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Abstract

Among measurement used in analytical chemistry, fluorescence spectroscopy is widely spread
and its applications are numerous. To recover various information on unknown components
in chemical mixtures, multilinear tensor decomposition of multiway fluorescence spectra have
proven extremely powerful. However, inner filter e↵ects induce a systematic error on measure-
ments, disturbing the decomposition. In this paper, we fully describe a non multilinear approach
to include inner filter e↵ects in the model instead of neglecting them or correcting them by lin-
earization methods. A theoretical framework on non multilinear tensor decomposition is devel-
oped, an algorithm to recover the factors in the decomposition is detailed, and real data computer
results are reported.

Keywords: Fluorescence spectroscopy, Tensor decomposition, Inner filter e↵ects, Identification

Acknowledgement

This work has been funded by the European Research Council under the European Commu-
nity’s Seventh Framework Programme FP7/2007-2013 Grant Agreement no.320594, “Decoda”
project.

1. Introduction

Fluorescence spectroscopy is a non invasive method for identifying components and de-
termining their relative contribution in samples. Measurements consist of the response of the
studied solution to a monochromatic source, repeated for multiple excitation wavelengths and
recorded at multiple emission wavelengths [1]. The data is then stored in a Fluorescence Emis-
sion Excitation Matrix (FEEM). Because fluorescent chemical component (fluorofore) can be
identified given its excitation and emission spectra, analyzing fluorescence data is typically a
blind source separation problem, where the sources are the unknown fluorophores, and the ob-
servations are the mixing of their spectrum stored in the FEEM.
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During the last decade, the Canonical Polyadic decomposition (CPD) [2] of tensors (seen
as multiway arrays) , also known in the community as CANonical DECOMPosition (CANDE-
COMP) [3] or PARAllel FACtor analysis (PARAFAC) [4], has proven very e�cient at solving
this blind source separation problem [5]. The core idea behind tensor decomposition is that us-
ing only one FEEM and without any other a priori knowledge, it is theoretically and practically
impossible to recover the components linearly because usually their contribution to the FEEM
overlap. However, using multiple FEEM from di↵erent samples provides a third diversity: the
fluorophore concentration profile through the sample set and hence a 3-way data tensor. This
ensures that information can be obtained on each component individually. A sampling campaign
is then an easy way to get a tensor whose decomposition reveals the di↵erent components in
the mixture. This approach is now currently used in analytical chemistry [6] or environmental
sciences, in particular for Dissolved Organic Matter (DOM) tracing and characterization purpose
[7, 8]. However there is a fundamental problem using the CPD to separate sources in fluores-
cence spectroscopy. Indeed it is well known that the suitability of the linear fluorescence model
for describing a FEEM decreases with the solution absorbency [1]. Hence, in many practical
situations, the gradual absorption by the solution of both exciting and fluorescent lights cannot
be neglected. These e↵ects are known as Inner Filter E↵ects (IFE) [9, 10]. IFE a↵ect both FEEM
magnitude and patterns and are still noticeable at quite low concentrations, since the absorbency
can still be very high. For instance, this is the case for protein at low excitation wavelengths.

Most IFE correction methods consist of deducing the linear contribution from the measured
FEEM, which is then called the linearized FEEM. The non linear contribution directly depends
on the solution absorbance spectrum. Therefore a first linearization may be achieved by strongly
diluting the solution until reaching a maximal absorbance threshold [11]. However the procedure
can be very tedious and can lead to contamination or physico-chemical changes, thus modify-
ing the fluorescence properties of the sample. The most common alternative is to measure the
absorbance spectrum of the solution and then deduce the non linear contribution and finally
linearize the FEEM [12, 13]. However absorbance measurement is much less sensitive than flu-
orescence measurement and can lead to poor results [14]. In addition, it often requires another
experimental device. In order to avoid these complications, more sophisticated correction meth-
ods that require neither a strong dilution of the solution nor the absorbance spectrum knowledge
have been recently proposed in [14] and [15].

In other words, to perform the three-way decomposition of a set of FEEM suspected to be
a↵ected by IFE, FEEM are linearized independently, one after an other. Then a tensor gathering
the linearized FEEM is built and the CPD can be computed to identify individual spectra and
concentration profiles. Thereby these approaches do not directly exploit the tensorial structure of
the initial data set. In addition these methods require additional measurements for each solution
in order to linearize the corresponding FEEM, which is time consuming and not always possible.

We show in this contribution that such a fluorescent tensor can be directly decomposed with-
out any linearization step, and we give a complete analysis of all aspects of the resolution of the
inverse problem. Following the non-linear model including inner filter e↵ects [14], some math-
ematical aspects are explored, focusing on local identifiability in Section 2.3. The optimization
problem and an e�cient algorithm are then described in Section 3. Finally, in Sections 4 and 5
we study its assets on two real data sets.
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2. A Non Linear Fluorescence Tensor Decomposition

2.1. Modeling inner filter e↵ect
We consider here a set of K FEEM measured from K mixtures of R fluorophores.
Each fluorophore r can be characterized by the evolution of its concentration throughout

the mixture set (its concentration profile), the evolution of its molar extinction coe�cient wrt
(the excitation) wavelength and the evolution of its light emission probability as a function of
(the emission) wavelength. In the following these values are denoted by vector ar and functions
b̃r(�ex) and c̃r(�em) respectively. Note that any function of the form ↵b̃r(�ex) defines the excitation
spectrum of r and any function of the form �c̃r(�em) defines its emission spectrum in arbitrary
units. Let xk(�ex, �em) be the fluorescence intensity measured from a given mixture (sample)
k at a given couple (�ex, �em) of excitation and emission wavelengths. A classical continuous
fluorescence model, taking into account IFE is then given by the following non linear relationship
[14]:

xk(�ex, �em) =
RX

r=1

(ar)kb̃r(�ex)c̃r(�em)⌫r
RY

r=1

e�µ[(ar)k(b̃r(�ex)+b̃r(�em))] + ek(�ex, �em), (1)

where (ar)k denote the kth entry of ar, ⌫r and µ are unknown values modeling non observable or
experimental parameters (such as fluorophore quantum yields, optical path length...) and e is an
error term. Indeed, we have to recall here that although it takes into account IFE, this model is
still an approximation of the (noisy) fluorescence measurement [16, 14]. Since excitation and
emission spectra are unnormalized, it is then interesting to define functions br(�ex) and cr(�em)
as

br(�) = µb̃r(�), (2)

cr(�em) =
⌫r
µ

c̃r(�em), (3)

yielding a simpler model:

xk(�ex, �em) =
RX

r=1

(ar)kbr(�ex)cr(�em)
RY

r=1

e�(ar)k(br(�ex)+br(�em)) + ek(�ex, �em). (4)

