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ABSTRACT
In this paper, we consider a specific part of statistical machine translation: feature estimation
for the translation model. The classical way to estimate these features is based on relative
frequencies. In this new approach, we propose to use the concept of belief masses to estimate
the phrase translation probabilities. The Belief Function theory has proven to be suitable
and adapted for dealing with uncertainties in many domains. We have performed a series of
experiments to translate from English into French and from Arabic into English showing that
our approach performs, at least as well as and at times better than, the classical approach.
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1 Introduction

In statistical machine translation (SMT), there have been many works on smoothing translation
model probabilities (Foster et al., 2006; Kuhn et al., 2010), but few work on feature estimation.
(Chiang et al., 2009) proposed to add new features outside the translation model, but to the
best of our knowledge there is few research on a different way to estimate the features of the
translation model (TM). De Nero and Moore (DeNero et al., 2006; Moore and Quirk, 2007)
proposed some approaches that did not improve the translation. More recent works based on a
smooth Maximum-Likelihood estimate (Sima’an and Mylonakis, 2008) give better results. As
we consider the popular phrase-based approach, the TM corresponds to the phrase table in this
paper.

The phrase table is basically a list of possible translations and their probabilities for a given
source phrase. Each line or event of a phrase table is composed of a source and a target
language phrase pair. The events are supposed to be independent from each other. Phrase
tables may contain many features like phrase translation and lexical probabilities. In order to
estimate these probabilities, SMT uses very large corpora called bitexts, which are composed
of sentences translated from a source language into a target language. For each sentence, the
words of both languages are aligned according to the translation.

In the classical approach, the estimation of the probabilities is performed by the use of simple
count functions, based on relative frequencies. But it is possible to use other concepts to
estimate the features. In particular, many authors showed that the Dempster-Shafer theory (or
Belief Function theory) allows a more flexible representation of uncertainty than a probability
model (Smets, 1988; Cobb and Shenoy, 2006). For example, probabilities do not really take
into account the conflict between different translation hypotheses, especially in the case of
rare examples, or the global confidence in the translations. The belief function theory, as an
alternative to the probability theory, can take this into account. In this paper, we present an
original way to estimate the feature associated with a set of phrase pairs with the use of belief
functions.

This paper presents our first studies and results obtained with this new approach. Firstly, we
briefly recall the theory of SMT. In Section 3, we present our approach based on belief functions.
Then, we propose several experiments in order to show the effectiveness of our approach. At
last we conclude this paper and present some perspectives.

2 Background

2.1 General model for statistical machine translation

Let us assume that we are given a source sentence s to be translated into different target
sentences t i ∈ Ts, where Ts is the set of all observed translations of s in the phrase table. The
statistical machine translation (SMT) model uses a set of n feature functions fk, k = 1 . . . , n,
depending on the source and target word sequences, in order to estimate the best translation.
Typical feature functions include the translation and distortion model, a language model on
the target language and various penalties. Among all possible target sentences, the sentence is
chosen as follows:

t∗ = arg max
t i∈Ts

log

 
n∏

i=1

fk(t i , s)λk

!
, (1)

where each parameter λk is a coefficient to weight the feature function fk (Och, 2003). These
weights are usually optimized so as to maximize the translation performance on some devel-
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opment dataset. The work presented in this paper focuses on features used to estimate the
translation model.

2.2 Feature estimation in statistical machine translation

In the popular Moses toolkit (Koehn et al., 2007), the phrase table contains five features (Koehn,
2010): the phrase translation features and the lexical weighting for both translation directions,
and the phrase penalty. The phrase translation features are usually estimated using relative
frequency; the lexical weights are estimated by using the word-based IBM Model 1 of each
phrase pair. At last, the phrase penalty depends on phrase length. This feature is set by the user
to the same value ρ for each phrase. If ρ > e, longer phrases will be preferred over shorter
ones. Conversely, if ρ < e, shorter phrases will be preferred.

Source language (s) - fr Target language (t) - en
. . . . . .
étant donné un given a
étant donné un starting from an
étant donné given
étant donné given
étant donné starting from
étant donné starting
. . . . . .

Table 1: Example of phrase pairs extracted from a bitext.

