes from other demersal species. The Ecopath model used 131 

five mono-specific compartments to represent small pelagics; in the LIM-MCMC pelagic 132 

fishes were separated into two groups based on feeding habits, pelagic piscivorous and strictly 133 

pelagic planktivorous (Table 2). Necrophageous and carnivorous invertebrates were 134 

aggregated on the basis of the reduced number of invertebrate species with a necrophageous 135 

diet in the LIM-MCMC. In the LIM-MCMC, the other four invertebrate compartments of the 136 

Ecopath model were aggregated on the basis of the commonly used dichotomy between 137 

deposit and suspension invertebrate feeders. The two size-classes of phytoplankton were 138 

considered together. Discards, commonly regarded as dead organisms, were not distinguished 139 

from detritus (i.e., particulate organic matter, POC). Finally the LIM-MCMC included an 140 

additional dissolved organic carbon (DOC) group (Tables 1 and 2). The second step in 141 

defining the network topology, after the groups had been established, was the listing of all the 142 
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possible flows between compartments and at the system margins (see Table S1 in 143 

Supplementary Material). 144 

 145 

2.3. General principles and parameterization 146 

The food-web model used was a linear inverse model based on the Monte Carlo Markov 147 

Chain (LIM-MCMC; Van den Meersche et al., 2009; van Oevelen et al., 2010). It was defined 148 

by a combination of mass-balance equations (and potential in situ measures of flow expressed 149 

as complementary equations) and inequalities which constrain flow values. In most cases 150 

constraints were based on the eco-physiology of the species making up the model 151 

compartments (Niquil et al., 2012). 152 

The linear equalities describing the system were typically expressed as a matrix calculation:  153 

A • r = b (Eq.1) 154 

where A is the matrix of coefficients, r the vector of possible flows and b the vector of 155 

equality results.  156 

The solution is based on finding the vector r for which the equations are valid.  157 

The system of equalities is underdetermined, so in most cases complementary inequalities 158 

were added to constrain the flows. The system of linear inequalities can be written as: 159 

G • r ≥ h (Eq.2) 160 

where G is the matrix of coefficients (inequality relationships) and h the vector of inequality 161 

values. These constraints reduced the area of the solution space to a polytope. Following this a 162 

mirror of the Monte-Carlo-Markov Chain technique (Van den Meersche et al., 2009) was 163 

applied to explore the polytope and describe all possible solutions.  164 

  165 

2.3.1. Equalities 166 
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In this model, equalities were only described by mass-balance equations (Table S2); no 167 

nominal flow values were entered in the model to take into account the uncertainty in field 168 

data collected from an ecosystem. Model equalities captured the fact that, for each 169 

compartment considered in the model, input flows (i.e., imports or consumption) were equal 170 

to output flows (i.e., exports, production, respiration, production of detritus or egestion, and in 171 

some cases, excretion). The model assumed an intrinsic steady-state system in which 172 

biomasses were not changing and net migration (difference between emigration and 173 

immigration) was equal to zero or negligible on an annual scale. Mortality in the model was 174 

mainly due to predation and exports by fisheries, natural mortality other than predation, such 175 

as disease, was considered negligible in comparison with mortality by predation or fishing. 176 

Eighteen mass-balance equations, one per compartment (Table S2), were set up in matrix 177 

form (matrix A). There were as many rows as there were mass-balance equations (m = 18) 178 

(Table S2). The columns of the matrix represent the flows; there were as many columns as 179 

there were flows (n) in the food web (Table S1). The vector of equality results b (m x 1) thus 180 

contains the right-hand sides of the mass-balance equations. Inverse methodology was then 181 

used to calculate a vector r (n x 1) with as many elements as there were columns in A. Vector 182 

r represents the flows that, when multiplied by A, approximates the vector b (Eq. 1). The diet 183 

content matrix from the Ecopath model was used to determine coefficients for output 184 

predation flows in these equations. Additional predation flows were integrated (e.g., Marquis 185 

et al., 2007; Saint-Béat et al., 2013) on the same basis, especially those relating to 186 

consumption of bacteria in the system, roughly restricted to microzooplankton in the Ecopath 187 

model (Table 1 and Table S2 in Supplementary Material). 188 

 189 

2.3.2. Inequalities 190 
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Constraints were added to the model, i.e., flow estimates were constrained between pre-191 

defined minima and maxima (Table S3). Inequalities were included by filling a matrix G of c 192 

x n where c was the number of inequalities added to the model and n the number of possible 193 

flows, with negative or positive coefficients between 0 and 1 (Eq. 2). The vector h for the 194 

inequalities (c x 1) formed the right-hand side of the inequality relationship and thus had as 195 

many elements as there were rows in G. 196 

Respiration 197 

Bacterial respiration was constrained by setting minimum and maximum values for DOC 198 

uptake by bacteria (Vézina and Savenkoff, 1999). Phytoplankton respiration was limited to 5 199 

to 30% of gross primary production (GPP) in accordance with constraints set out by Vézina 200 

and Platt (1988). The lower boundary for respiration in zooplankton compartments was 201 

defined as 20% of their ingestion, in defining the upper boundary, the sum of their respiration, 202 

excretion and egestion was assumed to be less than 75% of their ingestion (Vézina and Pace, 203 

1994). Respiratory constraints for meiofauna and benthic invertebrates were derived from van 204 

Oevelen et al. (2006) (Table S3). 205 

Excretion 206 

Bacteria, phytoplankton and micro- and meso-zooplankton excrete or exude carbon to the 207 

DOC compartment (Riemann et al., 1990). Because there is no precise method of estimating 208 

the transformation of particulate detritus into DOC (Pace et al., 1984), this constraint was not 209 

considered in the present model. Excretion flows for the four compartments mentioned above 210 

were constrained according to Vézina and Platt (1988) and Vézina and Savenkoff (1999) 211 

(Table S3).  212 

Egestion 213 

Egestion was constrained on the basis of assimilation efficiency (AE) rates found in the 214 

literature (Vézina and Platt, 1988; Scheiffarth and Nehls, 1997; Leguerrier, 2005; van 215 
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Oevelen et al., 2006) (Table S3). AE rates were included for all compartments except 216 

cephalopods and marine mammals (low confidence or lack of information). AE is defined as 217 

the amount of carbon that is assimilated divided by the total amount of carbon ingested (∑ 218 

consumption) (van Oevelen et al., 2006): 219 

AE = 
∑ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛−𝑙𝑜𝑠𝑠 𝑡𝑜 𝑑𝑒𝑡𝑟𝑖𝑡𝑢𝑠

∑ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
  (Eq.3) 220 

Production 221 

Production estimates were obtained by multiplying the two key input parameters for the 222 

Ecopath model of the Bay of Biscay continental shelf food web, P/B ratios and biomass 223 

estimates. Inter-annual variations in compartment biomass multiplying by mean P/B ratio 224 

were used to calculate minimum and maximum production for each compartment. The 225 

biomass values for the Ecopath model were the averages of annual estimates for the period 226 

2000–2010. The lower bound for production was equal to the P/B ratio multiplied by the 227 

lowest biomass recorded during this period and vice versa. At the time scale considered and 228 

for a given species, the variation of P/B was negligible. Thus, we did not consider the 229 

variation of P/B for the production estimation. 230 

Gross Primary Production (GPP) was considered as an import to the phytoplankton 231 

compartment. Constraints on this flow are therefore described in the Imports section below. 232 

Growth efficiency 233 

Additional constraints on growth efficiencies (GEs) were added. GE is the ratio of production 234 

to ingestion, i.e., GE = Production/ Ingestion. According to Christensen and Pauly (1992), 235 

most consumer organisms have a GE between 10% and 30% (Table S3). 236 

Import  237 

Two main imports were considered in the present model, import to phytoplankton (GPP) and 238 

import of detritus. 239 
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Estimates of GPP were derived from estimates of net primary production (NPP) from four 240 

Earth system models (Bopp et al., 2013): the CESM1-BGC, the GFDL-ESM2G, the GFDL-241 