Now turning back to our set of FEEM, we respectively denote [�min
ex ; �max

ex ], �ex, [�min
em ; �max

em ]
and �em the excitation range, the excitation sampling step, the emission range and the emission
sampling step used to measure each FEEM. Excitation and emission range sizes are denoted L
and M respectively. We assume for the moment that excitation and emission sampling steps
are equal and that in the wavelength range [�min

em ; �max
ex ] all excitation wavelengths and emission

wavelengths coincide i.e. �ex = �em and �min
em coincides with a value of �ex. At this point this

assumption is fundamental but we will see in the algorithm description how it can be relaxed.
In practice, for numerical computations, excitation and emission wavelength ranges are sub-

stituted by two ranges of integer index : [1; L] and [1; M] respectively so that if we call X the
fluorescence tensor of size (K ⇥ L ⇥ M) that gathers these K FEEM we have:

Xklm = xk(�min
ex + (l � 1)�ex, �

min
em + (m � 1)�em). (5)
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In the same way, for each fluorophore r we can define discrete version of excitation and emission
spectra truncated in the considered excitation and emission ranges as vectors of size L and M
and denoted respectively br and cr, whose entries are defined by:

(br)l = br(�min
ex + (l � 1)�ex), (6)

(cr)m = cr(�min
em + (m � 1)�em). (7)

We also assume that �min
ex and �min

em can be di↵erent and we define the wavelength index shift s as:

s =
�min

em � �min
ex

�ex
+ 1. (8)

Note that according to the previous hypothesis, it appears clearly that s is a strictly positive
integer.

As a consequence, in order to develop a rigorous discrete version of the continuous non-linear
fluorescence model (4) we need to define a ”shifted” excitation b0r spectra of size M as:

(b0r)m = (br)m+s�1 if m  L � s + 1, (9)
(b0r)m = 0 if m > L � s + 1. (10)

(11)

Finally X can be decomposed as :

Xklm =

RX

r=1

Ak,rBl,rCm,r

RY

r=1

e�Ak,r(Bl,r+B0m,r) + Eklm, (12)

where A, B, B0 and C are matrices of size (K ⇥ R), (L ⇥ R), (M ⇥ R) and (M ⇥ R) respectively
so that column r of A (respectively B, B0 and C ) contains vector ar (respectively br, b0r and cr).
This decomposition is called the Non Linear Fluorescence Decomposition (NLFD) and matrices
A, B and C are the factor matrices of the decomposition (B0 being directly deduced from B).

From an algorithmic point of view, it will be useful to stack all the unknown parameters of
the decomposition, i.e. all entries of A, B and C in an unique parameter vector ✓:

✓ =

2

4
vec(A)
vec(B)
vec(C)

3

5 , (13)

where vec() is the operator that maps a matrix or a tensor to a column vector by stacking its
columns one below the other in a prescribed order1. In the following we define tensors GCPD(✓)
and GNLFD(✓) as

[GCPD(✓)]klm =

RX

r=1

Ak,rBl,rCm,r, (14)

[GNLFD(✓)]klm = [GCPD(✓)]klm

RY

r=1

e�Ak,r(Bl,r+B0m,r), (15)

1The exact definition of this reorganization is not important as long as it is known, bijective, and consistent with
subsequent operations.
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so that:

Xklm = [GNLFD(✓)]klm + Eklm (16)

= [GCPD(✓)]klm

RY

r=1

e�Ak,r(Bl,r+B0m,r) + Eklm. (17)

Therefore, if IFE can be neglected, then the argument of the exponential term ofGNLFD tends
to 0 and the fluorescence model becomes a classical truncated CPD of the fluorescence tensor.
As it as been briefly recalled in the introduction, standard approaches resort to additional mea-
surements to estimate GCPD(✓) (FEEM linearization step) and then deduce the factor matrices
from its CPD. The goal of the remainder is to give an insight on how to work directly on the
NLFD instead of the CPD of linearized FEEM.

2.2. Optimisation problem
Finding factors that best explain the fluorescence data is equivalent to solving a minimization

problem. Because equation (12) is parametric and the function GNLFD is smooth, we are able to
use descent algorithms. However, CP decomposition is still known to be a di�cult non-convex
optimization problem, and as shown further, NLFD su↵ers from similar issues.
X is the RK⇥L⇥M tensor containing the fluorescence data. The objective function S (✓) is

defined (up to a multiplicative constant) as the squared Euclidian norm between identical vec-
torizations of X and GNLFD. It also corresponds (up to another multiplicative constant) to the
likelihood in the presence of Gausian noise. Because of the physical meaning factors bear, they
cannot be negative and this constraint can be included in the problem statement. Thus the con-
strained optimization problem is to find ✓0 such that :

8
<

:
✓0 = argmin S (✓) = argmin

1
2
||vec (GNLFD(✓) �X) ||22

✓ 2 RKLM
+

(18)

Solving (18) could seem to be an easy question at first glance because we have all the infor-
mation we need to build a simple descent algorithm. However, S is firstly not a convex function.
It contains numerous local minima, as a polynomial in ✓. Moreover, the set of all tensors ad-
mitting an exact CPD of rank R is not closed if ✓ 2 R, so it may not be closed also in the non
multilinear case. Actually, this means that we do not know whether a solution to the approxima-
tion problem (18) actually exists nor if it is unique.

