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Abstract

We model the dust evolution in protoplanetary disks with full 3D, Smoothed Particle Hydrodynamics (SPH), two-

phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical

settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial dis-

tribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the

gap’s detectability with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we take into account the

effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show

that rapid grain growth in the two accumulation zones around planet gaps is strongly affected by fragmentation. We

discuss the consequences for ALMA observations.

Keywords: protoplanetary disks, planet-disk interactions, hydrodynamics, methods: numerical, submillimeter:

planetary systems

1. Introduction

Planets are believed to form from the aggregation of

sub-micronic dust particles in the protoplanetary disk

surrounding a nascent star. In the core-accretion sce-

nario (e.g. Alibert et al., 2005), small grains grow to

form km-sized planetesimals, which in turn become

planetary cores of a few terrestrial masses. These cores

then capture gas, initially slowly then in a runaway pro-

cess to form gas giant planets. In the disk instability sce-

nario (see e.g. Boss, 2011), the disk fragments to form

clumps that gravitationally collapse to directly form gas

giants. Rocky planets are thought to be the result of

the runaway accretion of planetesimals followed by oli-

garchic accretion, followed by merging of the largest

embryos. Whereas small dust grains easily stick during

collisions to form aggregates up to cm or dm sizes, the

subsequent growth to planetesimal size is probably the

biggest problem in the theory of planet formation. Sev-

eral processes preventing this step have been identified
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and are collectively known as the “barriers” to planet

formation.

The radial-drift barrier (Weidenschilling, 1977; Nak-

agawa et al., 1986; Birnstiel et al., 2010; Laibe et al.,

2012; Laibe, 2014) is the oldest and most widely known

of these problems. In a gas disk, dust grains are subject

to aerodynamic drag caused by the differential veloc-

ity between the sub-Keplerian gas (partially supported

by its radial pressure gradient) and the Keplerian dust.

The ensuing transfer of linear and angular momentum

between both phases results in the vertical settling (to-

wards the disk midplane) and radial migration (towards

the star) of dust grains. The efficiency of this process

is measured by the Stokes number St, defined as the

ratio of the stopping time (i.e. the drag timescale) to

the Keplerian orbital time. Small grains (with St ≪ 1)

are strongly coupled to the gas and follow its motion,

whereas large grains (with St ≫ 1) are largely insensi-

tive to gas drag and stay on their Keplerian orbits. Dust

settling and migration are most efficient for intermedi-

ate sizes and in particular, radial drift is fastest when

St ∼ 1. Grains of the corresponding size can thus mi-
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grate through the disk and fall onto the star in a very

short time compared to the disk lifetime and the planet

formation timescale, both of a few million years. This

“optimal” size for migration and the infall timescale

both depend on the nebular conditions and the distance

to the central star, and typically range from centimeter

to meter sizes and from hundreds to tens of thousands of

years, respectively. Grains growing from sub-µm size

and reaching St = 1 should therefore be lost from the

disk before forming planetesimals: this is the “radial-

drift barrier”. However, Laibe et al. (2008) found that

migrating, settling and growing, but non-fragmenting,

grains can overcome St = 1 and decouple from the

gas in the inner regions of typical disks, where they

can continue to grow without migrating. More recently

Laibe et al. (2012), confirming and extending a previ-

ous work by Youdin and Shu (2002), showed that even

non-growing grains can slow their migration and pile

up in the inner regions of disks with steep surface den-

sity profiles and shallow temperature profiles, consis-

tent with the majority of observed protoplanetary disks.

This is because, under these specific disk conditions,

for inwards migrating grains gas drag increases faster

than the acceleration due to the radial pressure gradient.

Laibe (2014) showed that in typical disks, the interplay

between growth (again without fragmentation) and mi-

gration dramatically amplifies this pile-up and literally

stops the grains, corroborating the results found numer-

ically in Laibe et al. (2008), and giving a potential so-

lution to the radial-drift barrier problem, which depends

only on the local temperature and pressure conditions in

the disk.

The second barrier to planet formation comes from

the collisions of dust grains. The relative velocities be-

tween grains increase with their size (Weidenschilling

and Cuzzi, 1993): whereas small grains typically col-

lide at a few cm s−1 and can stick very efficiently thanks

to van der Waals forces, particles larger than cm sizes

have relative velocities exceeding a m s −1. Their rel-

ative kinetic energy causes particles to break upon im-

pact and produce a number of smaller fragments, there-

fore preventing their growth to larger sizes: this is

called the “fragmentation barrier” (Dullemond and Do-

minik, 2005; Blum and Wurm, 2008). More recently,

a third barrier has been identified: millimeter grains

can bounce upon collision at velocities lower than the

fragmentation threshold (Zsom et al., 2010; Windmark

et al., 2012). This also prevents further growth and con-

stitutes the “bouncing barrier”. It should be noted that

relative velocities between two colliding grains were

usually assumed to be monodisperse. Using relative

velocity distributions accounting for stochastic motion,

Garaud et al. (2013) showed that the low-velocity tail al-

lowed collisional growth to larger sizes, thus overcom-

ing both the bouncing and fragmentation barriers. A

number of other barriers have also been studied, such

as the charge barrier (Okuzumi, 2009) and gravitational

scattering of planetesimals (Ida et al., 2008).