Table 1 gives an example of phrase pairs extracted from a bitext and a small part of the
corresponding phrase table is presented in Table 2. In this example, the classical estimation of
the feature of the phrase translation pair “starting” given “étant donné” is equal to 0.25 and
the probability of “given” given “étant donné” is equal to 0.5. The inverse phrase translation
probability is estimated in the same way.

source (s) - fr seg cib (t) - en p(t|s) lex(t|s) p(s|t) lex(s|t)
. . . . . .
étant donné given 0.5 0.060147 0.333333 0.306373
étant donné starting 0.25 7.15882e-06 0.333333 5.19278e-05
étant donné starting from 0.25 7.15882e-06 0.333333 0.0277778
. . . . . .

Table 2: Extract of a translation table with parameters.

This classical way to estimate the phrase translation probability may have some draw-
backs. When some unique phrase translation pair occurs many times, like the pair
“la maison blanche|the white house”, the phrase translation probability estimation is equal to 1.
But in other situations, occurrences are very rare and ambiguous at the same time. For example,
let us assume that for the French word “dents” (which should be translated as “teeth” in En-
glish), two contradictory pairs are available in the phrase table: “dent|teeth” and “dents| jaws”.
These events may both have a probability estimation equal to 1 because they occur only once.

Even though the estimation of the inverse phrase translation pair may balance this problem, if
the event is observed only once in either translation direction, the inverse estimation is useless.
The goal of this work is to propose a new way to estimate the translation features in both
translation directions. Fortunately, thanks to alternative theories to the probability theory, it
is possible to improve these estimations. One of these theories is particularly suited to deal
with uncertainties: the theory of belief functions, which has been developed for thirty years.
This theory has been successfully applied in several domains such as speaker identification
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ms(starting) = p(starting|étant donné) ∗ p(given|étant donné) ∗ p(starting from|étant donné)
ms(starting) = 0.09375
ms(starting from) = 0.09375
ms(given) = 0.28125

Table 3: Example of the estimation of some phrase pair features with the TBM Theory (s =“étant
donné”)

(Petitrenaud et al., 2010) or classification (Elouedi et al., 2000). In this paper, we adapt some
concepts of this theory to our feature estimation problem.

3 Belief functions for SMT

In this section, we briefly present some notions of the belief function theory (Shafer, 1976;
Smets and Kennes, 1994) and we apply it to the problem of feature estimation. In this article,
we adopt the point of view proposed by Smets: the Transferable Belief Model (TBM) (Smets
and Kennes, 1994). The aim of this model is to determine the belief concerning different
propositions, from some available information.

3.1 Belief function theory

Let Ω be a finite set, called frame of discernment of the experience. The representation of
uncertainty is made by the means of the concept of belief function, defined as a function m
from 2Ω to [0,1] as

∑
A⊆Ω

m(A) = 1. The quantity m(A) represents the belief exactly allowed to

proposition A. The subsets A of Ω such that m(A) > 0 are called focal elements of m. In the
very particular case when Ω is the only focal element (i.e. m(Ω) = 1 and ∀A 6= Ω, m(A) = 0),
the belief function expresses a total lack of information on the frame of discernment. This is
one of the essential differences with the probability theory. In general, the total absence of
information would be represented by a uniform distribution on Ω in probability theory. One
of the most important operations in the TBM is the procedure of aggregating information to
combine several belief functions defined in a same frame of discernment (Smets and Kennes,
1994). In particular, the combination of two belief functions m1 and m2 independently defined
on Ω using the conjunctive binary operator ∩, denoted as m′ = m1 ∩m2, is defined as (Smets
and Kennes, 1994) :

∀A⊆ Ω, m′(A) =
∑

B∩C=A

m1(B) ∗m2(C). (2)

Note that this combination operation may produce a non-null mass on the empty set ;. The
quantity m′(;) represents the mass that cannot be allocated to any proposition of Ω. In this case,
m′(;) also measures the conflict between the belief functions m1 an m2. Since the operator ∩ is
commutative and associative, it is easy to define the combination of n functions m1, . . . , mn on
Ω by:

m= m1 ∩ . . .∩mn =
n⋂

i=1

mi , (3)

with m(A) =
∑

A1∩...∩An=A

n∏
i=1

mi(Ai), ∀A⊆ Ω. Finally the function m captures the global infor-

mation concerning the experience.
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3.2 Belief functions as features for the translation model

Here, we propose to use the TBM to estimate the phrase translation features. First, for a given
source s, each target t i ∈ Ts gives a piece of information for the translation and can be described
by a belief function mi

s, such as: 



mi
s({t i}) = p(t i |s)

mi
s(Ts) = p(t i |s),

(4)

where p(t i |s) = 1− p(t i |s). The belief function mi
s has only two focal elements: t i , and Ts.