ESM2M and the NorESM1-ME. These four models were selected from the range of Earth 242 

system models because they gave NPP estimates similar to SeaWifs observation data for our 243 

study area over the 1975-2005 period (Bopp et al., 2013). These estimates were also 244 

comparable to the NPP in situ value entered into the Ecopath model of the Bay of Biscay 245 

continental shelf. Minima and maxima were based on the 5th and 95th percentiles of model 246 

estimates.  247 

Detritus imports from the five main rivers flowing into the Bay of Biscay were estimated from 248 

measurements of POC in estuaries (Abril et al., 2002) and mean annual river discharges 249 

(www.hydro.eaufrance.fr). Lower and upper bounds were related to inter-annual variability of 250 

river discharges over the 1998-2002 time period. 251 

Export 252 

Exports out of the system by commercial groups were mainly due to fishing. Estimates were 253 

based on international landing statistics for ICES divisions VIIIa and VIIIb for the 1998-2002 254 

period. These data were complemented by data from the relevant ICES working groups, i.e., 255 

the WGCEPH for cephalopods (ICES, 2005a) and the WGMHSA for small pelagic fish 256 

(ICES, 2005b). Landings for the various exploited species in a compartment were summed. 257 

Lower and upper limits were derived from landing time series.  258 

Exports of detritus (sedimentation to greater depths or transport of particulate matter by 259 

currents) were also considered, but no maximum or minimum constraints were applied owing 260 

to lack of information. 261 

Diet composition 262 

The Ecopath model gave pedigree index values which categorized the quality of data sources 263 

for the five main input parameters (biomass, P/B, consumption/biomass, diet composition, 264 
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and commercial catches) (Christensen et al., 2008). These authors associated a default 265 

confidence interval with each pedigree index value. Thus, depending of the quality of the 266 

origin input, pedigree index values of 0, 0.2, 0.5, 0.7, and 1 correspond, for diet composition, 267 

to confidence intervals of ± 80%, ± 80%, ± 50%, ± 40%, and ± 30%, respectively. The 268 

pedigree table for the Ecopath Bay of Biscay continental shelf food web model has recently 269 

been completed (Lassalle et al., 2014). Lower and upper limits for diet composition were 270 

based on the diet composition matrix of the Ecopath model and the related confidence 271 

intervals in the pedigree table. 272 

 273 

2.4. Data used in modeling 274 

Compartment production, import, and export data were estimated from scientific survey data 275 

(PELGAS cruises, MICRODYN, BIOMAN, and INTRIGAS surveys; Labry et al., 2002; Le 276 

Loc’h, 2004; Irigoien et al., 2009) collected during different seasons over the period 1994-277 

2005 by the Institut Français de Recherche sur l’Exploitation de la MER (IFREMER), the 278 

AZTI-Tecnalia (a Technological Centre specialised in Marine and Food Research), and the 279 

Centre National de la Recherche Scientifique (CNRS). A full description is provided in 280 

Lassalle et al. (2011).  281 

Fish stock data were taken from the ICES/ACFM advice report (ICES, 2004) and biomasses 282 

of fish species were estimated from annual autumn surveys of bottom-trawl catches in the Bay 283 

of Biscay (EVHOE IFREMER cruises). Pelagic fish biomasses were calculated from acoustic 284 

surveys conducted each spring in the Bay of Biscay (PELGAS IFREMER cruises). 285 

Sea birds estimates were based on data from visual counting and identification and aerial 286 

surveys performed monthly between October 2001 and March 2002, and in August 2002, 287 

June 2003 and May 2004 (ROMER and ATLANCET surveys). Finally, data on marine 288 

mammals were obtained from (i) the July 2005 SCANS-II project (ship and aircraft surveys of 289 
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small cetaceans in the European Atlantic); (ii) repeated extensive aerial surveys at different 290 

seasons between 2001 and 2004 (ROMER and ATLANCET surveys; Certain et al., 2008), 291 

and (iii) the monitoring of marine mammals via stranding and spring shipboard observations 292 

during the PELGAS IFREMER cruises (Certain et al., 2011).  293 

 294 

2.5. Model resolution 295 

The mirror technique described by Van Den Meersche et al. (2009) was used to compute a 296 

multitude of solutions and quantify uncertainty around all flows. Two parameters must be 297 

defined in order to use this technique: a number of iterations to optimize the exploration (or 298 

coverage) of the polytope of solutions and a ‘jump’ representing the mean distance between 299 

two consecutive solutions in a randomly chosen direction. For this study one million solutions 300 

were calculated with a jump equal to 100 kgC.km-2.y-1 which corresponded to an 301 

approximation of the median of the flow values. The jump was set up in order to get a good 302 

polytope exploration and also to get better estimations of small and large flows. All 303 

simulations were performed using the MATLAB software and the algorithm developed by 304 

Vézina and Campo (Bedford Institute of Oceanography, Fisheries and Oceans, Canada), 305 

which is a translation of the R package limSolve (Soetaert et al., 2009). 306 

 307 

2.6. Ecological network analysis 308 

Ecological network analysis (ENA; Ulanowicz, 1986) was used to compute several indices to 309 

characterize the structure and function of the Bay of Biscay continental shelf food web. To 310 

facilitate comparison of our model with the Ecopath model, we calculated values for the ENA 311 

indices estimated by Lassalle et al. (2011) for the Ecopath model, namely Total System 312 

Throughput (T..), Internal Relative Ascendency (Ai/Ci), Finn Cycling Index (FCI), System 313 

Omnivory Index (SOI) and Connectance Index (CI). The T.. index computed as the sum of all 314 



15 
 

flows in a food web thus acts as a proxy for system activity or organization. The internal 315 

relative ascendency (Ai/Ci) ratio provides a relative measure of the degree of organization of 316 

a food web based only on internal flows and was directly issued from the Ecopath model. 317 

Finn (1980) proposed an index of the importance of recycling activity based on the percentage 318 

of flows involved in cycles. According to Ulanowicz (1986), CI and SOI values generally 319 

reflect the complexity of the linkages within an ecosystem (in terms of both structure and 320 

organization). 321 

A LIM-MCMC MATLAB routine adapted from the one developed by Lebreton and Schartau 322 

(GKSS Research Center, Geesthacht, Germany) was used to compute one ENA index value 323 

for each flow solution estimated by the LIM-MCMC.  324 

We also compared the Detritivory/Herbivory (D/H) ratio, calculated as the sum of flows 325 

originating from detritus and DOC compartments (detritus consumption) divided by the sum 326 

of flows from phytoplankton (phytoplankton consumption). The D/H ratio measures the 327 

relative importance of detritivory and herbivory activity in a given system. 328 

 329 

2.7. Analysis of flows and ENA indices 330 

The general distribution of the flows estimated by the LIM-MCMC was assessed with two 331 

barplots, one including all estimated flows and the second restricted to the five flows with the 332 

highest mean values.  333 

The structure of the food web was investigated by analyzing the input flows of the 334 

compartments; input flows were only compared for compartments which were defined 335 

similarly in both models. The position of Ecopath value inside or outside the range of values 336 

estimated by the LIM-MCMC was assessed. 337 
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Respiration flows in the two models were also compared and cases in which the single 338 

Ecopath value fell within the range of possible values predicted by LIM-MCMC were noted.  339 

Values for the ENA indices which were estimated in both models were also compared and the 340 

relative position of the Ecopath values analyzed. 341 

We did not carry out any of the classic mean comparison tests because of the important size of 342 

the samples (1 million observations in the LIM-MCMC vs. one Ecopath reference value); the 343 

Markov-Chain used in the LIM-MCMC also meant that the independence of observations 344 

criterion was not satisfied. However, we considered instances in which the Ecopath value fell 345 

within the range estimated by the LIM-MCMC to be highly informative (and significant) even 346 

without further analysis.  347 



17 
 

3. Results 348 

Estimates of flows from the LIM-MCMC are given in the Supplementary Material (Table S1). 349 

The highest flows in the food web were mainly related to phytoplankton production, 350 

consumption, sedimentation or exudation (1-10), or to bacterial and detrital processes (80-98) 351 