Different solutions to the barriers of planet formation

have been proposed. One example is the pathway to

planetesimal formation via compression of fluffy aggre-

gates developed by Kataoka et al. (2013), which cir-

cumvents the radial-drift barrier. Another class of solu-

tions are the so-called “particle traps”, on which we will

focus here. Aerodynamic drag ensures that dust parti-

cles follow the gas pressure gradient towards regions of

high pressures, usually at the inner disk edge. If a well-

defined pressure maximum exists elsewhere in the disk,

grains will migrate towards it and accumulate there, thus

escaping the radial-drift barrier. The higher concentra-

tion of dust in this “trap” will promote lower relative

velocities and help grains to remain below the bounc-

ing and fragmentation thresholds. Trapped grains will

be able to grow more easily towards planetesimal sizes.

Several types of particle traps have been studied: in an-

ticyclonic vortices (Barge and Sommeria, 1995; Regály

et al., 2012; Méheut et al., 2012), at the snow line or

at the dead zone (Kretke and Lin, 2007; Dzyurkevich

et al., 2010), at planet gap edges (Paardekooper and

Mellema, 2004; Fouchet et al., 2007, 2010; Ayliffe et al.,

2012; Gonzalez et al., 2012), or in any kind of “pressure

bump” in the gas surface density (Pinilla et al., 2012b).

Particle traps have also been observed in protoplanetary

disks, and regularly interpreted as due to vortices (see

e.g. Casassus et al., 2013; van der Marel et al., 2013).

The rest of this paper is devoted to particle traps at

planet gap edges. In a previous work (Fouchet et al.,

2010), we ran simulations to follow the dynamics of

grains of a constant size in a viscous protoplanetary disk

containing a planet using our 3D, two-fluid (gas+dust),

SPH code (Barrière-Fouchet et al., 2005). We modeled

a disk typical of Classical T Tauri Stars (CTTS) of mass

Mdisk = 0.01 M⊙ orbiting a 1 M⊙ star and containing

1 % of dust by mass, initially well mixed with the gas.

We studied the evolution of the dust phase for three dif-

ferent grain sizes: 100 µm, 1 mm and 1 cm, one at a

time. We chose this size range because it encompasses

the grains contributing the most to the disk emission at

the ALMA wavelengths. We ran simulations for plan-

ets of 0.1, 0.5, 1 and 5 MJ, on a circular orbit of radius

40 AU.

Previous simulations of planet gap formation in dusty

gas disks were done in 2D, with a vertical integration of

the disk structure. Paardekooper and Mellema (2004,
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2006) showed that planet gaps were more easily opened

in the dust phase than in the gas. Rice et al. (2006) found

the gap outer edge acted as a filter, holding back large

dust grains while letting small grains through to the in-

ner disk, a result later confirmed by Zhu et al. (2012).

With the third dimension, our resulting dust distribu-

tions accounted for dust settling and showed an even

easier gap opening in the thinner dust disk (Fouchet

et al., 2010). The gap’s width and depth were larger

for increasing planet mass and varied with grain size. In

all cases, the gap created in the dust phase was deeper

and wider than in the gas, as a result of the dust mo-

tion towards the gas pressure maxima at the gap edges.

The dust density was largely enhanced there, demon-

strating very efficient dust trapping for the considered

grain sizes. A population of 1 cm grains was also found

to be trapped in corotation with the most massive planet,

on horseshoe orbits. Zhu et al. (2014) later found that

gap formation in a 3D inviscid disk led to the Rossby-

Wave Instability and the creation of vortices, with effi-

cient trapping of grains across a large size range at gap

edges and in vortices.

In a followup work, we used our resulting dust distri-

butions to compute synthetic ALMA images of the sim-

ulated disks with a 1 and a 5 MJ planet (Gonzalez et al.,

2012). We assessed the detectability of planet gaps

for a variety of ALMA observing configurations (wave-

length, integration time, angular resolution) and source

properties (disk inclination, distance and declination).

We found that, thanks to the dust accumulation at gap

edges, gap detection is robust and that ALMA, when

completed, should discover a large number of planet

gaps in nearby star forming regions. Using 3D hydrody-

namical and magneto-hydrodynamical simulations, as-

suming perfect mixing of non-growing grains with the

gas, and radiative transfer on the resulting structures,

Ruge et al. (2013) found similar conclusions for a wide

range of disk masses and sizes around various central

stars.

In this paper, we present new hydrodynamical simu-

lations of the growth and fragmentation of grains. We

detail the method in Sect. 2, show our results in Sect. 3

and discuss them in Sect. 4. We investigate the observ-

ability of the resulting features in Sect. 5 and conclude

in Sect. 6.