The problem of existence of the best low-rank approximation has been recently addressed
in [17]. It has been shown therein that the set of nonnegative tensors of fixed rank is closed.
This means that the nonnegativity constraint ensures the existence of a best approximation of the
measurement tensor by low-rank nonnegative tensors. In other words, a global minimum to the
objective function always exists for the CPD. However, this does not hold true for NLFD, because
the multiplicative exponential term tends to zero when its arguments tend to infinity. Moreover, if
measurements are too noisy or if the model appears to be too far from the reality of the situation,
we might eventually end up with a local minimum instead of the best approximation, even if
it exists. Because we will use a descent algorithm, much attention will thus be paid to the
initialization of the algorithm.

Another issue is how to include positivity constraints in a suitable descent algorithm. Many
authors choose to add a barrier function to the objective function to ensure positivity [18] , others
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solve the dual problem. Parameterization is also an option [19]. Actually, a pertinent comparison
between all those solutions for tensor decomposition is yet to be done. Because initialization is
nonnegative and carefully computed in our setting, no positiveness constraints will be added in
the descent algorithm.

2.3. Identifiability of the non linear model
When building a parametric model for measurements, the most fundamental question to ask

is whether the parameters of the model can be inferred from the data or not. When they can be
uniquely recovered, the model is said to be identifiable. Identifiability can be understood here
as global uniqueness of a best fit of the noiseless data by the model for some parameter set.
In this section, local identifiability will be studied, that is, we wonder if around a set of given
parameters, the NLFD is well-defined and unique. Note that local identifiability is a weaker
property than the global identifiability, but the latter is much harder to check numerically. Most
of the time, in concrete applications, this identifiability question is eluded, and optimization
algorithms are run without any attention being paid to the credibility of their output. We will see
that local identifiability is hopefully almost always ensured in most practical cases, with a strong
restriction however in the matrix case where we have only one FEEM.

The local identifiability is a necessary condition for the model to be well-defined. In other
words, if the NLFD is identifiable, this does not mean that the approximation problem (18), or
even the exact decomposition problem, will admit a solution. Actually, in the approximation
problem, i.e. in the presence of noise, very little is known on the global uniqueness of the
best approximation [20]. However, results subsequently presented on local identifiability of the
NLFD hold for both the approximate and exact decompositions, as we simply try to fit a NLFD
on the data in both cases.

Concerning the existence of a solution of (18), finding the best low-rank approximation in
the NLFD model (15) is guaranteed to be well-posed only in the attraction basin of any (possibly
local) minimum and under conditions conjectured in subsection 2.4. In fact, in that case the
search is limited to a bounded set. Again, global uniqueness of the best low rank approximation
is a di�cult problem for the (multilinear) CPD [20], and it is by no means an easier problem in
the non multilinear case. Yet, local uniqueness can be studied by simple derivative tools without
taking into account the non-negativity of the tensor.

2.3.1. Matrix bilinear decomposition
Regarding tensor decomposition, the most prominent example of non uniqueness of the de-

composition is the matrix case. Take for example K = 1 in (14). The measurement tensor is then
simply a L ⇥ M matrix that we want to decompose in the following manner :

G(✓) =
RX

r=1

br ⌦ cr = BCT (19)

It is clear that for the same tensor (which is here a matrix) G, there exist an infinite number
of matrices B and C containing candidates factors br and cr. Indeed, let P be any orthogonal
matrix, so that PPT = I. Then G(✓) = BCT = (BP)(CP)T . Thus it is impossible to recover
the true factors ✓. To restore identifiability, an arbitrary constraint of orthogonality between
factors can be imposed, and leads to the well known singular value decomposition (SVD). But
this constraint may have no real physical meaning. CP decomposition for tensors of order higher
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than 2 is known to generally restore this identifiability without adding any constraint on the
factors. This is the main reason why it has been used extensively in fluorescence spectroscopy
[5].

2.3.2. Jacobian of the NLFD
The local identifiability of the NLFD can be checked at any fixed point by using the local

inversion theorem. Take any ✓ in the parameter space. If the Jacobian matrix of the model at this
point is full column rank, then the model is locally invertible. If the set of ✓ for which the NLFD
is not locally unique has zero volume in the parameters space, then we say that the NLFD model
is generically identifiable.

The link between the column rank of the Jacobian and the local uniqueness can be explicated
in many ways, and we give now a understandable rationale to address it. Let us use the gradient
g of the objective function S defined in (18) in the previous section:

g(✓) = J(✓)T e(✓) (20)

where J denotes the Jacobian matrix of the NLFD defined as Ji j =
@vec(GNLFD)i

@✓ j
(✓) , and

e(✓) = vec(GNLFD(✓) �X) (21)

is the error vector. Now suppose that J(✓) is not full column rank, which means that there
exist a non null tensor T so that J(✓)T vec(T ) = 0 for some ✓ minimizing S . Then this means
equivalently that we have several tensors cancelling the gradient because:

g(✓) = J(✓)T vec(GNLFD(✓) �X) = J(✓)T vec
�⇥
GNLFD(✓) + T

⇤
�X

�
.

In other words, for a non identifiable model, there are subspaces of the parameter space
mapped to the same point in the tensor space by the model, seen as a mapping from RR(K+L+M)

toRK ⌦RL⌦RM ⇠ RK⇥L⇥M . Further explanations can be found in [21, 22]. Notice that working
in R+ does not change this property as long as the zero border is not reached.

We have seen that the gradient of the objective function is related to the Jacobian (this holds
true in any least squares problem). Moreover, identifiability of the model is completely described
by it. Calculating the Jacobian is not a di�cult task, but it is tedious. We will thus refer to our
previous paper [21] for the full calculus and give the following compact expression using the
Kronecker product ⇥ :

J(✓) = H(JCP � µGJExp)(✓), (22)

where

8
>>>>>>>>>><

>>>>>>>>>>:

H = Diag

 

exp

"

�
RX

r=1

ar ⇥ (br ⇥ 1M + 1L ⇥ b0r)

#!

,

JCP = [a1 ⇥ b1 ⇥ IM | a1 ⇥ IL ⇥ c1 | IK ⇥ b1 ⇥ c1 | a2 ⇥ b2 ⇥ IM | . . . | IK ⇥ bR ⇥ cR] ,

G = Diag

 
RX

r=1

ar ⇥ br ⇥ cr

!