(see Figure 2A and Table S1 in Supplementary Material). The flows with an average higher 352 

than 5 • 104 kgC.km-2.y-1 (Figure 2B) were: the GPP (1), 2.41 • 105 ± 0.5 • 105 kgC.km-2.y-1; 353 

the phytoplankton sedimentation (2), 1.10 • 105 ± 0.23 • 105 kgC.km-2.y-1 and the 354 

consumption of dissolved organic carbon by bacteria (98), 1.04 • 105 ± 0.35 • 105 kgC.km-2.y-355 

1. 356 

The two detrital groups (i.e. POC and DOC) and the phytoplankton compartment contributed 357 

to 18.8%, 10.8%, and 31% of the total carbon input via river discharges and GPP, 358 

respectively. The estimated net allochthonous input of 502.65 kgC.km-2.y-1 of detritus was 359 

low in comparison with GPP (2.41 • 105 ± 0.5 • 105 kgC.km-2.y-1). Detailed compartment 360 

input flows (sum of carbon entering a given compartment) are given in Figure 3. Comparison 361 

of estimated compartment input flows from the LIM-MCMC and the Ecopath model revealed 362 

a similar pattern, especially for first trophic level compartments; in both models there was a 363 

peak of activity associated with pelagic planktivores. Graphical comparison of compartment 364 

input flows for the two models (to assess whether the Ecopath estimate fell within the LIM-365 

MCMC estimated range) revealed that results were consistent for most groups; the main 366 

difference was in  microzooplankton input flow estimates (average values were 7.8 • 104 367 

kgC.km-2.y-1  for the LIM-MCMC and 2.8 • 105 kgC.km-2.y-1 for the Ecopath model). 368 

Respiration flows accounted for 86.7% of the carbon output (2.1 • 105 kgC.m-2.y-1) of the 369 

system. The contribution from bacterial respiration (29.5% of total respiration) was closely 370 

followed by meiofaunal respiration (27.1%). Comparison of respiration estimates revealed 371 

that half the values for respiration flow estimated with the Ecopath model lay within the range 372 
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of estimates given by the LIM-MCMC. The remaining estimates were evenly distributed, 373 

suggesting that neither model systematically over- or under-estimated respiration flow. The 374 

greatest differences in estimated respiration flow were for seabirds (LIM-MCMC: 533.44 ± 375 

189.58 kgC.km-2.y-1; Ecopath: 16.42 kgC.km-2.y-1) and meiofauna (LIM-MCMC: 5.8 • 104 ± 376 

2.61 • 104 kgC.km-2.y-1; Ecopath: 2000 kgC.km-2.y-1). 377 

LIM-MCMC estimates of T.. ranged from 7.35 • 105 kgC.km-2.y-1 to 8.44 • 105 kgC.km-2.y-1. 378 

The Ecopath model estimate, 9.4 • 105 kgC.km-2.y-1, was above the maximum LIM-MCMC 379 

estimate (Figure 4). Estimates of internal relative ascendency, which does not include external 380 

flows (flows entering and exiting the system), were also compared. The mean internal relative 381 

ascendency from the LIM-MCMC was 0.34 ±  0.01, which was higher than the Ecopath 382 

estimate, 0.22. 383 

The average cycling index value obtained from the LIM-MCMC was 0.13 ±  0.01, notably 384 

lower than the Ecopath estimate, 0.35. Comparison of D/H ratios revealed that the Ecopath 385 

model estimate (1.32) was within the range of LIM-MCMC estimates (0.46 – 1.84) and close 386 

to the mean LIM-MCMC estimate.  387 

The LIM-MCMC estimate of CI was higher than the Ecopath model estimate (LIM-MCMC: 388 

0.32; Ecopath: 0.21) while estimates of SOI were similar (LIM-MCMC: 0.19 ± 0.03; Ecopath: 389 

0.21), see Table 4.  390 
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4. Discussion 391 

This study is one of the first attempts to model a large exploited marine ecosystem using the 392 

LIM-MCMC method. This innovative approach to modeling was developed for theoretical 393 

exploration of ecological networks; it enables uncertainties to be quantified and allows 394 

complex eco-physiological processes operating at the level of the food-web to be incorporated 395 

into models. Interestingly, the LIM-MCMC of the Bay of Biscay continental shelf provided 396 

results which confirmed and extended the findings derived from an earlier Ecopath model by 397 

Lassalle et al. (2011). The estimates produced by the two models differed little with respect to 398 

the flows analyzed and five ENA indices investigated, however comparison of values for 399 

more ENA indices and respiration flows could reveal differences. In both the LIM-MCMC 400 

and the Ecopath model (Lassalle et al., 2011) the highest flow estimate was for GPP. Lassalle 401 

et al. (2011) showed that flows from primary producers were 47.5% of total system 402 

throughput. High phytoplankton sedimentation and detritus production (egestion for each 403 

consumer group) estimates produced by the LIM-MCMC and the high value for consumption 404 

of DOC by bacteria - a process not included in the Ecopath model - confirmed that an active 405 

bacterial loop played a critical role in carbon recycling and in general ecosystem functioning. 406 

The convergence in estimates of the degree to which low trophic levels dominated system 407 

functioning was also observed for results at the second trophic level, mainly composed of 408 

bacteria and zooplankton.  409 

Respiration flows constituted the main source of uncertainty in the Ecopath model 410 

(Christensen et al., 2008). In contrast to the convergence between the models’ estimates of 411 

compartment input flows, there were differences in estimates of respiration flows for some 412 

compartments. The largest differences were in estimates of respiration flows for seabirds and 413 

meiofauna, with LIM-MCMC mean values 30 times higher than the Ecopath values. In the 414 

LIM-MCMC presented here, respiration flows of lower trophic levels (phytoplankton, 415 
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bacteria, zooplankton, meiofauna and benthic invertebrates) were constrained by lower and 416 

upper eco-physiological boundaries; for the higher trophic levels, they were constrained 417 

indirectly by constraining physiological ratios such as GE or AE (Winberg, 1956; Vézina and 418 

Platt, 1988; Christensen and Pauly, 1992; Scheiffarth and Nehls, 1997; Leguerrier, 2005). The 419 

LIM-MCMC therefore provided more realistic estimates of respiration at the Bay of Biscay 420 

continental shelf than the Ecopath model. 421 

T.., calculated as the sum of all flows, represents the size of the entire system in terms of 422 

flows (Ulanowicz, 1986) and corresponds to total system activity. The nominal Ecopath value 423 

was above the range of LIM-MCMC estimates. This is probably due to (i) a lack of 424 

consideration of autopredation (cannibalism and species groups that feed on themselves) 425 

flows in the LIM-MCMC approach; (ii) natural mortality, i.e., mortality due to causes other 426 

than predation (disease, other natural causes of death), which was included in the Ecopath 427 

model, and (iii) the importance of the estimate of detritus export in the LIM-MCMC (less 428 

cycling). All these effects may have lowered system activity (and T.. value) in the LIM-429 

MCMC, despite the fact that this model considered a higher number of interactions than the 430 

Ecopath model (e.g., additional bacterial flows and more detailed consideration of detrital 431 

processing). Internal relative ascendency (Ai/Ci) is computed with no regard for external 432 

flows (e.g., flows entering and exiting from the ecosystem) including, importantly, imports of 433 

GPP into the system. In this study the mean value of Ai/Ci ratio was 0.34 (vs. 0.22 for the 434 

Ecopath model). The higher Ai/Ci ratio in the LIM-MCMC suggests that the ecosystem 435 

specialization was higher if model implements additional bacterial flows (e.g., flows of 436 

bacteria consumption) and more detailed consideration of detrital processing, i.e., 437 

disaggregation of particulate and dissolved organic matter into two different compartments 438 

(e.g., egestion flows, phytoplankton exudation, or indirectly by a production by viruses and 439 

cellular lysis). This conclusion reinforces the need for better representation of bacterial loop 440 
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processes in ecosystem functioning, and thence the importance of including them in models 441 

(Saint-Béat, 2012). In this case, the LIM-MCMC seems to be a relevant tool to do this.  442 

