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are the coordinates of the plane representing the projected area
of the membrane. In single component membranes, where κ

and κ are constant, the term in the Hamiltonian proportional
to κ is zero when the membrane is a free-floating sheet. In
the Fourier space representation the height-height correlation
function in a sheet-like membrane is given by

〈h̃(k)h̃(k′)〉 = (2π)2kBT δ(k + k′)
κk4

. (2)

This means that the bending rigidity can be determined from
fluctuation-mode analysis of tensionless membranes [7, 8] (or
in practice membranes with very low tension). The bending
rigidity can also be estimated via mechanical measurements,
such as by pulling cylindrical tethers from spherical vesicles
[9]. Experimental results show that membrane bending rigidi-
ties typically lie between 3–40 kBT [10]. Experimentally es-
timating the Gaussian rigidity is not easy (see [11] and the
references therein). However, the pure bending energy of a
perfectly spherical vesicle, where no fluctuations in the radius
occur, can be shown to be given by [12]

HS = 4π(κ + 2κ). (3)

The thermodynamic stability of flat membranes obviously re-
quires that κ > 0, to prevent the onset of large unstable fluctua-
tions in one direction while the other remains flat. At the same
time stability against formation of vesicles from a flat mem-
brane and against the growth of saddles of mean zero curvature
means that

0 > κ > −2κ.. (4)

In reference [11] both numerical simulation based and exper-
imental measurements for κ are reviewed for both bilayer and
monolayer systems. The results given for bilayer systems give
κ/κ ∈ [−0.9, −0.5]. For monolayers the results are predomi-
nantly such that κ/κ ∈ [−0.9, −0.5]. It seems reasonable that
as the bending rigidities κ and κ have their origins in the same
physical properties of the lipids that they should be of the same
order of magnitude.

The first study of fluctuation-induced interactions due to
the spatial modulation of bending rigidities was by Goulian,
Bruinsma and Pincus [3] who considered the interaction
between inclusions, such as proteins, which modify the local
rigidities (but do not favor a local mean rigidity). In the case
where the rigidity differences due to inclusions are small with
respect to the background or mean rigidities (κ, κ0), i.e. if we
write

κ(x) = κ0 + ∆κ(x) ; κ(x) = κ0 + ∆κ(x), (5)

and assume that ∆κ and ∆κ are small, one can apply a
pairwise approximation, which is exact to second-order in
the deviation from the background rigidities, based on the
cumulant expansion of the partition function. In [3] it was
found that the effective two-body interaction between regions
deviating from the mean or background rigidities is given by

H2 = T

4π2κ2
0

∫
dxdx′ ∆κ(x)∆κ(x′)

|x − x′|4 . (6)

For regions (say discs) whose centers of area are separated by
a distance R and are of area S1 and S2 respectively, we see that

when R is much larger than the size of the regions, the first-
order term in a multipole expansion of the energy between the
two regions is given by

H2 = T S1S2(∆κ1∆κ2 + ∆κ2∆κ1)

4π2κ2
0 R4

. (7)

We first notice that this is a long-range interaction, and it is
clearly a fluctuation-induced interaction which can be inferred
from its proportionality to T . Secondly, we see that at the
pairwise-order, we see that one must have both variations in
κ(x) and κ(x) in order to have an interaction. In the case where
both inclusions are of the same type, so that ∆κ1 = ∆κ2 = ∆κ

and ∆κ1 = ∆κ2 = ∆κ , we see that if ∆κ and ∆κ have the
same sign, then the interaction is repulsive, where as if they
have opposite signs the interaction is attractive. This is an in-
triguing result. To to date, other than via direct calculation,
no one has proposed a physical explanation for the sign of the
interaction.

The same problem can also be analyzed for stiff inclusions
and in general in the limit where the variations in the rigidity are
not small [4]. Stiff inclusions can be modeled by imposing the
condition that membrane be locally flat for a variety of objects,
such as discs and rods. Inclusions which modify the rigidity
in a point-wise manner, via the delta-function-like changes to
the rigidity, can be analyzed exactly and in principle for any
number of objects. All of these studies consistently confirm
the long-range interaction predicted in [3]. More recently,
methods developed for the study of the quantum electromag-
netic Casimir effect based on a scattering matrix approach have
been employed to examine the interaction between two discs in
a membrane [5]. Within this formalism, all n-body effects be-
tween the two discs can be taken into account; in the tensionless
limit, it is found that the interaction between two discs of radius
a behaves, for large separations R between the disc centers, as

H2 = −T A
a4

R4
(8)

where the coefficient A is given by

A = 4
κ0 − κ

4κ0 + κ0 − κ

(
κ0 − κ

4κ0 + κ0 − κ
+

κ − κ0 + 1
2 (κ − κ0)

2κ + κ − κ0

)
,

(9)
where κ and κ are the rigidities of the disc and κ0 and κ0 are
the background rigidities of the surrounding membrane. We
see again that, in order to have an interaction, a variation in the
Gaussian curvature is necessary. However, at this higher order
the interaction persists even if κ is constant.