,

JExp =
⇥

0 |a1 ⇥ (IL ⇥ 1M + 1L ⇥ IM
0)|IK ⇥ (b1 ⇥ 1M + 1L ⇥ b01)| . . . |IK ⇥ (bR ⇥ 1M + 1L ⇥ b0R)

⇤
,
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where exp[.] is taken entry-wise. Moreover, the form taken by IM
0 in JExp depends on the shift

as follows : (
IM
0 = [0LM⇥s | IM | 0LM⇥(L�M�s)] if L � s > M,

IM
0 = [0LM⇥s | IM( : , 1 : (L � s))] if L � s  M.

Using linear algebra and numerical simulations, it is then possible to study the column rank
of the Jacobian at a general point ✓, or at least give strong conjectures on the identifiability of
the NLFD. Remember that all the following results deal with exact decompositions, the noiseless
identifiability being necessary but not su�cient to design a converging algorithm to solve (18).

2.4. Generic results on identifiability
All results above are true with overwhelming probability, i.e. for any tensor drawn randomly

in all possible tensors of given dimensions, which we call a generic tensor. This is needed both
to run simulations, and to build constructive proofs on the Jacobian column rank.

Firstly, it should be clear that the model su↵ers from a scaling indetermination between the
first two factors. This can be seen also on the KLM ⇥ R(K + L + M) Jacobian as pointed out in
[23], and leads to the following proposition :

Proposition 1. For a generic tensor T = GNLFD(✓) in R⇤+
K⇥L⇥M ,

rank(J(✓))  (K + L + M � 1)R.

We call R the critical value of NLFD rank defined by

R =
�

KLM
K + L + M � 1

⌫
(23)

where bxc defines the integer part of x.
This proposition means that the scaling ambiguity reduces the column rank of J by R. The

di↵erence with the CPD is noticeable (K + L + M � 1 instead of K + L + M � 2) since the norm
of the third factor in the NLFD is indeed fixed.

Even though the Jacobian cannot have full column rank, the scaling indeterminacy is in most
cases the only cause of column rank deficiency. The remainder of this section deals with cases
where the column rank of J is strictly lower than the critical value for which the column rank of
the Jacobian is full, up to the scaling problem. In other words, if R = R, and if R well-chosen
columns are deleted in J, the latter becomes full column rank.

We shall not take into account the shift in the remaining theoretical study for the sake of
simplicity, without loss of generality. Yet it will be included in the formula of the Jacobian for
the descent algorithm.

At this point, two main questions arise when studying identifiability of the NLFD. Q1. First,
does the non linearity restore the identifiability of the matrix case ? In other words, knowing that
the fluorescence data follows a non multilinear model due to the inner filter e↵ects, could we
use only one FEEM to recover uniquely the concentrations and spectra of the R components ?
Q2. Another issue is what are the dimensions of the measurement set and the corresponding
ranks of the exact CPD for which identifiability will not be met ? Also, can we find a boundary
on such dimensions, and is it restrictive for real life data ?
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Question Q1. As exposed earlier, CPD for matrices is not a well posed problem if orthogonality
constraints are not imposed on the factors. One could however hope that the non-linearity due
to inner filter e↵ects could restore the identifiability of the decomposition. The next proposition
proved in [21] shows that this is not the case.

Proposition 2. For the matrix case, i.e. with ar playing no role in the NLFD, the non linear
decomposition with rank R > 1 does not restore generic identifiability, i.e., the Jacobian is full
column rank only when R = 1.

Once again, this means that the NLFD cannot be applied to only one FEEM and that the ten-
sorial structure is needed, except for a rank one approximation (that is, with only one component
in the mixture), as the Jacobian column rank is full only when R = 1.

Question Q2. The other case of non-identifiability for the NLFD, more di�cult to apprehend,
happens when the rank of the measurement tensor is equal to the critical rank R, but the number
of unknown parameters is still larger than the number of free equations. This happens only when
one dimension is much larger than the two others, as precised in the conjecture below. In such
cases, the rank R of model (15) should be chosen such that R < R to ensure local uniqueness.
There exist no theoretical result for the non multilinear case, but we give an empirical bound on
the dimensions of the measurement tensor to ensure identifiability, obtained by simulations of
the Jacobian rank.

Conjecture 1. For a generic tensor T = GNLFD(✓) in R⇤+
K⇥L⇥M , if R = R, and M � (K � 1)(L �

1) + 3 or any permutation of this inequality is true, then the NLFD is generically not locally
identifiable and we say that the model is defective unbalanced.2 This does not hold for R < R.

Note that the value of the critical rank R grows very fast with the dimension of the measure-
ment tensor, so that the case R = R is highly unlikely to be encountered if the dimensions of the
tensor are not very small. If anyway R happens to be strictly larger than the critical rank, then
the model is still not identifiable because the Jacobian has more columns than rows (taking the
scaling indeterminacy into account), and therefore the column rank cannot be full.

To summarize the identifiability issue, necessary conditions for a data set to be decomposable
e�ciently using the NLFD model are two-fold: the measurement tensor must be at least of
order 3, and the number of components to be extracted must not be very large compared to the
dimensions of the tensor, which is absolutely not a problem with typical fluorescence inverse
problems. These conditions are necessary, because the optimization problem addressed in this
paragraph is noiseless, but we conjecture they are also su�cient in practice. In the next section,
an algorithm is described to solve the optimization problem at hand.

3. NLFD algorithm

3.1. Description of the optimization algorithm
The optimization problem (18) is constrained (cf. Section 2.2) and highly non-convex. It dif-

fers from the usual nonnegative CP decomposition problem because of the non-linearity induced

2The terminology defective unbalanced is already used in the literature for multilinear models [24].
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by the exponential term. However it is still smooth, and standard tensor decomposition routines
can be easily adapted here.