2. Method

We now study the effect of grain growth and frag-

mentation on the dust dynamics in a disk containing a

gap-opening planet. Our goal is to assess the efficiency

of dust trapping at the gap edges to facilitate the growth

of solids. We ran new hydrodynamical simulations with

our SPH code using the same CTTS disk as in our pre-

vious work (Fouchet et al., 2010, see Sect. 1), with a

5 MJ planet on a 40 AU orbit. The code is extensively

described in Barrière-Fouchet et al. (2005) and a dis-

cussion on the viscosity implementation can be found

in Fouchet et al. (2007). The SPH formalism has been

shown to naturally reproduce the expected properties of

turbulence (see Arena and Gonzalez, 2013). We use

αSPH = 0.1 and βSPH = 0.5, which corresponds to a uni-

form value of the Shakura and Sunyaev (1973) parame-

ter α ∼ 10−2.

The gas disk, of mass Mdisk = 0.01 M⊙, extends

from 4 to 120 AU, has a flat surface density profile

Σ(R) = 19.67 kg m−2 and is free to expand by viscous

spreading. It is vertically isothermal and is initially

setup to have a radial temperature profile T (R) ∝ R−1

with an aspect ratio of H/R = 0.05 at the planet’s lo-

cation, translating in T = 15 K at 40 AU. We start by

embedding the planet in the gas disk and we evolve the

system for 8 planetary orbits to ensure an adequate re-

laxation of the gas phase (see Barrière-Fouchet et al.,

2005; Fouchet et al., 2007, 2010), before overlaying the

dust phase with an initially uniform dust-to-gas ratio of

1%. We assume that the dust grains, all with the same

composition, are mostly made of water ice (the disk is

almost entirely outside the snow line) and take their in-

trinsic density to be 1 000 kg m−3. Dust and gas inter-

act via aerodynamic drag in the Epstein regime, which

is appropriate for the local disk conditions. Particles

would need to be larger than 10 m in the inner disk or

500 m in the outer disk to enter the Stokes regime, see

Eq. (44) and Fig. 5 of Laibe et al. (2012). The corre-

sponding Stokes number is

St =
ΩKρds

ρgcs

, (1)

where ΩK is the Keplerian angular velocity, ρd the in-

trinsic dust density, s the grain size, ρg the gas density

and cs its sound speed1. We treat in a consistent man-

ner the backreaction of dust on gas, as well as the grav-

itational force of the planet on grains (Fouchet et al.,

2010). Both phases contain 200,000 SPH particles and

all simulations were evolved for 100 000 yr. We do

not evolve the system beyond that time because our

1The collisional velocities of gas molecules on grains involved in

the drag force calculation in the Epstein regime is taken by some au-

thors to be the gas sound speed, while others use the mean gas thermal

velocity. We use the former definition, while the latter would have an

additional factor of
√
π/8. Expressions of St for the Stokes regime

can be derived from Appendix C of Laibe et al. (2012).
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simulations do not include processes which occur on

longer timescales (e.g. streaming instability, formation

of planet embryos, disk photoevaporation).

Grain growth is implemented in our code as detailed

in Laibe et al. (2008), following the model of Stepinski

and Valageas (1997) who set up a “sub-grid” model for

turbulence as a correlated noise to calculate the relative

velocity Vrel between grains as a function of the velocity

difference between dust and gas, the α parameter, cs and

St. Prescriptions differ whether only the vertical oscil-

lations or also the epicyclic oscillations are considered

(Youdin and Lithwick, 2007), see also Laibe (2014) for

a discussion on different expressions of Vrel. Due to the

nature of the SPH formalism, there is a natural spread in

the velocity difference between gas and dust for a given

grain size and disk location, thus producing a spread

in the distribution of Vrel (as described by Windmark

et al., 2012; Garaud et al., 2013). Assuming compact icy

grains that stick perfectly upon collision, with a locally

monodisperse size distribution, Stepinski and Valageas

(1997) derived an analytical expression for the evolu-

tion of the grain size as a function of Vrel, and thus of

the local disk conditions.