The computation of the fluctuation-mediated interaction
in this simple two-body system is on the face of it rather com-
plicated. Practically, apart from two-body interactions, one
would prefer to know how to describe, e.g. phase diagrams
for many-particle systems, specified by macroscopic quanti-
ties, such as their average density, interacting via fluctuation-
induced interactions. One example would be to examine a
membrane containing a finite density of proteins that locally
modify the bending rigidities. Another would be a model
where the membrane is composed of two lipid species that
have different rigidities, which is the case we will study below.
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Few studies exist on the thermodynamics of systems with
many inclusions [13–15], though it has been shown in both
Monte Carlo simulations and using various approximation
schemes, such as mean-field theory coupled with Monte Carlo
simulations and cumulant expansions, that fluctuation-induced
interactions can have a significant influence on the organiza-
tion of inclusions in lipid membranes. The studies described
in [13–15] are, however, quite different from that expounded
here. First, we consider a free-floating tensionless membranes
that are not subject to external potentials, such as a harmonic
confining potential [13], or to an imposed external pressure
[14]. In [15] the effect of variations in bending rigidity for

membranes under tension was considered, but no variation in
Gaussian rigidity was included. Secondly, the underlying for-
mal analysis is also quite different from these previous stud-
ies. As mentioned above, the simple example we will consider
here is that of lipid mixtures where the different lipid com-
ponents have different rigidities. In principle this problem is
complicated by the fact that each leaflet of the membrane can
be composed of different lipid types. In this study we will as-
sume that the lipids on both leaflets are the same. However, the
method of analysis we propose here could be readily adapted
to a model for a genuine two-leaflet system, notably because
of its simplicity in application.

The most easily applicable theory to analyze phase tran-
sitions is the mean-field theory. While it has several quantita-
tive failings in critical systems, it is a useful tool to determine
phase diagrams and is the first choice of analysis in most prob-
lems. It, however, appears futile to apply mean-field theory to
fluctuation-induced interactions as in such systems there is no
mean field; for instance variations of the rigidities in the Hel-
frich Hamiltonian clearly do not break the up/down symmetry
of the membrane. In what follows we will demonstrate that
the Helfrich theory can in fact be written in such a way as to
allow the formulation of a mean-field theory that does capture
fluctuation-induced interactions and, moreover, in such a way
that the pairwise result of [3] is perfectly taken into account.
We will show how this mean-field theory modifies the stan-
dard regular solution mean-field theory à la Flory describing
demixing transitions.

In addition, it is well known that Casimir-like fluctuation-
induced interactions often lead to divergent free energies that
need to be regularized by introducing an ultra-violet or short
distance cut-off. For example, in the electromagnetic Casimir
effect there are surface and bulk divergent terms in the energy,
that nevertheless do not contribute to the Casimir force if the
bodies keep the same form and composition. In the theory
we develop, we need to define a membrane patch size that is
of the order of a lipid size and to specify the composition of
the patch in terms of the lipid type occupying the patch. At
the same time, this patch size corresponds to a lattice spacing
for the Helfrich elastic Hamiltonian and thus plays the role of
the natural cut-off for the membrane fluctuations. Therefore,
both the underlying lattice model for the lipid composition of
the system and the lattice on which the membrane fluctuations
take place are the same. This means that the cut-off will only
set an overall energy scale and the phase diagram will thus be
cut-off independent.