Many di↵erent algorithms exist to decompose tensors following a CPD model, but the two
main trends are alternating algorithms and all-at-once descent algorithms. Alternating algorithms
are the easiest to implement and give satisfying results. However, all-at-once algorithms are
known to prevent some of the problems encountered with alternating algorithms with similar
convergence speed and computation time. Because the gradient and the Jacobian can be obtained
easily from our previous study on identifiability, we adapted the Levenberg-Marquardt descent
method described in [25] to solve (18). This NLFD-LM algorithm is described in Algorithm 1.

Algorithm 1 The NLFD-LM algorithm
1: �=2; ⌘=2;
2: Initialize A,B and C from a fast CPD of X;
3: build ✓0 from this initial factor matrices
4: Compute e(✓0) = vec

�
GNLFD(✓0) �X

�
;

5: Compute J at ✓0;
6: Compute g = Jte(✓0)
7: flag = false;
8: i = 0;
9: while flag = false and i < imax do

10: Compute h = �(JtJ + �I)�1g;
11: Compute ✓ = ✓i + h;
12: Compute e(✓);
13: Compute S (✓) and S (✓i);
14: Compute S app = S (✓i) + htg + htJtJh/2;
15: Compute Q = S (✓i)�S (✓)

S (✓i)�S app
;

16: if Q > 0 (✓ is accepted and we decrease �) then
17: ✓i+1 = ✓ ;
18: Compute J at ✓i+1;
19: Compute g = Jte(✓)
20: � = � ⇤max(1/3, (1 � (2Q � 1)3));
21: ⌘ = 2;
22: Compute a stopping criterion and according to its value, set flag to true;
23: else
24: ✓i+1 = ✓i ;(✓ is rejected and we increase �)
25: � = �⌘;
26: ⌘ = 2⌘;
27: end if
28: i = i + 1;
29: end while

This second order gradient-based descent algorithm is known to perform well for the multi-
linear CPD problem, but it is rather demanding computationally when problem dimensions are
large. Yet, an alternating algorithm is unadapted here since each iteration would require to solve
a non-linear constrained problem. Also, recent compression methods [26] will not apply because
of the non-linearity of the NLFD. However, for very large data set, conjugate gradient algorithms
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may lead to faster computation.
Another issue is how to include nonnegativity constraints in a descent algorithm. This issue

has already been tackled in Section 2.2, and we will not dig into this problem here. In our
practical simulations on real data, the unconstrained version of the algorithm described here
worked well and no negative values were observed after convergence. Should this be the case, a
very simple approach is to use the absolute value of the factors at each iteration, or to set negative
values to zero.

The main di�culty with the Levenberg-Marquardt (LM) descent method is the choice of the
initial value for the estimated factors. In our preliminary tests we found that the NLFD-LM
algorithm was indeed very sensitive to the initial guess. However, the NLFD is close to CPD
numerically. For this reason, the initialization of the LM algorithm can be done e�ciently by
computing the CPD of the measurement tensor.

3.2. Handling non-uniform spectral sampling
The NLFD-LM algorithm described in the previous section assumes as a working hypothesis

that FEEM excitation and emission sampling steps and extremal values are chosen so that in the
wavelength range [�min

em ; �max
ex ] all excitation and emission wavelengths coincide i.e. �ex = �em

and �min
em coincides with a value of �ex. However, this is not always the case in practice. In

particular, it is quite common to have a greater sampling step for the excitation. As a consequence
we now introduce a generalized version of the algorithm that allows to relax this assumption. Our
working hypothesis now states that (i) �min

em coincides with a value of �ex and that (ii) �ex = ��em
with � an integer greater than or equal to 1. For instance, we can have the following discrete
excitation range: [280 : 20 : 500] and discrete emission range: [340 : 5 : 600] since here
� = 4 (20/5) and �min

em coincides with the fourth wavelength of the excitation range (340 nm).
The two latter properties are not mandatory for the algorithm to work, but they will be also
included in our working hypothesis since they are generally available and significantly simplify
the implementation.

In order to merge the two sampling grids, we resort to a linear interpolation of the excitation
spectra, which has shown to be broadly su�cient because they are usually very smooth. Let
b(�ex) be an excitation spectrum and �em an emission wavelength belonging to [�min

em ; �max
ex ] for

which we have to compute the value of b. Now, let �1
ex and �2

ex be the excitation wavelengths
included in the discrete excitation range and closest to �em, so that �1

ex < �em < �2
ex. For instance,

in the previous numerical example, for �em = 355nm we will have �1
ex = 340nm and �2

ex =
360nm. The idea is to approximate b(�em) as a function of b(�1

ex) and b(�2
ex). One can always

express �em as: �em = ↵�em�
1
ex+(1�↵�em )�2

ex with ↵�em =
�2

ex��em
�2

ex��1
ex

. Therefore a linear approximation
of b(�em) in [�1

ex; �2
ex] leads to:

b(�em) = ↵�em b(�1
ex) + (1 � ↵�em )b(�2

ex). (24)

Now, denoting b the sampled version of b with a step �ex = ��em and m the position of �em in
the emission sampling interval, according to our working hypothesis we have:

• �2
ex = �

1
ex + �ex,

• �em = (m � 1)�em + �min
em ,

• �min
em = (s � 1)�ex + �min

ex ,

11



• b(�1
ex) = bl1 ,

• b(�2
ex) = bl2

with: l1 = bm�1
� c + s and l2 = min(l1 + 1, L). We then immediately deduce the value of ↵m:

↵m = 1 + bm � 1
�
c � m � 1

�
. (25)

Finally the NLFD (12) is rewritten as:

• if m > (L � s)� + 1 then:

⇥
GNLFD(✓)

⇤
k,l,m = [GCPD(✓)]k,l,m

RY

r=1

eAk,r Bl,r . (26)

• Otherwise:

[GNLFD(✓)]k,l,m = [GCPD(✓)]klm

RY

r=1

eAk,r(Bl,r+↵m,r Bl1r+(1�↵m,r)Bl2r). (27)

One can easily verify that for � = 1 (26) and (27) are equivalent to (15). Of course, the
decomposition can still be performed using the NLFD-LM algorithm, only the expression of the
error vector e and of the Jacobian matrix have to be modified. The error vector is computed
easily by reporting (26) and (27) (instead of (15) in (21) and we show in Appendix A how to
compute the Jacobian matrix in this more general case (matlab codes are also provided).