We introduce a simple model for fragmentation by

defining a velocity threshold, Vfrag, to which Vrel is

compared. When Vrel < Vfrag, grains grow and when

Vrel > Vfrag, they shatter, leading to a decrease of the

size of the interacting SPH particles, modeled as a neg-

ative growth. The fragment size distribution is kept

locally monodisperse to be consistent with the growth

model, as well as to properly conserve physical quanti-

ties and avoid prohibitively large numbers of represen-

tative particles in the simulations. This means we only

keep track of the largest fragment of the distribution: in

the monodisperse case, the distribution relaxes locally

to a size for which Vrel(s) <∼ Vfrag. This approximation

is relevant since we are interested in the disk’s ability to

form larger bodies. However, it cannot follow the small-

est fragments who maintain a population of small grains

throughout the disk. Vfrag is a free parameter of our sim-

ulations and we assume it to be constant. This is clearly

a simplification. The fragmentation velocity depends on

the nature of the grains, such as composition and poros-

ity, which we do not vary here. This simple, first order

model is however very useful to understand the impact

of the value of Vfrag. This approach is a common ap-

proximation in simulations of dust evolution in proto-

planetary disks (see, e.g., Birnstiel et al., 2010; Pinilla

et al., 2012b), sometimes with a small transition inter-

val near Vrel ∼ Vfrag. Imperfect (or partial) sticking and

bouncing are not taken into account. They would both

contribute to lower the global growth efficiency: the out-

come of a collision would be a smaller size than for per-

fect sticking or an unchanged size, respectively. Thresh-

olds between different regimes are usually expressed in

terms of Vfrag, and to first order the effect on the global

growth efficiency amounts to varying Vfrag. We there-

fore chose to keep only one free parameter here.

In most studies of growth and fragmentation in proto-

planetary disks, low values of Vfrag were generally used:

for example Birnstiel et al. (2010) took 1 m s−1 for sili-

cate aggregates and Pinilla et al. (2012b) used 10 m s−1

for icy material, following earlier results from labora-

tory experiments or theoretical work (see, e.g., Blum

and Wurm, 2008). More recently, larger values up to 20-

30 m s−1 have been considered (Gonzalez et al., 2013;

Meru et al., 2013; Pinilla et al., 2015). Indeed, accord-

ing to recent studies, grain growth seems to be able to

proceed at higher relative velocities. First, grain poros-

ity seems to be an important factor. Wada et al. (2009)

ran N-body simulations of collisions of porous aggre-

gates and determined that Vfrag ∼ 60 m s−1 for icy ag-

gregates but only ∼ 6 m s−1 for silicates. Meru et al.

(2013) studied dust collisions with SPH simulations

and found that Vfrag can exceed 27 m s−1 for cm-sized

porous silicate aggregates of different masses. Mass

transfer in high mass ratio collisions is a second fac-

tor facilitating the growth of solids. In laboratory ex-

periments of such collisions, Teiser and Wurm (2009)

showed that Vfrag ∼ 60 m s−1 for silicate aggregates.

With their N-body simulations, Wada et al. (2013) ob-

tained Vfrag ∼ 80 m s−1 for icy aggregates but ∼ 8 m s−1

for silicates. More recently, the same group used up-

dated values of the surface energies (Yamamoto et al.,

2014) and found Vfrag ∼ 30−40 m s−1 for silicate aggre-

gates and even as high as 100 m s−1 for iron, reconcil-

ing their numerical results with those from experiments.

We chose to run simulations for fragmentation threshold

values of Vfrag = 10, 15, 20 and 25 m s−1. Those values

adequately sample the growth behavior between cases

where fragmentation is too efficient to allow any signif-

icant growth and where growth is almost unhindered by

rare fragmentation. Extreme cases on both sides are the

non-growing grains (equivalent to Vfrag = 0) we stud-

ied in Fouchet et al. (2010) and the pure growth case

(equivalent to Vfrag = +∞) treated in this paper.

We start from an initially uniform grain size s0 =

10 µm, and also take this value to be the smallest grain

size that results from fragmentation. Test simulations

with smaller values of s0 showed that very small grains

grow fast and quickly forget their initial size (see also

Laibe et al., 2008). We chose this larger value to shorten

computation times. Note that 10 µm grains never frag-

ment since they have Vrel < 10 m s−1, our lower value
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Figure 1: Volume density maps in midplane (top) and meridian plane

(bottom) cuts of the disk for the gas (left) and dust (right) after

50 000 yr for the simulation with pure grain growth.

of Vfrag, over the whole disk and smaller grains would

have even smaller Vrel. Fragmentation therefore does

not affect this conclusion.

3. Results

Figure 1 shows volume density maps of the gas and

dust phases after 50 000 yr of evolution of the simula-

tion with pure growth. The planet has opened a deep,

but not empty, gap in the gas disk, as well as launched

spiral waves in the outer disk (i.e. the disk exterior to

the gap). In the dust disk, the gap is cleared, except

for a population of dust grains on horseshoe orbits in

corotation with the planet. Two narrow rings of dense

dust are present on both sides of the gap, showing the

efficient dust accumulation. There, the dust-to-gas ratio

exceeds unity: it is ∼ 5 in the outer ring and ∼ 50 in

the inner ring. The dust disk has a smaller outer radius

than the gas disk, because of a moderate radial migra-

tion of the (still small) grains in the very outer disk re-

gions. The dust disk is also thin due to an efficient dust

settling. Overall, the disk appearance is largely similar

to what was seen for non-growing grains (see Fouchet

et al., 2010), except in the inner disk (i.e. the disk in-

terior to the gap) where growth helps grains overcome

the radial-drift barrier and pile up, consistent with the

Laibe (2014) mechanism. The behavior of the gas disk

is similar in all simulations, we will now focus on the

dust phase.