The mass on Ts expresses a confidence degree for this piece of information. We combine the
information defined by all the translation hypotheses concerning s, thanks to the conjunctive
obtained by the following straightforward formula:

ms =
⋂
t∈Ts

mi
s. (5)

The resulting mass concerning t i is obtained by the following formula (cf. Equation 3):

ms({t i}) = p(t i |s) ∗
∏

tk∈Ts\{t i}
p(tk|s). (6)

Note that
∑
t i∈Ts

ms({t i}) = 1−m(Ts)−m(;) < 1 generally. The mass m(Ts) and m(;) can be

interpreted respectively as the general ignorance degree and the level of information conflicting
concerning the translation of s. Then we obtain our feature estimation defined in Equation 1 by:
f (t i , s j) = ms j

({t i}). In the same way, we obtain the inverse feature estimation by the following
equation:

mI
t({s j}) = p(s j |t) ∗

∏
sk∈St\{s j}

p(sk|t), (7)

where St is the set of possible sources for target t. If we apply these formulas to the example
presented in Tables 1 and 2, the new estimation of the features associated with the phrase
translation pairs are computed in Table 3. Note that if p(t i |s) = 1, the belief masses for the
other hypotheses become zero (cf. Equation 6). The belief mass indicated in this equation may

be modified as follows: ms({t i}) =
1

1+ 1
|s|

, where |s| denotes the count of s. Thus, ms(t i) < 1

but ms(t i) tends to 1 when the information concerning s increases. Finally, the optimized target
sentences are obtained by Equation 1.

4 Experimental design

As presented before, the new approach with the TBM is applied only on the phrase translation
features. Therefore, in all our experiments, we have removed the lexical features from the
phrase tables of all the translation models. We performed several experiments on various
language pairs with various kinds of corpus kind described in the next part. The metrics used
are the BLEU score (Papineni et al., 2002) and the TER metric (Snover et al., 2006).

4.1 Data

Several data sets were used in our experiments, with various language pairs and various kind
of data (e.g. news, scientific papers). A complete description of all the corpora presented in this
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part is shown in Table 4. The framework used in the evaluation of the WMT task contains a set
of several corpora. The corpora used in our experiments are described in Table 4. The training
corpora used are Europarl 7 (eparl7), News-commentary 7 (nc7).

corpus AbsTrain AbsDev AbsTest
Task language fr en fr en fr en
COSMAT # of sentences 5141 1083 1102

# of words 135K 120K 28K 25K 28K 25K

corpus nc7+eparl7 nwtst2010 nwtst2011
Task language fr en fr en fr en
WMT # of sentences 2M 2489 3003

# of words 65,7M 59M 62k 70k 75k 84,5k

corpus train nist09-nw nist08-nw
Task language ar en ar en ar en
Ar-En # of sentences 184K 586 813

# of words 4.8M 5M 23K 23K 29K 28K

Table 4: Description of the bitexts and development (or tuning) and test corpora.

The corpus from the French ANR project COSMAT1 is composed of a collection of abstracts
of PhD Theses in both French and English (Lambert et al., 2012). These abstracts have been
classified according to several topics. In our experiments, we selected only the topic of computer
science.

The last set of data concerns the translation of Arabic news into English. Following the GALE
program, the DARPA launched a new 5 year language technology program called Broad Opera-
tional Language Translation program (BOLT). The goal of this project is to create a technology
capable of translating multiple foreign languages in all genres, to retrieve information from the
translated material, and to enable a bilingual communication via speech or text from Arabic
and Mandarin into English. We used as the development corpus the news part of the NIST
2009 evaluation (nist09-nw) and as the test corpus the NIST 2008 evaluation (nist08-nw). The
system ensue from this corpus could be used in the NIST evaluation.