4. Materials and methods

The proposed NLFD approach has been tested on two real data sets gathering mixtures of two
and three fluorophores respectively. Each data set was constituted and treated independently. All
2D spectra and FEEM were measured with a fluorometer Hitachi F4500 at the PROTEE lab-
oratory (university of Toulon). Fluorescence intensity was corrected from PM response using
manufacturer setting. Data for FEEM treatment were extracted by FLWinLab software. Refer-
ence excitation and emission spectra of the fluorophores were measured from diluted solutions
of each fluorophore. These 2D spectra were recorded at 240 nm/min scan speed by step of 5 nm
with 5 nm bandwidth in excitation and 2.5 nm bandwidth in emission.

4.1. First data set: highly concentrated mixtures of fluorescein and quinine sulphate
Five mixtures of fluorescein (Aldrich) and quinine sulphate (Merkc) were prepared in 0.1M

H2S O4 (Aldrich). All chemical are analytical grade. Fluorophore concentrations are reported
in table 1 and were chosen so that each mixture is a↵ected by strong IFE e↵ects. FEEM of
the five mixtures were recorded at 30000 nm/min scan speed from 350 to 600 nm in emission,
and from 280 to 500 nm for excitation wavelength with excitation and emission steps of 5 nm
(�ex = �em = 5nm). Excitation and emission bandwidth were 5 nm. We thus obtain a first
fluorescence tensor denoted X1 of size (5 ⇥ 45 ⇥ 51) with s1 = 15 and �1 = 1.
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Table 1: Concentrations in parts per million (ppm), maximal absorbances and mean absorbances for data set 1.
Solution number 1 2 3 4 5

cQS (ppm) 11.02 32.6 54.38 76.15 97.73
cF (ppm) 74.72 58.23 41.58 24.92 8.43

Absorbance max. 2.18 1.83 1.32 1.17 1.38
Mean Absorbance 0.40 0.37 0.33 0.29 0.27

Then, in order to validate the non-uniform spectral sampling version of our algorithm a sec-
ond tensor X2 was built by downsampling the excitation mode by a factor 2 (i.e. we have now
�ex = 10nm). This tensor is thus of size (5 ⇥ 23 ⇥ 51) with s2 = 8 and �2 = 2.

Eventually, we have also tested our algorithm in a more critical situation by downsampling
X1 by a factor 4 (i.e. �ex = 20nm). This third tensor is denoted X3, it is of size (5 ⇥ 11 ⇥ 51) and
we have s3 = 4 and �3 = 4. (Note that for this last case we had first suppressed tensor entries
corresponding to �ex = 280 and �ex = 285 so that the working conditions of our non-uniform
spectral sampling NLFD algorithm were respected).

4.2. Second data set: highly concentrated mixtures of fluorescein, quinine sulphate and trypto-
phane

Table 2: Concentrations in mg.L�1 and maximal absorbances for data set 2.
Solution number 1 2 3 4 5

cTrip (mg.L�1) 53.5 53.5 53.5 53.5 53.5
cQS (mg.L�1) 0 14.66 22 7.3 14.6
cF (mg.L�1) 0 14.4 14.4 21.6 21.6

Absorbance max. 2.4 2.4 2.5 2.8 2.8

We now consider mixtures of 3 fluorophores. Our second data set is then constituted of
5 highly concentrated mixtures of fluorescein, quinine sulphate and tryptophane. Fluorofore
concentrations along with absorbance values are given in table 2. 3D spectra where recorded
at 2400 nm/min scan speed, with excitation and emission slit width of 2.5 nm and from 270 to
550 nm by step of 5 nm both in excitation and emission. Consequently, we obtain a fluorescing
tensor X4 of size (5 ⇥ 57 ⇥ 57) with s4 = 1 and �4 = 1. We then build two other tensors by
downsampling the excitation mode in the same way we built the first data set. Thereby X5 is of
size (5⇥29⇥57) with s5 = 1 and �5 = 2 (�ex = 10nm) andX6 is of size (5⇥15⇥57) with s6 = 1
and �6 = 4 (�ex = 20nm)

4.3. Data treatment
In order to help the reader to navigate through our di↵erent experiments corresponding to the

six fluorescing tensors, all their characteristics are summed up by Table 3.
All data treatments were made using MATLAB software. Rayleigh and Raman scatters were

first removed numerically from each measured FEEM using the method proposed by Zepp [27].
Then each of the six tensors were fitted by both a non negative truncated CPD and the NLFD.
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Table 3: Characteristics of the six fluorescing tensors used for NLFD-LM validation
Tensor Data set Fluorophore tensor dimensions Shift Excitation

number (R) (K ⇥ L ⇥ M) (s) downsampling factor (�)
X1 1 2 (5 ⇥ 45 ⇥ 51) 15 1
X2 1 2 (5 ⇥ 23 ⇥ 51) 15 2
X3 1 2 (5 ⇥ 11 ⇥ 51) 15 4
X4 2 3 (5 ⇥ 57 ⇥ 57) 1 1
X5 2 3 (5 ⇥ 29 ⇥ 57) 1 2
X6 2 3 (5 ⇥ 15 ⇥ 57) 1 4

CPD was computed using the non negative ALS algorithm of the NWAY package provided by
R.Bro [28, 29]. The NLFD was computed by the NLFD-LM algorithm proposed in section 3.

In our simulations we thus use the absolute value of the the factor matrices estimated by a
recent fast CPD algorithm called DIAG [30] as initial guess for NLFD-LM. Indeed, this strategy
were first tested to synthetic data and improved convergence properties significantly with respect
to random initialization. Note that a direct CPD algorithm such as DIAG provides a very quick
estimation of the factor matrices so that this initialization step does not slow up the whole process.
Then the iterative part of the NLFD-LM algorithm is stopped only when a maximal number of
iteration is reached. We empirically found that a maximal number of 50 iterations was enough to
achieve convergence. After convergence, permutation and scaling indeterminacies are removed
in order to compare NLFD-LM and ALS estimated factors with reference ones.