The evolution of the dust population is best seen is

Fig. 2, which shows its distribution in the meridian

plane together with the radial distribution of grain sizes

at t = 6 000, 12 000, 25 000 and 100 000 yr (∼ 25, 50,

100 and 400 planetary orbits, respectively). The dashed

curves show the grain sizes for which St = 1 in the

midplane (they are proportional to the gas surface den-

sity — see Eq. (2) — and therefore also trace the evo-

lution of the gas phase). Similarly to what was found

by Laibe et al. (2008) in a CTTS disk without planets,

particles typically grow as they settle to the midplane,

then migrate rapidly when they reach a size for which

St = 1 while experiencing little growth. Grains initially

close to the disk inner edge are thus lost to the star, as is

the case for the moderately dense clump of centimeter-

sized particles seen interior to 10 AU in the 6 000 yr

snapshot. A little further out we also see grains accu-

mulate interior to the planet gap. Here their density is

high and they can grow efficiently. A similar behavior

is seen in the outer disk, where grains migrate inwards

to the outer edge of the planet gap where they pile up

and grow. Particles in the gap drift towards one of the

gap edges. The growth timescale varies as Ω−1
K
∝ r3/2

(Laibe et al., 2008) explaining the smaller grain sizes in

the farthest regions. At 12 000 yr, the detached group of

particles at the disk inner edge contains the last grains to

be lost to the star. Just outside of 10 AU, particles have

outgrown the St = 1 size (∼ 1 cm) and piled up, are

now decoupled from the gas and grow without migrat-

ing. The gap continues to empty, except for grains close

to the planet’s orbit. They have outgrown the St = 1

size, which rapidly decreased together with the gas sur-

face density (Eq. (2)), and are now in corotation with the

planet (see Fouchet et al., 2010, for a discussion on par-

ticle trajectories in the horseshoe region). At 25 000 yr,

all grains in the inner disk are concentrated in a narrow,

dense ring where they continue to grow. The outer gap

edge has also become very dense. The evolution is sub-

sequently very slow and finally, at 100 000 yr, the gap

only contains the mm-sized particles that are trapped in

corotation with the planet. Their density is very low

and they behave as isolated solids and no longer grow.

Large grains are present on both sides of the gap, show-

ing the efficiency of the pile-up in the inner disk and

the particle trap at the outer gap edge in promoting the

formation of solids larger than the cm sizes. One might

wonder whether the dust accumulation in the inner disk

may dissipate on longer timescales. The gas disk inte-

rior to the gap will indeed be accreted onto the star on

viscous timescales, however, once the grains have out-

grown the St = 1 size and decoupled from the gas, they

will remain in their dense ring and continue to grow,

whether gas is present or not (one can notice that after

100 000 yr the gas surface density has already decreased
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by a factor of a few tens compared to its initial value).

Adding fragmentation has a dramatic effect on the

dust evolution, especially for smaller values of Vfrag, as

can be seen in Fig. 3, which shows the same plots as

Fig. 2 for Vfrag = 10, 15, 20 and 25 m s−1. For the lower

two values of the fragmentation threshold (top two rows

of Fig. 3), grains are not able to grow large enough in the

inner disk to overcome the radial-drift barrier. The inner

disk is thus seen to progressively be lost to the star. For

Vfrag = 10 m s−1, fragmentation keeps the grains small

and prevents the majority of them from decoupling from

the gas. Contrary to what occurs for larger grains which

produce sharper and deeper gaps, no clear depletion in

the dust is seen in the vicinity of the planet. Grains

in the outer disk therefore follow the gas through the

gap and migrate into the inner disk where their inward

drift continues. This is similar to the filtering of small

grains by the gap seen in the non-growing case (Rice

et al., 2006; Zhu et al., 2012). The dust disk slowly

drains and its density after 50 000 yr is very low. At the

disk outer edge, the relative velocities between grains

(which decrease towards larger radii, see Stepinski and

Valageas, 1997) are low enough to remain below the

fragmentation threshold and allow their growth. How-

ever, this growth is very slow, its timescale being longer

at larger radii, and at 100,000 yr, grains have only at-

tained ∼ 100 µm. For Vfrag = 15 m s−1, the planet gap

is shallow, but the density difference is large enough

to trap grains at the outer gap edge, where they start

to overcome the St = 1 size after 25 000 yr and grow

slowly. They exceed centimeter sizes at 50 000 yr. In

the outer disk regions, grains stay below the fragmenta-

tion threshold and growth, contrary to the intermediate

regions which remain dominated by fragmentation. At

100,000 yr, grains in that outer population have grown

to a few millimeters and migrated to form a denser an-

nulus closer to the gap outer edge. For both Vfrag = 10

and 15 m s−1, grains do not decouple enough from the

gas in the gap to be trapped in corotation with the planet.