Several authors referring to Ulanowicz (1986) proposed the use of internal relative 443 

ascendency to discuss ecosystem maturity (Baird et al., 2007; Baird et al., 2009), which may 444 

lead to possible mis-interpretation. Ai/Ci, CI, and SOI values from both models indicated that 445 

the food chain has a web-like structure with internal flows of intermediate complexity 446 

(Libralato et al., 2008). Both models produced estimates indicative of a system less mature 447 

than similar ecosystems such as the Atlantic shelf or the Cantabrian Sea (Trites et al., 1999; 448 

Sanchez and Olaso, 2004; López, 2010). 449 

The FCI (ratio of total flow recycled to total flow through the system) estimates from LIM-450 

MCMC were lower than the Ecopath value, indicating less cycling; a finding in line with the 451 

respective estimates of total system throughput. Intrinsic characteristics of ecosystem models 452 

should be acknowledged when analyzing the recycling index, regarding the importance of the 453 

export of detritus out of the system (sedimentation or current export) from both methods. This 454 

may, at least, partly explain the difference in FCI values. As mentioned above the Ecopath 455 

model was designed to consider more cycles and take into account autopredation and related 456 

ontogenic changes (e.g., adults feeding on larvae of the same group of fish). These trophic 457 

interactions were not integrated into the LIM-MCMC and this may have contributed to the 458 

difference in FCI values. Around 10 autopredation flows described in the Ecopath model of 459 

the study area were not considered in the LIM-MCMC. Inclusion of autopredation processes 460 

would improve our LIM-MCMC. Differences in FCI estimates may also be explained by the 461 

number of compartments (aggregation) used in the two models; it has been shown that the 462 

LIM-MCMC method tends to underestimate the size and complexity of food webs (Johnson et 463 

al., 2009). For estimates of some ecological network indices, the aggregation scheme 464 

explained as much variability as the difference between the inverse-derived and raw flows. 465 



22 
 

Topological network indices tend to be fairly robust against aggregation, whereas the FCI, a 466 

functional index, is very sensitive to aggregation effects. Allesina et al. (2005) and, more 467 

recently, Fath et al. (2007), arrived at similar conclusions, stressing the interest of work on 468 

scaled indices, including ratios such as the Ai/Ci.  469 

Both models agreed on general detritivorous system functioning, with very similar estimates 470 

of D/H ratio. Ecological interpretation of the D/H ratio remains controversial (Ulanowicz, 471 

1992; Dame and Christian, 2007). Niquil et al. (2014a) emphasized that further research is 472 

needed before the D/H ratio can be used operationally to assess the impact of disturbances on 473 

the trophic state and functioning of ecosystems. Lassalle et al. (2011) related the dominance 474 

of detritivory in the Bay of Biscay continental shelf food web to the Primary 475 

production/Respiration ratio value, which was close to 1 and therefore characteristic of a 476 

mature system in a state of organic carbon balance.  477 

 478 

Specific recommendations for future field surveys and research emerged from work on the 479 

development of this new model of the Bay of Biscay continental shelf food web. We found 480 

that (a) there was no precise estimate of GPP in the study area, only model outputs; (b) there 481 

were no data on export of particulate organic matter from the system, it is considered more 482 

reasonable when dealing with large ecosystems to rely on expert judgments, rather than on 483 

approximate data, to shrink some confidence intervals (Johnson et al., 2009); (c) 484 

that vigilance is recommended when making comparisons between models, as comparison of 485 

indices from the Ecopath and LIM user communities revealed differences in the definitions 486 

and formulations of ENA indices. Preliminary work on translating the Ecopath routines into 487 

Matlab code is currently in progress (Kearney et al., 2012); this includes work on the 488 

harmonization of formulae for ENA indices (Guesnet, pers. comm.). This work will also 489 

require careful comparison of the Ecopath and LIM-MCMC methods using the same number 490 
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of compartments and a similar number of entering and exiting flows. (ii) The use of different 491 

modeling methods, and more particularly model structures (number of compartments), may 492 

lead to systematic differences in results. Some differences in the estimates produced by the 493 

two modeling methods could be also easily explained, for instance the CI index is known to 494 

be sensitive to the number of modeling compartments and the number of interactions between 495 

them (Johnson et al., 2009). The different structures of the models produced by the two 496 

methods may therefore account for the observed difference in CI estimates. Such ongoing 497 

research studies will make it easier to compare model outputs and thus contribute to 498 

corroborating ecological conclusions derived from modeling studies and help to ensure that 499 

they are translated into management strategies and practice. 500 

 501 

The LIM-MCMC of the Bay of Biscay continental shelf appears to be in line with ICES 502 

expectations. This new model was intended to provide an overview of the structural and 503 

functional properties of the food web through the calculation of holistic indices compatible 504 

with the revised ICES criteria and indicators adopted by the MSFD. New indices should 505 

include sufficient taxonomic groups to represent the full range of taxonomic groups that make 506 

up the food web in an ecosystem (ICES, 2013). Research should therefore focus on 507 

developing more integrated, functional indices which capture whole-system approaches, 508 

processes, linkages (e.g., connectance and recycling) and food-web dynamics and can relate 509 

changes in values to anthropogenic factors (Rombouts et al., 2013). As a direct perspective of 510 

use, ENA indices derived from this model should be tested through a sensitivity analysis with 511 

respect to anthropogenic climate changes and direct pressures, in line with the European 512 

directives and recommendations by working groups (OSPAR).  513 
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5. Conclusion 514 

This study has presented a new modeling tool which was used to characterize the food web 515 

status and structural and functional properties of the Bay of Biscay ecosystem. A comparison 516 

with the pre-existing Ecopath model built for the same area - the continental shelf between 30 517 

m- and 150 m-isobaths - revealed, that both approaches resulted in similar ecological 518 

conclusions with respect to food web structure and functioning. This finding was unexpected 519 

and interesting, as the two models were developed for different purposes. Ecopath with 520 

Ecosim was originally used as a tool for ecosystem-based fishery management, whereas the 521 

LIM-MCMC method was developed to provide an overview of ecosystem functioning and a 522 

description of the system in terms of its emergent properties (e.g., ENA indices). Further 523 

analysis of the few differences in estimates produced by the two approaches is required 524 

however, as some compensatory effects may have occurred. The LIM-MCMC method 525 

potentially has several advantages over the Ecopath with Ecosim approach, and may lead to 526 

practical applications not currently possible with the Ecopath software (such as a 527 

quantification of uncertainty in the flows and food-web properties), although at present the 528 

Ecopath with Ecosim method remains the most widely used dynamic-ecosystem food-web 529 

model and still offers useful specificities for ecosystem-based management such as the 530 

distinction between detritus and discards.  531 

The main advantages of this new approach are that it enables quantification of uncertainty in 532 

the flows and food-web properties - an important gap in some previous models - and 533 

addresses the poor integration of low-trophic-level processes in some earlier models (see for 534 

instance Pinkerton et al., 2008). Data on uncertainty, including comparison with single value 535 

estimations, are of considerable interest and research to implement similar improvements in 536 

Ecopath is already under way (Lassalle et al., 2014). An inherent feature of the LIM-MCMC 537 

method is that it allows the uncertainty of field data or of experiments to be taken into account 538 
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in the model construction (inequalities definition) (Van den Meersche et al., 2009; van 539 

Oevelen et al., 2010; Niquil et al., 2012). The level of uncertainty is also captured in the result 540 

(with a range of possible values being estimated) (Van den Meersche et al., 2009; van 541 

Oevelen et al., 2010; Niquil et al., 2012). Quantitative values for uncertainties can also be 542 

used in statistical comparisons. In this study we were unable to compare estimates statistically 543 

because of the large difference in sample sizes but estimates from two LIM-MCMCs could be 544 

compared, for instance models of different ecosystems, or before and after models of an 545 

ecosystem which experiences a perturbation. Some statistical tools could be used even if 546 

observations were not independent (Beaugrand pers. comm.), which is not the case for LIM-547 