5. Results and discussions

5.1. Separation of 2 components mixtures
Results from the NLFD decomposition of tensors X1, X2 and X3 are plotted on Figures 1, 2

and 3 respectively. They are compared to CPD results and reference loadings corresponding to
the spectra of the pure fluorophores measured at low concentration (i.e. without any IFE) and to
the actual concentration profiles used to make the mixtures.

Estimation quality of the factor matrices can also be assessed by means of normalized mean
squared errors (NMSE) that quantify the deviation between a reference matrix and its estimate.
These values are denoted here rA, rB and rC for matrices A, B and C respectively. rA is given by:

rA =

RX

n=1

kAn � Ân{CPD}k22
NkAnk22

, (28)

where An is the n � th column of A, R the number of fluophores, and rB and rC are constructed
in the same way. For each tensor, CPD and NLFD NMSE values are reported in table 4.

This first data set furnishes a classical example of IFE which is mainly due to the conjugation
of quite high absorbance values and a strong overlap between quinine sulfate emission spectrum
and fluorescein excitation spectrum.

Even in this simple case, impact of IFE appears clearly when looking at CPD results obtained
from the original tensor X1 in figure 1. Indeed, the fluorescein excitation spectrum produced by
the CPD is totally distorted and the evolution of its concentration throughout the mixture set
is also badly estimated. Besides the estimated emission spectrum of quinine sulphate su↵ers
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Figure 1: Comparison between CPD (green lines) and NLFD (blue lines) of fluorescence tensor X1 (2 components,
�ex = �em). Reference spectra and concentration profiles are plotted in red.
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Figure 2: Comparison between CPD (green lines) and NLFD (blue lines) of fluorescence tensor X2 (2 components,
�ex = 2�em). Reference spectra and concentration profiles are plotted in red.
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Figure 3: Comparison between CPD (green lines) and NLFD (blue lines) of fluorescence tensor X3 (2 components,
�ex = 4�em). Reference spectra and concentration profiles are plotted in red.

Table 4: Characteristic of the six fluorescing tensors used for NLFD-LM validation
Tensor CPD NMSE values NLFD NMSE values

rA rB rC rA rB rC

X1 0.0764 0.2039 0.0299 0.0014 0.0057 0.0030
X2 0.0760 0.2055 0.0298 0.0015 0.0058 0.0030
X3 0.0809 0.1828 0.0303 0.0026 0.0105 0.0042
X4 0.1148 0.0771 0.0945 0.0097 0.0108 0.0057
X5 0.1127 0.0766 0.0937 0.0111 0.0107 0.0059
X6 0.0924 0.0775 0.0965 0.0174 0.0177 0.0113
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Figure 4: Comparison between CPD (green lines) and NLFD (blue lines) of fluorescence tensor X4 (3 components,
�ex = �em). Reference spectra and concentration profiles are plotted in red.

from a 10 nm shift and its estimated excitation spectrum is smoothed. NMSE values confirm
that the worst results are obtained for the excitation mode (rB = 0.2) while emission spectra are
almost correctly estimated (rC = 0.03). The disappointing concentration value (rA = 0.076) is
an average between the good estimation of quinine sulphate concentration profile and the bad
estimation of that of fluorescein.

Conversely, NLFD estimates almost perfectly fit the reference spectra and concentrations
profile for both components : rA = 0.001, rB = 0.006, rC = 0.003. In fact, only a slight shift of
the fluorescein excitation maximum can be observed. This explains the higher value of rB. These
observations and conclusions still hold for dowsampled tensor X2 (� = 2, Figure 2). Indeed
NMSE value obtained from CPD and NLFD of X2 are identical to those obtained from CPD
and NLFD of X1. It is then worth mentioning that NLFD results are still very good for � = 4
(all spectra and concentration profiles are well recovered) even though the size of the excitation
mode is now very small (only 11 points). This points out that for regular functions such as
excitation spectra, our linear interpolation is suitable. In fact further studies (data not shown)
showed that NLFD results are still good for � = 8 (i.e. �ex = 40nm) and acceptable for � = 10
(i.e. �ex = 50nm) . A quick look to the NMSE values confirms theses conclusion. Indeed, values
computed from the CPD decomposition are comprised between 0.0298 and 0.2055 while they
are comprised between 0.0014 and 0.0105 for the NLFD.

5.2. Separation of 3-component mixtures
This second data set constitutes a di�cult case. First because solution absorbances are very

high. Second, the excitation spectra of the tryptophan is very narrow, in addition its overall
fluorescence signal is quite weak with respect to the two others fluorophore. Finally, its con-
centration profile is constant. If we first look at the results of the CPD of the original tensor
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Figure 5: Comparison between CPD (green lines) and NLFD (blue lines) of fluorescence tensor X5 (3 components,
�ex = 2�em). Reference spectra and concentration profiles are plotted in red.
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Figure 6: Comparison between CPD (green lines) and NLFD (blue lines) of fluorescence tensor X6 (3 components,
�ex = 4�em). Reference spectra and concentration profiles are plotted in red.
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X4 in figure 4 we observe the same behaviour than for data set 1: some factors are correctly
estimated (fluorescein and tryptophan emission spectra, quinine sulfate concentration profile and
excitation spectra) whereas some others are severely distorted : fluorescein excitation spectrum,
quinine sulfate emission spectrum and tryptophan concentration profile. However these large
distortions now a↵ect the three modes (and the three components): rA = 0.11, rB = 0.077 and
rC = 0.094. This is mainly due to higher absorbance values. In spite of those di�culties, NLFD
still provides very good results, notably regarding the emission mode (rC = 0.006). Concerning
the two other modes (rA = 0.01 and rB = 0.011) , fluorescein and quinine sulphate factors are
perfectly estimated whereas some slight distortions appears in the estimated concentration profile
and excitation spectrum of the tryptophan. This is mainly due to previously stated di�culties.
The same kind of results are observed for downsampled tensor X5 (� = 2) in Figure 5. This
is confirmed by the NMSE values since all of them remain unchanged with respect to the case
� = 1. Finally, increasing the downsampling factor (figure 6) does not change CPD conclusions
but slightly a↵ects NLFD results and notably quinine sulphate emission spectrum and tryptophan
concentration profile.