The situation improves for Vfrag = 20 and 25 m s−1

(bottom two rows of Fig. 3). The higher values of the

threshold help to retain more grains in the inner disk

and a fraction of them overcomes the radial-drift bar-

rier. A small population of grains survive in the inner

disk after 25 000 yr, but do not grow much larger than

cm sizes due to a limited reservoir from which to collect

mass. For Vfrag = 20 m s−1, growth is more efficient at

the outer gap edge as well as in the disk outer regions

(fragmentation is still significant in the intermediate re-

gions). At 100 000 yr, both populations have merged to

form an extended and more settled ring of centimeter-

sized grains. For Vfrag = 25 m s−1, some particles man-
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Figure 3: Same as Fig. 2 for the simulations with fragmentation for Vfrag = 10, 15, 20 and 25 m s−1, from top to bottom. Note that snapshots are shown at different times for each case, to better

show their evolution.
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age to grow in the gap to a few hundred micrometers be-

fore being trapped in the horseshoe region. Because of

less efficient growth, the grains sizes are smaller when

they decouple from the gas than in the pure growth case.

The outer disk is almost unaffected by fragmentation: it

is very similar to the case with pure growth, with very

efficient growth past cm sizes in a dense ring at the outer

gap edge.

4. Discussion

The accumulation of grains on either side of the

planet gap lowers they relative velocities and increases

their density, thereby facilitating their growth. When

fragmentation is not taken into account, this growth is

very efficient and can lead to the formation of solids

larger than the decimeter, and even reaching meter sizes

in the pile-up of the inner disk, in as little as 50 000 yr.

The outer edge of the gap created by the planet embed-

ded in the disk appears as a potential site for the for-

mation of additional planets. Indeed, even a forming

giant planet can carve a shallow gap (as was seen for a

planet mass of 0.1 MJ ∼ 30 M⊕ by Fouchet et al., 2010).

The pressure maximum at the outer edge of a planet gap

traps dust grains and can start the growth process before

the first planet is fully formed. This mechanism could

lead to a system of giant planets.

Fragmentation, however, makes planetesimal forma-

tion more difficult. When included in the simulations,

it causes different growth behaviors depending on the

distance from the star. This is essentially due to the ra-

dial dependence of the relative velocity of grains. To

first order, the relative velocities are proportional to the

gas sound speed, which varies as R−1/2 in our disk,

with a dispersion due to turbulence (see Stepinski and

Valageas, 1997). In the inner disk, Vrel is large and grain

growth is quickly limited by the fragmentation thresh-

old Vfrag. In the outer disk, the lower values of Vrel al-

low growth to proceed more easily, as was seen for all

values of Vfrag considered here at the outer disk edge.

Obviously, large values of Vfrag allow particles to reach

larger sizes and survive more easily in the disk. On the

contrary, for a low Vfrag no significant growth past the

radial-drift barrier is observed. The role of fragmenta-

tion as one of the barriers of planet formation is clearly

illustrated here.

Varying the initial conditions can have an influence

on the results. The main parameter governing grain

dynamics is the optimal size of migration, for which

St = 1, that can be obtained from Eq. (1). Its value

in the midplane is

s(St = 1) =
Σg
√

2πρd

(2)

(Fouchet et al., 2010) and depends only on the gas sur-

face density, scaling linearly with the gas disk mass.

When fragmentation dominates, grains always stay be-

low St = 1. Otherwise, small grains grow fast un-

til they reach the optimal size and changing its value

only translates the radial size distribution (the “migra-

tion plateau”, see Laibe, 2014) and thus the larger sizes

grains can reach after decoupling. A more massive disk

produces larger grains but does not affect the location

of particle traps. Changing the disk temperature has

a more moderate effect. Indeed, the relative velocities

between grains scale as the gas sound speed, and thus

as the square root of the temperature. Producing simi-

lar results with a warmer or colder disk only requires a

small increase or decrease of Vfrag. We use an initially

uniform dust-to-gas ratio of 1%, a commonly used num-

ber taken from the interstellar medium value. However,

Williams and Best (2014) measured it to be 5% on av-

erage (with a large spread). Higher values of the dust-

to-gas ratio reduce the migration efficiency (Nakagawa

et al., 1986), as well as accelerate grain growth and thus

increase their pile-up (Brauer et al., 2008; Laibe, 2014;

Pinte and Laibe, 2014). This therefore favors grain sur-

vival and planetesimal formation.

We do not vary the planet mass in this paper. As we

found (for non-growing grains) in Fouchet et al. (2010),

as long as the planet is massive enough to open even

a partial gap, it will trap grains. More massive planets

produce a steeper pressure gradient, which makes it eas-

ier for grains to accumulate and grow, requiring a small

value of Vfrag. In this type II migration regime, allowing

the planet to migrate is not expected to have a signifi-

cant impact on the overall results since the timescale for

dust evolution is much shorter than the planet migration

timescale.