The paper is organized as follows. In section 2 we discuss
fluctuation-induced interactions in the pairwise approximation
and also show that the problem of tensionless membranes with
constant Gaussian curvature can be solved exactly. Then in
section 3 we discuss, not only how a mean-field theory for
fluctuation-induced interactions can be formulated but also
demonstrate the pitfalls associated with the most naive mean-
field theory. We show how the correct pairwise interaction
physics can be implemented at a mean-field level by changing
the variables of the field theory and making it effectively non-
local. This reformulation of the theory has two main advan-
tages: it not only means that the mean-field theory captures
the two body interactions correctly, but it also explains why
differences in the Gaussian rigidity are necessary to generate
interactions. This latter point has been understood in slightly
different contexts by a number of authors [13, 14, 16], but we
revisit it here as it is of vital importance in constructing the
theory and may also have experimental consequences. In sec-
tion 4 we show how the mean-field analysis of the membrane
fluctuations can be coupled with the standard mean-field the-
ory known as regular solution theory, in a simple lattice based
model, to see how the mean-field phase diagram is modified by
membrane fluctuations. In other words, we see how the phase
diagram of a perfectly flat membrane, adhered to a flat surface
or held under tension in a frame, is modified if it is allowed to
fluctuate under zero tension. We discuss the predicted modi-
fication of the phase diagram and notably the effect of height
fluctuations on mixing-demixing temperatures. The underly-
ing mean-field theory is then resummed by formulating it varia-
tionally in section 4.2. Though the basic results are unchanged
at the two-body level, this resummation predicts subtle higher
order differences from the basic mean-field theory, notably the
presence of interactions in the case where the bending rigidity
is constant. Finally, we discuss possible experimental verifi-
cation of our predictions and directions for further study.

2. Pairwise approximation and exact results for
fluctuation-induced interactions

There are many examples of fluctuation-induced interactions.
Such interactions are generated between objects that interact
with or modify the fluctuations of a quantum or thermal
field [17]. The most important and best known of these
interactions are van der Waals forces, which in the appropriate
limit yield the celebrated Casimir force [22]. Both dielectrics
and conductors are coupled to the electromagnetic field;
however, they do not break the symmetry of the field as charges
would. Mathematically, and indeed physically, their effect
can be taken into account via a quadratic coupling to the
electromagnetic field. However, this quadratic coupling means
that the naive mean-field of the theory, obtained from taking
the saddle point of the Hamiltonian, is zero.

We begin by considering the case of a tensionless mem-
brane but where the Gaussian bending rigidity is constant and
thus does not contribute to the elastic energy. We thus have

HHel(∆κ = 0) = 1

2

∫
dxκ(x)

[∇2h(x)
]2

. (10)
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If we consider the case where the variations of κ with respect
to the background value κ0 are small, we can compute the par-
tition function due to elastic fluctuations using the cumulant
expansion as in [3]. The one-body terms are independent of
the arrangement of the particles responsible for the variation
of κ , the effective two body interaction is, however, given by

H2(∆κ = 0)

= −T

4

∫
dx dx′∆κ(x)∆κ(x′)

[∇4GHel(x − x′)
]2

, (11)

where GHel is the Green’s function obeying

− κ0∇4GHel(x − x′) = −δ(x − x′). (12)

This gives

H2(∆κ = 0) = − T

4κ2
0

δ(0)

∫
dx dx′∆κ(x)∆κ(x′)δ(x − x′)

= − T

4κ2
0

δ(0)

∫
dx∆κ(x)2, (13)

which is a zero-range interaction and does not change the equi-
librium configurations of the particles if they are not permitted
to overlap.

We can demonstrate this lack of interaction at all orders by
changing variables in the partition function. If we define a new
variables u(x) = −∇2h(x) (minus the local average curvature)
the resulting Helfrich partition function, up to a Jacobian factor
which is independent of the rigidity, becomes

ZHel(∆κ = 0) =
∫

d[u] exp

(
−β

2

∫
κ(x)u2(x) dx

)
,

(14)
Now making another change of variableu(x) = w(x)/

√
βκ(x),

we find that the contribution to the Helfrich free energy from
particle configurations is given by

FHel(∆κ = 0) = T

2

∑
x

ln (βκ(x)) → T

2a2

∫
ln (βκ(x)) dx,

(15)
where we have evaluated the functional integral on a lattice of
spacing a and then taken the continuum limit. This result tallies
with the contribution of electromagnetic field fluctuations to
all orders in n-body interactions within a mean-field theory
[19].

For a mixture of lipid types 1 and 2 with volume fractions
φ and 1 − φ and bending rigidities κ1 and κ2 respectively, we
then find

FHel(∆κ = 0) = NT

2
[φ ln(βκ1) + (1 − φ) ln(βκ2)] (16)

where N = A/a2 is the number of independent membrane
patches for a two-dimensional membrane of projected area A.
Note that from this free energy we find that the internal energy
of the system is given by

U = NT

2
, (17)

that is to say the energy of N membrane patches with
an underlying quadratic Hamiltonian as expected from the

equipartition of energy. Thus again we see that there is no
interaction. This has been pointed in [13, 14] for the case of
membranes and in [16] for the case of semi-flexible polymers.
The point here is that the physically relevant variable is the
mean local curvature and that it is statistically independent
point by point. There is, however, an additional subtle point,
if the field h has boundary conditions, then the change of
variables made is not strictly valid. If we have free boundaries
but with a line tension, the total length of the membranes
perimeter will depend on the position of the particles, and thus
the interaction induced by rigidity variations in the absence
of surface tension will give a sub-extensive change in the free
energy proportional to the perimeter of the membrane. We thus
see that, in the absence of surface tension and variations in the
Gaussian rigidity, the membrane fluctuations do not induce
interactions between regions of different bending rigidity.