MCMC data owing to the Markov chain.  548 

Another argument for quantification of uncertainty relates to the detection of shifts in the state 549 

of an ecosystem. Recent studies of abrupt changes in marine and coastal ecosystems have 550 

suggested that increasing variance is an indicator of such events (Beaugrand et al., 2008). A 551 

recent study (Niquil et al., submitted) confirmed an earlier report of a climatic shift in the 552 

Mediterranean Sea (Tomczak et al., 2013), and showed that ENA indices were sensitive to 553 

this shift and that it affected the variability of ENA index values. Such examples confirm the 554 

importance of considering the uncertainty of indices and flows. In the context of climate 555 

changes, which are expected to have a large impact on biological communities, and therefore 556 

their interactions and associated carbon flows (Hughes, 2000; Luczak et al., 2011), the LIM-557 

MCMC method could be used for sensitivity analysis, with constraints on specific biological 558 

compartments being modified according to climatic future projections. For example, after the 559 

construction of a LIM-MCMC, constraints on specific biological compartments can be easily 560 

forced by outputs from niche-based models (Raybaud et al., in revision) or biogeochemical 561 

models (Bopp et al., 2013) based on different climatic scenarios. Given the uncertainty of the 562 

LIM-MCMC constraints provided by such tools, a model based on fixed values would be 563 
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unsuitable for research using such forcing. The LIM-MCMC method is also a very 564 

appropriate tool to be used in this way to study human-induced impacts at an ecosystem level.  565 

  566 
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Table 1: Compartments of the LIM-MCMC of the Bay of Biscay continental shelf. Detail 572 

corresponds to the compartment species composition. Abbreviation is a three-letter code that 573 

is required to identify compartments in the LIM-MCMC approach. 574 

Compartments Detail 
Abbreviation 

and code 

Marine mammals 

5 main species: the short-beaked common dolphin Delphinus 

delphis, the striped dolphin Stenella coeruleoalba, the bottlenose 

dolphin Tursiops truncatus, the long-finned pilot whale 

Globicephala melas, and the harbor porpoise Phocoena phocoena 

mma; 1 

Seabirds mainly gulls, kittiwakes, gannets, and auks sbr; 2 

Cephalopods 

the broadtail short-finned squid Illex coindetii, the European flying 

squid Todarodes sagittatus, 4 Loliginidae squid species , the 

horned octopus Eledone cirrhosa, the common octopus O. 
vulgaris, and species of the Sepiidae family 

cep; 3 

Pelagic piscivores 

main species including the Atlantic mackerel Scomber scombrus, 
and the horse mackerel Trachurus trachurus and tunas (albacore 

tuna Thunnus alalunga and bluefin tuna T. thynnus) 

pps; 4 

Pelagic planktivores 

3 main species considered : the European anchovy Engraulis 

encrasicolus, the European sprat Sprattus sprattus and the 

European pilchard Sardina pilchardus 

ppl; 5 

Demersal piscivores 
42 species including the Conger eel Conger conger, the Whiting 

pout Trisopterus luscus, the lesser spotted dogfish Scyliorhinus 

canicula, and the European hake Merluccius merluccius 
dps; 6 

Demersal benthivores 

group of 32 species including benthivorous and suprabenthivorous 

species such as the common sole Solea solea and the blue whiting 

Micromesistius poutassou 

dbn; 7 

Carnivorous/necropha-

geous invertebrates 

isopods (necrophageous), polychaetes, and crustacean decapods 

such as the Norwegian lobster Nephrops norvegicus (carnivorous) 
cbi; 8 

Benthic deposit feeders polychaetes, sea urchins, and sea cucumbers dep; 9 

Benthic suspension feeders mainly crustaceans and bivalves sus; 10 

Meiofauna largely dominated by nematodes mef; 11 

Macrozooplankton 
mainly composed of decapods and jelly plankton (tunicates, 

cnidarians) 
maz; 12 

Mesozooplankton mostly of metazoans with copepods predominating mez; 13 

Microzooplankton protozoans <200 μm, mostly ciliates and heterotrophic flagellates miz; 14 

Phytoplankton 
total chlorophyll a and phytoplankton production by in situ 14C 

method 
phy; 15 

Detritus 
particulate matter (including allochtonous material, feces, 

sedimenting matter, discards) 
det; 16 
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Bacteria benthic and pelagic bacteria bac; 17 

DOC Dissolved Organic Carbon doc; 18 
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Table 2: Aggregation differences between the Ecopath model of the Bay of Biscay continental 575 

shelf (Lassalle et al., 2011) and the LIM-MCMC for the same area. The compartment code for 576 

the LIM-MCMC was given with the species composition in Table 1. ‘DOC’ means dissolved 577 

organic carbon. 578 

 579 

  580 

Ecopath groups 

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

X 18: new group of DOC

5: new group of 

pelagic piscivorous

14

15

16

16

17

17

9

9 and 10

11

10

12

13

6

6

7

7

8

8

3 and 4

4

4

6

Discards

Detritus

Pelagic cephalopods

1

2

2

2

2

2

3

Mackerel

Horse mackerel

Anchovy

Sardine

Sprat

Bacteria

X

Macrozooplankton

Mesozooplankton

Microzooplankton

Large phytoplankton

Small phytoplankton

Carnivorous benthic invertebrates

Necrophagous benthic invertebrates

Sub-surface deposit feeders invertebrates

Surface suspension and deposit feeders inv.

Benthic meiofauna

Suprabenthic invertebrates

Benthic cephalopods

Harbour porpoises

Piscivorous demersal fish

Piscivorous and benthivorous demersal fish

Suprabenthivorous demersal fish

Benthivorous demersal fish

Pursuit divers seabirds 1

Ecopath compartments
LIM groups 

aggregation

Surface feeders seabirds

Striped dolphins

Bottlenose dolphins

Common dolphins

Long-finned pilot whales
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Table 3: Comparison of respiration flows estimated by the LIM-MCMC and the Ecopath 581 

model (Lassalle et al., 2011) of the Bay of Biscay continental shelf. Flow names in the LIM-582 

MCMC were composed of the three-letter code of the compartment of origin followed by the 583 

three-letter code of the destination compartment. Mean corresponds to the mean flow value 584 

calculated from the one million simulations. Standard deviations, minimum and maximum 585 

estimates are also presented. Flows were in kgC.km-2.y-1.‘*’ indicated when the Ecopath 586 

estimate was comprised between the maximum and minimum LIM-MCMC estimates. The 587 

values of the respiration flows estimated by the LIM-MCMC with no direct comparison 588 

possible to Ecopath (due to aggregation bias) were in grey. 589 

 590 

  LIM-MCMC Ecopath  

Respiration flows Name Mean 
Standard 

deviation 

Minimal 

estimate 

Maximal 

estimate 

Ecopath 

estimate 
Overlap 

marine mammals mmaTOres 30.51 23.10 0.00 214.92 87.95 * 
seabirds sbrTOres 533.44 189.58 100.84 1521.96 16.42   

cephalopods cepTOres 82.76 57.61 0.00 425.96 29.61 * 
pelagic piscivores ppsTOres 168.45 168.43 55.00 43.08 - - 

pelagic planktivores pplTOres 2581.47 2563.21 534.93 967.85 318.38  
demersal piscivores dpsTOres 32.43 9.72 10.85 68.97 318.38   

demersal benthivores dbnTOres 146.48 32.01 25.60 216.56 1250.65   
carnivorous/necropha-

geous invertebrates 
cbiTOres 

285.73 185.02 0.00 1445.02 987.32 * 
benthic suspension 

feeders 
susTOres 

563.82 199.85 33.09 1799.30 - - 
benthic deposit feeders depTOres 441.02 176.74 26.84 1419.39 - - 

meiofauna mefTOres 5.78 . 104 2.61 . 104 1.76 . 104 1.15 . 105 2000.00   
macrozooplankton mazTOres 1.67 . 104 7554.99 2670.34 4.32 . 104 1999.89   
mesozooplankton mezTOres 9279.10 2922.53 2043.44 2.46 . 104 2.22 . 104 * 
microzooplankton mizTOres 2.41 . 104 6662.49 8239.81 4.90 . 104 1.29 . 105   

phytoplankton phyTOres 3.44 . 104 2.63 . 104 9523.87 9.70 . 104 - - 
bacteria bacTOres 6.17 . 104 1.93 . 104 1.89 . 104 1.04 . 105 1.94 . 104 * 