Similar studies of dust traps and pile ups in disks with

planets have been conducted by Pinilla et al. (2012a)

and Pinilla et al. (2015) for a range of planet and disk

configurations which vary parameters such as the stellar

mass, the planet mass and semi-major axis, the disk tur-

bulence (via α) and disk mass, and the dust fragmenta-

tion threshold (Vfrag). In Pinilla et al. (2012a) they stud-

ied the dust dynamics in a disk with one planet, while in

Pinilla et al. (2015) the effects of two embedded planets

was investigated. Both studies used 2D hydrodynamical

simulations, for which the resulting disk structure was

used as a static gas backdrop to follow the dust evolu-

tion with a 1D coagulation/fragmentation model, with-

8



out backreaction. In order to compare the results of our

simulations with these works, there are two main quan-

tities that need to be determined: (i) the gap opening

criterion for viscous disks (Lin and Papaloizou, 1979;

Bryden et al., 1999), which depends on the ratio of the

planet to stellar mass, Mp/M⋆, as well as the disk aspect

ratio at the location of the planet, H/rp, and the turbu-

lence parameter, α; and (ii) the ratio of the gas turbulent

velocity to the dust fragmentation threshold, Vturb/Vfrag

(since the turbulent gas velocity sets the maximum value

of the relative dust velocity, Vrel, and grains will grow

when Vrel/Vfrag < 1). Vturb is proportional to cs

√
α and

a factor that depends on the grain size.

In Pinilla et al. (2012a) all the disks they studied

open strong gaps. Unfortunately we cannot calculate

Vturb/Vfrag for their disks as they do not provide details

of the disk temperature which is needed to determine

cs and H/rp. However, with high α/Vfrag (α = 10−2

and Vfrag = 10 m s−1), they found no dust trapping for a

1 MJ planet and the disk emptied of dust. When α was

decreased to 10−3, they found that dust could be trapped

at the outer gap edge and grow, since a lower α leads

to smaller relative dust velocities which can more eas-

ily remain below Vfrag. With a 9 MJ planet, they found

dust trapping for both values of α, which is expected to

be easier as the planet mass increases. In Pinilla et al.

(2015) they again found dust trapping and growth (at the

outer edge of both planet gaps). All their simulations are

in the strong gap opening regime, and Vturb/Vfrag ensures

dust trapping and growth, as in our simulations.

Our simulations show a very efficient dust trapping

and growth at the outer gap edge for disk plus planet

configurations that are in the strong gap opening regime

and for favourable Vturb/Vfrag (in our case when Vfrag =

25 m s−1). Furthermore, as was shown by Fouchet

et al. (2007, 2010), grain accumulation at gap edges is

stronger in the settled dust layer of a 3D disk than in

a vertically integrated 2D disk. It should also be noted

that it is easier to trap dust in planet gaps around a low

mass star, where gap opening is easier and the disk is

cooler and hence gas turbulent velocities are lower.

Simulations show that grain growth to centimeter

sizes requires fragmentation thresholds larger than 10 or

20 m s−1, depending on the disk turbulence. Although

those values seemed too high according to earlier lab-

oratory experiments (Blum and Wurm, 2008), recent

work shows that values of Vfrag of several tens of m s−1

are now realistic when considering collisions of porous

aggregates or mass transfer in high mass ratio collisions,

or a combination of both (see Sect. 2). Even if these two

cases represent only a fraction of all grain collisions in

protoplanetary disks, they may be enough to ensure that

at least some of the dust population manages to grow to

eventually form planetesimals.

5. Synthetic images

In order to determine the impact of growth and frag-

mentation on the planet gap detectability with ALMA

and to assess whether the fragmentation threshold can

be constrained by observations, we computed synthetic

images from the resulting disk structure of each of our

simulations after 100,000 yr. We first used the 3D

Monte Carlo continuum radiative transfer code MC-

FOST (Pinte et al., 2006, 2009) to produce raw intensity

maps from the dust distributions. Dust grains are taken

to be homogeneous spheres and composed of astronom-

ical silicates (Weingartner and Draine, 2001), their opti-

cal properties are computed according to the Mie theory.

These maps were then passed to the CASA2 simulator

for ALMA, to obtain synthetic images for a given ob-

serving configuration (wavelength, angular resolution,

integration time). The procedure is described in detail

in Gonzalez et al. (2012).

To allow for a better comparison with the images

produced in the case of non-growing grains, we chose

the standard disk parameters of Gonzalez et al. (2012):

nearly face-on orientation, a distance d = 140 pc and

a declination δ = −23◦ (for which the source passes

through the zenith at the ALMA site) and their opti-

mal observing parameters for gap detection: integration

time t = 1 h and angular resolution θ = 0.1′′ for 4 differ-

ent wavelengths: 350 µm, 850 µm, 1.3 mm and 2.7 mm.

The images for pure growth and the four different frag-

mentation thresholds are shown in Fig. 4.