As a general conclusion, whatever the considered tensor (i.e. whatever the considered number
of factors or the sampling step) it appears clearly that applying the CPD to a set of FEEM a↵ected
by IFE may lead to incorrect identification of the component of the mixtures. Conversely, in both
studied data sets the NLFD approach has consistently provided a very satisfying estimation of
all the factors.

6. Conclusion and Perspectives

Tensor decomposition methods in fluorescence spectroscopy is becoming the workhorse
method for blindly retrieving unknown fluorescent components in sample mixtures. The well
known CANDECOMP/PARAFAC decomposition (CPD) is a powerful tool, but the linearity
assumption of the fluorescence response is made with respect to functionals of concentrations
and spectra of the components, which is not acceptable is some circumstances, e.g. at higher
concentrations.

In this paper we have worked directly on the nonlinear response model, called NLFD, which
appears naturally when taking into account the absorbance by each component in the mixture.
We have shown numerically that the NLFD enjoys properties similar to CPD with respect to
identifiability of the unknown concentrations and spectra. We have designed a Newton algorithm
to compute the NLFD, and proved its superiority in various contexts. Other nonlinearities could
be handled the same way as long as they can be modeled properly. Also, other kinds of algorithms
may be designed to compute the NLFD, especially if dealing with large datasets.

Appendix A. Jacobian matrix computation: formulas and matlab code

The Jacobian matrix is very sparse. Its non-zero values are given by di↵erentiating (26) and
(27):

1. if m > (L � s)� + 1 then,

• @[GNLFD(✓)]k,l,m
@Ak,r

= Bl,r(Cm,r � 1)S 1
k,l,me�S 3

k,l

• @[GNLFD(✓)]k,l,m
@Bl,r

= Ak,r(Cm,r � 1)S 1
klme�S 3

k,l
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• @[GNLFD(✓)]k,l,m
@Ck,m

= Ak,rBl,re�S 3
k,l

2. Otherwise,

• @[GNLFD(✓)]k,l,m
@Ak,r

= (Bl,rCm,r � (Bl,r + ↵m,rBl1,r + (1 � ↵m,r)Bl2,r)S 1
k,l,m)e�S 2

k,l,m

• @[GNLFD(✓)]k,l,m
@Bl,r

= (Ak,rCm,r � Ak,r(1 + �l,l1↵m,r + �l,l2 (1 � ↵m,r))S 1
k,l,m)e�S 2

k,l,m

• @[GNLFD(✓)]k,l,m
@Bl1 ,r

= (�l,l1 � 1)Ak,r↵m,rS 1
k,l,me�S 2

k,l,m

• @[GNLFD(✓)]k,l,m
@Bl2 ,r

= (�l,l2 � 1)Ak,r(1 � ↵m,r)S 1
k,l,me�S 2

k,l,m

• @[GNLFD(✓)]klm
@Cm,r

= Ak,rBl,re�S 2
k,l,m

where:

S 1
k,l,m =

RX

r=1

Ak,rBl,rCm,r

S 2
k,l,m =

RX

r=1

Ak,r(Bl,r + ↵m,rBl1,r + (1 � ↵m,r)Bl2,r)

S 3
k,l =

RX

r=1

Ak,rBl,r

Then these values have to be correctly placed in the matrix. The following matlab function
computes these values and forms the Jacobian matrix at the point

✓ =

2

4
vec(A)
vec(B)
vec(C)

3

5 . (A.1)

function Jac=construct jacobian(A,B,C,s,beta)

% INPUTS: (A,B,C) = factor matrices, s = shift, beta = downsampling factor
% OUTPUT: Jac = Jacobian matrix
[K,R]=size(A);

L=size(B,1);

M=size(C,1);

I=K

*

L

*

M;

J=(K+L+M)

*

R;

Jac= zeros(I,J);

for i=1:I

m=floor((i-1)/(K

*

L))+1;

x=i-(m-1)

*

K

*

L;

l=floor((x-1)/K)+1;

k=x-(l-1)

*

K;

l1=floor((m-1)/beta)+s;

l2=min(mp+1,L);

alpha=(beta+beta

*

floor((m-1)/beta)+1-m)/beta;

S1=sum(A(k,:).

*

B(l,:).

*

C(m,:));

if m<=(L-s)
*

beta+1

S2=sum(A(k,:).

*

(B(l,:)+alpha

*

B(l1,:)+(1-alpha)

*

B(l2,:)));

for r=1:R
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Jac(i,(k-1)

*

R+r)=(B(l,r)

*

C(m,r)-(B(l,r)+alpha

*

B(l1,r)...
+(1-alpha)

*

B(l2,r))

*

S1)

*

exp(-S2);

Jac(i,K

*

R+(l-1)

*

R+r)=(A(k,r)

*

C(m,r)-A(k,r)

*

(1+(l==(l1))

*

alpha...
+(l==(l2))

*

(1-alpha))

*

S1)

*

exp(-S2);

Jac(i,K

*

R+(l1-1)

*

R+r)=-(l~=(l1))
*

A(k,r)

*

S1

*

alpha

*

exp(-S2);

Jac(i,K

*

R+(l2-1)

*

R+r)=-(l~=(l2))
*

A(k,r)

*

S1

*

(1-alpha)

*

exp(-S2);

Jac(i,(K+L)

*

R+(m-1)

*

R+r)=(A(k,r)

*

B(l,r))

*

exp(-S2);

end

else

S3=sum(A(k,:).

*

B(l,:));

for r=1:R

Jac(i,(k-1)

*

R+r)=(B(l,r)

*

C(m,r)-(B(l,r))

*

S1)

*

exp(-S3);

Jac(i,K

*

R+(l-1)

*

R+r)=(A(k,r)

*

C(m,r)-A(k,r)

*

S1)

*

exp(-S3);

Jac(i,(K+L)

*

R+(m-1)

*

R+r)=(A(k,r)

*

B(l,r))

*

exp(-S3);

end

end

end
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