 591 

  592 
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 593 

Table 4: System Omnivory Index (SOI) and Connectance Index (CI) estimated from the two 594 

modeling methods. 595 

 596 

 LIM - MCMC Ecopath model 

SOI 0.19 ± 0.03 0.21 

CI 0.32 0.21 

  597 
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Figure captions 598 

 599 

Figure 1: Study area of the Bay of Biscay continental shelf and locations of the main rivers 600 

flowing into it. The shaded area corresponds to the French part of the continental shelf 601 

(between 30- and 150-m isobaths), and represents the spatial extent of the LIM-MCMC. 602 

 603 

Figure 2: A. Distribution of the flow values estimated by the LIM-MCMC of the Bay of 604 

Biscay continental shelf, with associated standard deviations computed on one million values 605 

per flow. B. Five highest flow estimates. See Table S1 in Supplementary Material 1 for a full 606 

description of flows and numerical code. ‘det’ is an abbreviation for particulate detritus, and 607 

‘doc’ for dissolved organic carbon . 608 

 609 

Figure 3: Input flows distribution for compartments in common between the two modeling 610 

approaches. Black dots are the mean compartment throughputs estimated from one million 611 

simulations of the LIM-MCMC. Minimum and maximum estimates are also shown. Red 612 

triangles were the nominal values obtained from the Ecopath model. See Table 1 for 613 

compartment abbreviations and Table S1 for information relative to flow estimates.  614 

 615 

Figure 4: Estimates of Total System Throughput (T..), internal relative Ascendency (Ai/Ci), 616 

Finn’s Cycling Index (FCI), Detritivory on Herbivory ratio (D/H) by the two modeling 617 

approaches. Black dots were the mean ENA values estimated from one million simulations of 618 

the LIM-MCMC. Standard deviations are also shown. Blue and orange dots were minimum 619 

and maximum estimates respectively. Red triangles were the nominal values obtained from 620 

the Ecopath model.   621 
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Supplementary material:  633 

Table S1: List of all flows (kgC.km-2.y-1) considered in the LIM-MCMC of the Bay of Biscay 634 

continental shelf. Flow names are composed of the three-letter code of the compartment of 635 

origin followed by the three-letter code of the destination compartment. Mean corresponds to 636 

the mean flow value calculated from the 1 million simulations. The mean value is given with 637 

its standard deviation. 638 

Flow description Abreviation 
Flow 

number 
Mean 

Standard 

deviation 

Gross phytoplankton production gppTOphy 1 2.41 . 105 47168.65 

Production of detritus by phytoplankton phyTOdet 2 1.10 . 105 23059.88 

Phytoplankton exudation phyTOdoc 3 2.39 . 104 8572.46 

Grazing of phytoplankton by macrozooplankton phyTOmaz 4 1.47 . 104 4430.58 

Grazing of phytoplankton by mesozooplankton phyTOmez 5 8118.38 2204.63 

Grazing of phytoplankton by microzooplankton phyTOmiz 6 4.01 . 104 10057.47 

Grazing of phytoplankton by meiofauna phyTOmef 7 8567.72 6236.27 

Grazing of phytoplankton by benthic deposit feeders phyTOdep 8 556.91 277.23 

Consumption of phytoplankton by benthic 

suspension feeders 
phyTOsus 9 408.08 276.39 

Consumption of phytoplankton by pelagic 

planktivores 
phyTOppl 10 107.71 58.00 

Production of detritus by microzooplankton mizTOdet 11 1.79 . 104 8034.80 

Excretion of doc by microzooplankton mizTOdoc 12 1.32 . 104 5266.06 

Grazing of microzooplankton by macrozooplankton mizTOmaz 13 6441.45 2876.43 

Grazing of microzooplankton by mesozooplankton mizTOmez 14 1.59. 104 3444.81 

Consumption of microzooplankton by suspension 

feeders 
mizTOsus 15 358.71 334.80 

Consumption of microzooplankton by pelagic 

planktivores 
mizTOppl 16 88.26 47.59 

Consumption of microzooplankton by pelagic 

piscivores 
mizTOpps 17 17.66 6.39 

Production of detritus by mesozooplankton mezTOdet 18 6253.57 2658.35 

Excretion of doc by mesozooplankton mezTOdoc 19 4813.35 1671.46 

Grazing of mesozooplankton by macrozooplankton mezTOmaz 20 6061.94 1547.82 
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Consumption of mesozooplankton by suspension 

feeders 
mezTOsus 21 474.90 417.92 

Consumption of mesozooplankton by 

carnivorous/necrophageous invertebrates 
mezTOcbi 22 72.51 19.62 

Consumption of mesozooplankton by demersal 

benthivores 
mezTOdbn 23 76.22 14.08 

Consumption of mesozooplankton by pelagic 

planktivores 
mezTOppl 24 787.22 398.29 

Consumption of mesozooplankton by pelagic 

piscivores 
mezTOpps 25 353.09 55.14 

Consumption of mesozooplankton by cephalopods mezTOcep 26 5.73 2.36 

Consumption of macrozooplankton by 

carnivorous/necrophageous invertebrates 
mazTOcbi 27 40.68 11.06 

Consumption of macrozooplankton by cephalopods mazTOcep 28 26.51 16.75 

Consumption of macrozooplankton by demersal 

benthivores 
mazTOdbn 29 38.42 9.69 

Production of detritus by macrozooplankton mazTOdet 30 1.25 . 104 6742.81 

Consumption of macrozooplankton by marine 

mammals 
mazTOmma 31 2.00 1.51 

Consumption of macrozooplankton by pelagic 

planktivores 
mazTOppl 32 3306.36 540.39 

Consumption of macrozooplankton by seabirds mazTOsbr 33 113.02 70.78 

Consumption of meiofauna by 

carnivorous/necrophageous invertebrates 
mefTOcbi 34 131.52 34.74 

Consumption of meiofauna by benthic deposit 

feeders 
mefTOdep 35 107.30 98.00 

Production of detritus by meiofauna mefTOdet 36 3.05 . 104 15458.82 

Consumption of benthic deposit feeders by 

carnivorous/necrophageous invertebrates 
depTOcbi 37 165.40 83.67 

Consumption of benthic deposit feeders by 

cephalopods 
depTOcep 38 29.87 24.28 

Consumption of benthic deposit feeders by demersal 

benthivores 
depTOdbn 39 33.87 21.98 

Consumption of benthic deposit feeders by demersal 

piscivores 
depTOdps 40 11.98 7.52 

Production of detritus by benthic deposit feeders depTOdet 41 746.02 341.29 

Consumption of benthic suspension feeders by 

carnivorous/necrophageous invertebrates 
susTOcbi 42 218.55 91.28 
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Consumption of benthic suspension feeders by 