The most striking feature of these images is that the

gap is not always visible. One has to keep in mind

that the disk appearance at a given wavelength results

from a combination of the dust density and the grain

size. In the case of non-growing grains (Gonzalez et al.,

2012), computations chose grain sizes that contribute

the most to the ALMA wavelengths and the planet gap

was prominent in all cases. For growing and fragment-

ing grains, their sizes evolve and may end up outside

the optimal ALMA range (s ∼ 20 µm – 1 mm for

λ = 350 µm to 2.7 mm) for the bulk of the dust pop-

ulation. This is the case when grains can efficiently

reach large sizes: in the pure growth case or when

Vfrag ≥ 20 m s−1. Only a small fraction of grains have

the appropriate sizes in a thin annulus in the outer disk,

producing a faint (note the colorbar scales in Fig. 4) ring

2http://casa.nrao.edu
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Figure 4: Simulated ALMA observations of a disk viewed face-on at d = 140 pc and δ = −23◦ for an integration time of 1 h and angular resolution of 0.1′′. From left to right: Simulations with

pure growth and with fragmentation for Vfrag = 10, 15, 20 and 25 m s−1. From top to bottom: λ = 350 µm, 850 µm, 1.3 mm and 2.7 mm. The scale on each image is in arcseconds, with the beam

size represented at its bottom left corner, and the colorbar gives the flux in mJy/beam. The planet’s position is marked with a cross.

1
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in the images. For the pure growth case, the density is

so high in the inner ring that, even though the grain sizes

are outside the optimal range, the tail end of their emis-

sion is still large enough to be detectable. It is only for

Vfrag = 10 and 15 m s−1 that there is a sufficiently large

population of grains of the right size on both sides of the

gap for them to appear bright, thus producing a promi-

nent gap. Large fragmentation thresholds, producing

large solids and reducing the small grain reservoir, are

therefore favorable for planet formation but not for disk

observations and in particular for planet gap detection.

Note that for Vfrag = 15 m s−1, a second ring is visible

exterior to the outer gap edge. It shows the population of

grains that grew slowly in the outer disk, separated from

the gap edge by a region of efficient fragmentation. The

occurrence of such multiple rings, as recently observed

in the HL Tau disk (Brogan et al., 2015), will be ex-

amined in a forthcoming paper. For Vfrag = 10 m s−1,

growth at the outer disk edge is too slow to produce

grains large enough to be visible at the ALMA wave-

lengths and only the bright ring at the outer gap edge

stands out (bright spots along the ring are due to the ren-

dering of a non-uniform azimuthal distribution of SPH

particles).

Finally, the differences between each case are not

significant enough to unambiguously discriminate one

from the other. Different values of Vfrag can produce

similar structures at different evolutionary times, for ex-

ample the outer population of growing grains causing

the exterior ring seen with Vfrag = 15 m s−1 at 100,000 yr

is similar to that seen for Vfrag = 20 m s−1 at 25,000 yr,

before it merged with the dust population at the outer

gap edge (Fig. 3, third row). The different disk inten-

sities may be interpreted as different total dust masses,

and the location of the observed ring by different planet

locations. The problem is too degenerate to reach firm

conclusions and determining the fragmentation thresh-

old therefore seems very difficult from submillimeter

observations alone. Data from other wavelength ranges,

tracing different grain sizes, can bring additional con-

straints.

6. Conclusion

We have run 3D hydrodynamical simulations of the

evolution of dust grains in a protoplanetary disk con-

taining a planet in order to study the effect of growth and

fragmentation on the formation of large solids at “parti-

cle traps” located at the edges of planet gaps. Such traps

have been proposed as a solution to overcome the barri-

ers of planet formation and allow the formation of plan-

etesimals. We implemented a simple model for frag-

mentation, using a locally monodisperse size distribu-

tion, and found that it strongly limits the growth of dust

grains even in the presence of dust traps and, in com-

bination with radial drift, contributes to the loss of the

inner disk. Only large values of the relative velocity

threshold for fragmentation, taken as a free parameter

(Vfrag ≥ 20 m s−1) allow grains to grow above centime-

ter sizes after 100,000 yr. The value of the fragmen-

tation threshold was usually thought to be only a few

m s−1, however recent experimental and numerical work

has shown that coagulation at large velocities is possible

under certain conditions (porous grains, or high mass ra-

tio collisions), opening a possible path to planetesimal

formation.

We produced synthetic ALMA images from our sim-

ulated disks and found that gap detection is made more

difficult by large values of the fragmentation threshold.

On the contrary, for intermediate values of Vfrag, a popu-

lation of slowly growing grains in the outer disk can pro-

duce a second ring exterior to the outer gap edge in the

ALMA images (after 100,000 yr for Vfrag = 15 m s−1 or

earlier for larger Vfrag), reminiscent of the multiple rings

observed in the HL Tau disk. However, discriminating

between different values of Vfrag from submillimeter im-

ages seems impractical without additional constraints.

In a forthcoming study, we will improve our growth

and fragmentation model by taking into account the

grain porosity and its evolution during collisions.
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