4.2 Stability test

In order to have a more reliable precision in our experiments, we performed several optimiza-
tions with random initialisation toward the BLEU score for each experiment (Clark et al., 2011).
Following this method, three runs of Minimum Error Rate Training (MERT) (Och, 2003) and
Margin Infused Relaxed Algorithm (MIRA) (Chiang et al., 2008, 2009) were made. Then, the
result is an average of these three runs and the standard deviation is given between parenthesis
next to the scores. Both optimization approaches were used to observe how these features are
influenced by the process.

4.3 Results

Tables 5, 6 and 8 show the results obtained with the classical approach and with our approach
based on the TBM theory. The Brevity Penalty is about 0.99 (0.01) for the two approaches in
each experiment.

First, we compare the classical (Proba.) and the TBM (Belie f ) approaches with the tuning
thought MERT. According to the French-English WMT (Table 5), we can observe a slight
improvement of the BLEU score when the translation is from French into English. The Belie f

1http://www.cosmat.fr
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optimization process MERT MIRA
corpus approach BLEU TER BLEU TER
Translation direction: fr7→en
nwtst2010 Proba. 27.42 (0.04) 54.50 (0.03) 27.22 (0.04) 54.48 (0.04)
(Dev) Belief 27.47 (0.06) 54.46 (0.03) 27.21 (0.04) 54.53 (0.03)

Proba.+Belief 27.43 (0.05) 54.61 (0.09) 27.34 (0.01) 54.54 (0.05)
nwtst2011 Proba. 27.69 (0.07) 53.85 (0.04) 27.73 (0.04) 53.75 (0.05)
(Test) Belief 27.72 (0.03) 53.87 (0.06) 27.79 (0.03) 53.74 (0.04)

Proba.+Belief 27.59 (0.11) 53.95 (0.12) 27.79 (0.04) 53.80 (0.06)
Translation direction: en 7→fr
nwtst2010 Proba. 26.55 (0.05) 58.67 (0.03) 26.41 (0.04) 58.44 (0.21)
(Dev) Belief 26.51 (0.09) 58.88 (0.06) 26.42 (0.08) 58.58 (0.11)

Proba.+Belief 26.64 (0.05) 58.66 (0.20) 26.53 (0.06) 58.42 (0.07)
nwtst2011 Proba. 28.29 (0.31) 56.74 (0.19) 28.59 (0.05) 56.18 (0.15)
(Test) Belief 28.39 (0.07) 56.88 (0.06) 28.72 (0.03) 56.28 (0.05)

Proba.+Belief 28.47 (0.06) 56.72 (0.21) 28.74 (0.06) 56.06 (0.12)

Table 5: BLEU and TER scores obtained on the WMT task.

approach can be considered as efficient as the classical one. The performance gain is more
visible when the translation is from English to French and can reach about 0.18 BLEU point on
the test corpus. In Table 6, the experiment shows a decrease of the two scores (respectively 0.1
and 0.15) on the tuning corpus. Contrary to the tuning corpus, an improvement of 0.1 BLEU
point and 0.08 point of TER is visible on the test corpus. In the last experiment proposed on
the COSMAT corpus (Table 8), we can observe a decrease only on the tuning corpus when we
translate French into English. On the test corpus, the improvement is about 0.1 point on both
BLEU and TER score. When the translation is from English into French, the increase is about
0.04 BLEU point on both development and test corpus.

optimization process MERT MIRA
corpus approach BLEU TER BLEU TER
nist09-nw Proba. 33.81 (0.14) 47.27 (0.13) 34.04 (0.07) 48.51 (0.19)
(Dev) Belief 33.71 (0.07) 47.42 (0.03) 34.11 (0.03) 48.08 (0.34)

Proba.+Belief 33.74 (0.14) 47.56 (0.33) 34.30 (0.06) 48.14 (0.12)
nist08-nw Proba. 26.99 (0.09) 57.37 (0.18) 26.51 (0.09) 58.54 (0.25)
(Test) Belief 27.10 (0.08) 57.29 (0.10) 26.83 (0.14) 57.71 (0.32)

Proba.+Belief 26.90 (0.09) 57.65 (0.28) 26.73 (0.13) 58.24 (0.36)

Table 6: Results for the translation from Arabic into English.
Regarding the results, the new approach is at least as efficient as the classical one. When we
look at the entropy of each phrase table, and the various translations produced by the systems,
we can observe better translations in the two approaches like in the example given in Table 7.
This example shows us how the combination takes the best of the two approaches.