cephalopods 
susTOcep 43 30.43 24.80 

Consumption of benthic suspension feeders by 

demersal benthivores 
susTOdbn 44 34.39 22.15 

Consumption of benthic suspension feeders by 

demersal piscivores 
susTOdps 45 12.05 7.54 

Production of detritus by benthic suspension feeders susTOdet 46 990.00 406.04 

Consumption of carnivorous/necrophageous 

invertebrates by cephalopods 
cbiTOcep 47 26.93 14.69 

Consumption of carnivorous/necrophageous 

invertebrates by demersal benthivores 
cbiTOdbn 48 57.93 14.06 

Consumption of carnivorous/necrophageous 

invertebrates by demersal piscivores 
cbiTOdps 49 24.83 5.54 

Production of detritus by carnivorous/necrophageous 

invertebrates 
cbiTOdet 50 287.92 185.25 

Consumption of carnivorous/necrophageous 

invertebrates by pelagic piscivores 
cbiTOpps 51 7.98 2.22 

Consumption of demersal benthivores by 

carnivorous/necrophageous invertebrates 
dbnTOcbi 52 2.58 0.51 

Consumption of demersal benthivores by 

cephalopods 
dbnTOcep 53 0.17 0.17 

Production of detritus by demersal benthivores dbnTOdet 54 74.35 29.35 

Consumption of demersal benthivores by demersal 

piscivores 
dbnTOdps 55 5.11 0.48 

Consumption of demersal benthivores by pelagic 

piscivores 
dbnTOpps 56 2.51 0.38 

Consumption of demersal benthivores by marine 

mammals 
dbnTOmma 57 0.17 0.17 

Consumption of demersal benthivores by seabirds dbnTOsbr 58 0.15 0.14 

Production of detritus by demersal piscivores dpsTOdet 59 23.63 9.41 

Consumption of demersal piscivores by cephalopods dpsTOcep 60 6.88 1.85 

Consumption of demersal piscivores by marine 

mammals 
dpsTOmma 61 4.21 1.69 

Consumption of pelagic planktivores by 

cephalopods 
pplTOcep 62 34.51 14.30 

Production of detritus by pelagic planktivores pplTOdet 63 1272.92 504.55 

Consumption of pelagic planktivores by demersal 

piscivores 
pplTOdps 64 22.09 6.55 
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Consumption of pelagic planktivores by marine 

mammals 
pplTOmma 65 35.67 18.90 

Consumption of pelagic planktivores by pelagic 

piscivores 
pplTOpps 66 9.39 3.48 

Consumption of pelagic planktivores by seabirds pplTOsbr 67 328.27 32.09 

Consumption of pelagic piscivores by cephalopods ppsTOcep 68 33.90 10.09 

Production of detritus by pelagic piscivores ppsTOdet 69 118.25 49.58 

Consumption of pelagic piscivores by marine 

mammals 
ppsTOmma 70 8.88 6.10 

Consumption of pelagic piscivores by seabirds CppsTOsbr 71 33.50 12.97 

Consumption of cephalopods by 

carnivorous/necrophageous invertebrates 
cepTOcbi 72 6.22 1.68 

Consumption of cephalopods by demersal 

benthivores 
cepTOdbn 73 2.87 1.31 

Production of detritus by cephalopods cepTOdet 74 83.05 57.70 

Consumption of cephalopods by demersal piscivores cepTOdps 75 1.18 0.30 

Consumption of cephalopods by marine mammals cepTOmma 76 10.14 7.31 

Consumption of cephalopods by pelagic piscivores cepTOpps 77 3.33 1.37 

Production of detritus by seabirds sbrTOdet 78 258.16 102.64 

Production of detritus by marine mammals mmaTOdet 79 30.56 23.16 

Production of doc by bacteria bacTOdoc 80 3.75 . 104 13318.44 

Consumption of bacteria by benthic deposit feeders bacTOdep 81 357.12 326.60 

Consumption of bacteria by benthic suspension 

feeders 
bacTOsus 82 336.28 313.82 

Consumption of bacteria by meiofauna bacTOmef 83 2.97 . 104 12463.49 

Consumption of bacteria by macrozooplankton bacTOmaz 84 2984.05 2682.27 

Consumption of bacteria by microzooplankton bacTOmiz 85 1.03 . 104 2712.86 

Detritus consumption by bateria detTObac 86 3.85 . 104 15847.09 

Detritus consumption by deposit feeders detTOdep 87 406.83 211.00 

Detritus consumption by suspension feeders detTOsus 88 271.68 192.76 

Detritus dissolution detTOdoc 89 2.50 . 104 20519.47 

Detritus consumption by meiofauna detTOmef 90 5.03 . 104 35910.84 

Detritus consumption by macrozooplankton detTOmaz 91 2505.62 2269.69 

Detritus consumption by mesozooplankton detTOmez 92 4119.58 1079.91 
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Detritus consumption by microzooplankton detTOmiz 93 2.77 . 104 6982.95 

Detritus consumption by carnivorous/necrophageous 

invertebrates 
detTOcbi 94 57.48 35.70 

Detritus consumption by demersal benthivores detTOdbn 95 4.08 1.61 

Detritus consumption by demersal piscivores detTOdps 96 1.58 0.40 

Detritus consumption by seabirds detTOsbr 97 316.66 173.96 

Doc consumption by bacteria docTObac 98 1.04 . 105 35129.15 

Respiration by phytoplankton phyTOres 99 3.44 . 104 26328.44 

Respiration by microzooplankton mizTOres 100 2.41 . 104 6662.49 

Respiration by mesozooplankton mezTOres 101 9279.10 2922.53 

Respiration by macrozooplankton mazTOres 102 1.67 . 104 7554.99 

Respiration by meiofauna mefTOres 103 5.78 . 104 26096.67 

Respiration by benthic deposit feeders depTOres 104 441.02 176.74 

Respiration by benthic suspension feeders susTOres 105 563.82 199.85 

Respiration by carnivorous/necrophageous 

invertebrates 
cbiTOres 106 285.73 185.02 

Respiration by demersal benthivores dbnTOres 107 146.48 32.01 

Respiration by demersal piscivores dpsTOres 108 32.43 9.72 

Respiration by pelagic planktivores pplTOres 109 2563.21 534.93 

Respiration by pelagic piscivores ppsTOres 110 168.43 55.00 

Respiration by cephalopods cepTOres 111 82.76 57.61 

Respiration by seabirds sbrTOres 112 533.44 189.58 

Respiration by marine mammals mmaTOres 113 30.51 23.10 

Respiration by bacteria bacTOres 114 6.17 . 104 19293.67 

Export of benthic deposit feeders depTOexp 115 0.02 0.01 

Export of benthic suspension feeders susTOexp 116 0.41 0.22 

Export of carnivorous/necrophageous invertebrates cbiTOexp 117 3.61 1.93 

Export of demersal benthivores dbnTOexp 118 16.27 0.14 

Export of demersal piscivores dpsTOexp 119 11.67 0.86 

Export of pelagic planktivores pplTOexp 120 23.50 4.04 

Export of pelagic piscivores ppsTOexp 121 31.01 9.89 

Export of cephalopods cepTOexp 122 5.37 1.64 

Import of detritus impTOdet 123 502.65 262.80 
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Export of detritus detTOexp 124 3.20 . 104 22556.17 

 639 

  640 



44 
 

Table S2: Mass-balance equation of the LIM-MCMC of the Bay of Biscay continental shelf. 641 

Flow names are composed of the three-letter code and number of the compartment of origin 642 

followed by the three-letter code of the destination compartment. 643 

 644 

Compartments (abbreviation ; number) Mass balances 

Marine mammals (mma ; 1) (mmaTOdet + mmaTOres) - (mazTOmma + dbnTOmma 

+ dpsTOmma + pplTOmma + ppsTOmma + 

cepTOmma) = 0 

Seabirds (sbr ; 2) (sbrTOdet + sbrTOres) - (detTOsbr + mazTOsbr + 

dbnTOsbr + pplTOsbr + ppsTOsbr) = 0 

Cephalopods (cep ; 3) (cepTOcbi + cepTOdbn + cepTOdps + cepTOpps + 

cepTOmma + cepTOdet + cepTOres + cepTOexp) - 

(mezTOcep + mazTOcep + susTOcep + depTOcep + 

cbiTOcep + dbnTOcep + dpsTOcep + pplTOcep + 

ppsTOcep) = 0 

Pelagic piscivores (pps ; 4) (ppsTOcep + ppsTOsbr + ppsTOmma + ppsTOdet + 

ppsTOres + ppsTOexp) - (mizTOpps + mezTOpps + 

cbiTOpps + dbnTOpps + cepTOpps + pplTOpps) = 0 

Pelagic planktivores (ppl ; 5) (pplTOpps + pplTOdps + pplTOcep + pplTOsbr + 

pplTOmma + pplTOdet + pplTOres + pplTOexp) – 

(phyTOppl + mizTOppl + mezTOppl + mazTOppl) = 0 

Demersal piscivores (dps ; 6) (dpsTOcep + dpsTOmma + dpsTOdet + dpsTOres + 

dpsTOexp) - (detTOdps + susTOdps + depTOdps + 

cbiTOdps + dbnTOdps + pplTOdps + cepTOdps) = 0 

Demersal benthivores (dbn ; 7) (dbnTOcbi + dbnTOdps + dbnTOpps + dbnTOcep + 

dbnTOsbr + dbnTOmma + dbnTOdet + dbnTOres + 

dbnTOexp) - (detTOdbn + mezTOdbn + mazTOdbn + 

susTOdbn + depTOdbn + cbiTOdbn + cepTOdbn) = 0 

Carnivorous/necrophageous  invertebrates 

(cbi ; 8) 