Source ils permettent la réutilisation du code de gestion de la duplication et de la cohérence .
Reference they allow reuse of replication and consistency management code .
Proba. they allow the reuse of the code of management and replication consistency .
Belief they allow the reuse of the code of replication and the consistency .
Proba.+Belief they allow the reuse of the code of replication management and consistency .

Table 7: Example of translation from French into English.
This has lead us to combine the two approaches (Proba.+ Belie f ) in all experiments. The
increase is visible in the WMT task on the translation of English into French about 0.2 BLEU point
on the tuning corpus and 0.15 BLEU point on the test corpus. With the COSMAT experiment
in table 8, in both translation directions when using the combined approaches, we observe an
increase of the BLEU score.

These experiments show us this novel approach can be considered as comparable to the classical
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optimization process MERT MIRA
corpus approach BLEU TER BLEU TER
Translation direction: fr7→en
AbsDev Proba. 35.83 (0.03) 47.64 (0.20) 35.54 (0.03) 47.98 (0.05)

Belief 35.82 (0.06) 47.89 (0.04) 35.66 (0.04) 47.71 (0.03)
Proba.+Belief 35.93 (0.06) 47.80 (0.05) 35.72 (0.04) 47.72 (0.04)

AbsTest Proba. 43.02 (0.11) 42.73 (0.17) 43.00 (0.01) 42.61 (0.03)
Belief 43.13 (0.09) 42.66 (0.05) 42.81 (0.10) 42.64 (0.00)

Proba.+Belief 43.27 (0.17) 42.62 (0.12) 42.95 (0.04) 42.63 (0.01)
Translation direction: en7→fr
AbsDev Proba. 41.95 (0.20) 45.68 (0.39) 42.06 (0.01) 46.23 (0.03)

Belief 41.99 (0.18) 46.25 (0.20) 42.06 (0.07) 46.17 (0.06)
Proba.+Belief 42.12 (0.10) 46.08 (0.10) 42.18 (0.12) 46.03 (0.04)

AbsTest Proba. 33.33 (0.09) 52.22 (0.82) 33.15 (0.05) 53.04 (0.05)
Belief 33.37 (0.08) 52.83 (0.28) 33.26 (0.08) 52.92 (0.03)

Proba.+Belief 33.56 (0.10) 52.72 (0.20) 33.45 (0.06) 52.81 (0.08)

Table 8: Results obtains on the COSMAT Task.

approach and can be more efficient under certain conditions. But for all the systems tuned
with MERT, there is sometimes a high standard deviation of about 0.2 BLEU point and 0.3 TER
point. Recent MIRA experiments (Cherry and Foster, 2012) show a lower deviation of the score
and a better robustness than MERT. All the experiments were rerun with MIRA in order to
observe a smaller deviation and a better precision in our experiments; this is the second set of
experiments shown in the various tables.

The new set of experiment shows an improvement especially for the WMT results (Table 5):
the combination of the two approaches obtains 0.15 BLEU point and 0.1 TER point more than
the classical approach. The improvement, visible in Table 6, reach respectively 0.26 and 0.2
BLEU point and 0.37 and 0.3 TER point on the tuning corpus and the test corpus. At last, in the
COSMAT experiment, a decrease is visible when we translate French into English on the test
corpus of 0.05 BLEU point. But when we translate English into French, the increase can reach
0.3 BLEU point and 0.23 TER point on the test corpus. It seems the MIRA process give a better
advantage to the combination of the two approaches over the classical approach. We can also
observe better results comparing the two optimizations in the WMT task when we translate
from English into French.

Conclusions and Further Work

In this paper, we presented our first results on the application of the Transferable Belief Model to
Statistical Machine Translation. The approach was used to estimate only the phrase translation
pair features. The results obtained on the different experiments lead us to combine the new
and the classical approaches. The score of the translations obtained with this combination is
improved, and this also leads to better translation quality according our experiments. This
combination of approaches encourages us to work further. For example, this new approach
could be applied as a secondary phase-table in order to rescore the first one. This rescoring could
be done during the decoding process on the graph of hypothesis or on the n-best translations
output as proposed in several works on language model adaptation and rescoring (Bacchiani
and Roark, 2003; Schwenk et al., 2006; Bulyko et al., 2007).
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