(cbiTOdbn + cbiTOdps + cbiTOpps + cbiTOcep + 

cbiTOdet + cbiTOres + cbiTOexp) - (detTOcbi + 

mezTOcbi + mazTOcbi + mefTOcbi + susTOcbi + 

depTOcbi + dbnTOcbi + cepTOcbi) = 0 

Benthic deposit feeders (dep ; 9) (depTOcbi + depTOdbn + depTOdps + depTOcep + 

depTOdet + depTOres + depTOexp) - (phyTOdep + 

detTOdep + bacTOsus + mefTOdep) = 0 

Benthic suspension feeders (sus ; 10) (susTOcbi + susTOdbn + susTOdps + susTOcep + 

susTOdet + susTOres + susTOexp) - (phyTOsus + 

mizTOsus + mezTOsus + detTOsus + bacTOsus) = 0 

Meiofauna (mef ; 11) (mefTOcbi + mefTOdep + mefTOdet + mefTOres) - 

(phyTOmef + detTOmef + bacTOmef) = 0 

Macrozooplankton (maz ; 12) (mazTOcbi + mazTOdbn + mazTOppl + mazTOcep + 

mazTOsbr + mazTOmma + mazTOdet + mazTOres) - 

(phyTOmaz + detTOmaz + bacTOmaz + mizTOmaz + 

mezTOmaz) = 0 

Mesozooplankton (mez ; 13) (mezTOdet + mezTOdoc + mezTOmaz + mezTOsus + 

mezTOcbi + mezTOdbn + mezTOppl + mezTOpps + 
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mezTOcep + mizTOres) - (phyTOmez + detTOmez + 

mizTOmez) = 0 

Microzooplankton (miz ; 14) (mizTOdet + mizTOdoc + mizTOmez + mizTOmaz + 

mizTOsus + mizTOppl + mizTOpps + mizTOres) - 

(phyTOmiz + detTOmiz + bacTOmiz) = 0 

Bacteria (bac ; 15) (bacTOmiz + bacTOmaz + bacTOmef + bacTOsus + 

bacTOdep + bacTOdoc + bacTOres) - (detTObac + 

docTObac) = 0 

Phytoplankton (phy ; 16) (phyTOdet + phyTOdoc + phyTOmiz + phyTOmez + 

phyTOmaz + phyTOmef + phyTOdep + phyTOsus + 

phyTOppl + phyTOres) – (gppTOphy) = 0 

Detritus (det ; 17) (detTOmiz + detTOmez + detTOmaz + detTOmef + 

detTOsus + detTOdep + detTOcbi + detTOdbn + 

detTOdps + detTOsbr + detTObac + detTOdoc + 

detTOexp) - (impTOdet + phyTOdet + mizTOdet + 

mezTOdet + mazTOdet + mefTOdet + susTOdet + 

depTOdet + cbiTOdet + dbnTOdet + dpsTOdet + 

pplTOdet + ppsTOdet + cepTOdet + sbrTOdet + 

mmaTOdet) = 0 

Dissolved Organic Carbon (doc ; 18) (docTObac) - (phyTOdoc + mizTOdoc + mezTOdoc + 

bacTOdoc + detTOdoc) = 0 

  645 
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Table S3: Constraints description, with ‘GPP’ for gross primary production, ‘R’ for 646 

respiration, ‘Ex’ for excretion, ‘Det’ for the loss to the detritus, ‘Ing’ for the total ingestion 647 

(sum of all consumptions), and ‘NPP’ for net primary production. 648 

Respiration Lower limit Upper limit References 

Bacteria 
50 % of doc ingestion by 

bacteria 

75 % of doc ingestion by 

bacteria  
Vézina and Savenkoff, 1999 

        

Phytoplankton 5 % of GPP 30 % of GPP Vézina and Platt, 1988 

        

Microzooplankton 20 % of ingestion R + Ex + Det < 0.75 • Ing 
Vézina and Savenkoff, 1999;  

Breed et al., 2004  

 

        

Mesozooplankton 20 % of ingestion R + Ex + Det < 0.75 • Ing Breed et al., 2004 

        

Macrozooplankton 20 % of ingestion N.A. Vézina and Savenkoff, 1999 

        

Meiofauna N.A. -0.5 • Ing + 0.5 • Loss to det van Oevelen et al., 2006 

        

Suspension feeders 0.7 • (Ing - Loss to det) -0.3 • Ing + 0.3 • Loss to det van Oevelen et al., 2006 

        

Deposit feeders 0.7 • (Ing - Loss to det) -0.3 • Ing + 0.3 x Loss to det van Oevelen et al., 2006 

Excretion 
   

Phytoplankton 10 % of NPP ; 5 % of GPP 30 % of NPP ; 50 % of GPP 
Vézina and Platt, 1988; 

Vézina and Savenkoff, 1999 

 

        

Microzooplankton 
10 % of ingestion ; 

 33 % of respiration 
100 % of respiration Vézina and Platt, 1988 

        

Mesozooplankton 10 % of ingestion 100 % of respiration Vézina and Platt, 1988 
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Assimilation efficiency 
   

Microzooplankton AE = 50 %; 0.5 • Ing AE = 90 % ; 0.1 • Ing Vézina and Platt, 1988 

        

Mesozooplankton AE = 50 %; 0.5 • Ing AE = 90 % ; 0.1 • Ing Vézina and Platt, 1988 

        

Suspension feeders AE = 57 %; 0.43 • Ing AE = 77 %; 0.23 • Ing van Oevelen et al., 2006 

        

Deposit feeders AE = 40 %; 0,6 • Ing AE = 75 % ; 0,25 • Ing van Oevelen et al., 2006 

        

Carnivorous/ 

necrophageous inverteb. 
AE = 40 %; 0,6 • Ing AE = 75 % ; 0,25 • Ing van Oevelen et al., 2006 

        

Demersal benthivores AE = 50 %; 0.5 • Ing AE = 90 % ; 0.1 • Ing Leguerrier et al., 2004 

        

Demersal piscivores AE = 50 %; 0.5 • Ing AE = 90 % ; 0.1 • Ing Leguerrier et al., 2004 

        

Pelagic planktivores AE = 50 %; 0.5 • Ing AE = 90 % ; 0.1 • Ing Leguerrier et al., 2004 

        

Pelagic piscivores AE = 50 %; 0.5 • Ing AE = 90 % ; 0.1 • Ing Leguerrier et al., 2004 

        

Seabirds 
AE = 0.43 (herb. birds) ;               

0.56 • Ing 

AE = 0.8 (carn. birds);              

0.2 • Ing 
Scheiffart and Nehls, 1997 

Growth efficiency 
   

Mesozooplankton GE = 0.50 GE = 0.75 Christensen and Pauly, 1992 

        

Macrozooplankton GE = 0.7 GE = 0.9 Christensen and Pauly, 1992 
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Suspension feeders GE = 0.7 GE = 0.91 Christensen and Pauly, 1992 

        

Deposit feeders GE = 0.7 GE = 0.91 Christensen and Pauly, 1992 

        

Carnivorous/ 

necrophageous inverteb. 
GE = 0.70 GE = 0.90 Winberg, 1956 

        

Demersal benthivores GE = 0.70 GE = 0.90 Winberg, 1956 

        

Demersal piscivores GE = 0.70 GE = 0.90 Winberg, 1956 

        

Pelagic planktivores GE = 0.70 GE = 0.90 Winberg, 1956 

        

Pelagic piscivores GE = 0.70 GE = 0.90 Winberg, 1956 
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