It is also interesting to note that one can compute the
height-height correlation function for the membrane in this
tensionless constant Gaussian rigidity case. In terms of the
variable w the height is given by

h(x) =
∫

G(x − x′′)
w(x′′)√
βκ(x′′)

dx′′ (18)

where
∇2G(x − x′′) = −δ(x − x′). (19)

The measure on the field w is then simply given by

P [w] = exp
(− 1

2

∫
w2(x)dx

)
∫

d[w] exp
(− 1

2

∫
w2(x) dx

) . (20)

From this it is easy to see that

〈h(x)h(x′)〉 = T

∫
dx′′ G(x − x′′)G(x′′ − x′)

κ(x′′)
. (21)

Consequently in a statistically translationally invariant system
the spatially averaged correlation function is given by

〈h(x)h(x′)〉 = T

∫
dx′′ G(x − x′′)G(x′′ − x′)

κe

. (22)

where

κe = 〈 1

κ
〉−1; (23)

the effective bending rigidity is then given by the harmonic
mean. We note that Jensen’s inequality implies that κe � 〈κ〉,
thus the membrane is softened with respect to a pure one with
κ = 〈κ〉, the arithmetic mean of the rigidities. Equivalently
for small k in Fourier space we rewrite the height correlator as

〈h̃(k)h̃(k′)〉 = (2π)2T δ(k + k′)
κek4

. (24)

The question of the effective bending rigidity for a model
with constant κ at zero tension but in a quadratic confining
potential was addressed by Netz and Pincus [13]. In their cu-
mulant expansion they perturbatively computed the effective
bending rigidity for a quenched distribution of fluctuations of
κ(x); their perturbative result can be rewritten as the harmonic
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mean. The formula equation (23) has also been proposed
in [18] by invoking more phenomenological arguments. The
agreement here is logical as the distribution of κ is effectively
decoupled from the membrane fluctuations. The result that κe

is the harmonic mean is a zero order result. When fluctua-
tions in κ , a non-zero surface tension or quadratic coupling are
included the value of κe will be suitably renormalized.

3. Mean-field theory for fluctuation-induced
interactions

We have seen that the Helfrich Hamiltonian HHel depends on
the local configuration of the membrane components via the
functions κ(x) and κ(x). The total Hamiltonian on a lattice
will have two components, a direct interaction between the
membrane components HD plus the membrane elasticity term.
We thus write the total Hamiltonian as

HT = HD + HHel. (25)

The Hamiltonian for HD is that of a lattice gas and depends
on the occupation number of, say, membrane or lipid type k at
the site i. We can, for instance, define the variable ni which
is equal to 1 at site i if the lipid is of type 1 and 0 if it is of
type 2. The lipids of different types will have rigidities denoted
by κi and κi . This model can, of course, be generalized to any
number of lipid types. The simplest mean-field approximation
one can make is to use a non-interacting lattice gas as the trial
Hamiltonian for the particles on the lattice. We have then the
total partition function given by

ZT = Tr
∫

d[h] exp(−βHD − βHHel), (26)

where Tr denotes the sum over the particle configurations on
the lattice.

The mean-field approximation to this partition function is
given by

ZMF =
∫

d[h]Z0 exp (−β〈HD − H0〉0 − β〈HHel〉0) ,

where 〈·〉0 indicates the average with respect to the non-
interacting lattice gas and Z0 is the partition function for the
lattice gas. The mean-field partition function also bounds the
exact partition function from below and thus the mean-field
free energy gives an upper bound for the free energy. We then
remain with

ZMF = exp(−βFMFD)

∫
d[h] exp (−β〈HHel〉0) , (27)

where FMFD is the mean-field free energy for the system
without height fluctuations (MFD signifying mean-field-direct
for the direct interactions in the lattice model). It will have the
form

FMFD = Nfmfd(φ) (28)

where N is the number of lattice sites. For example, for a
symmetric binary mixture undergoing a continuous demixing

transition, regular solution theory has a free energy per lattice
site given by [20]

βfmfd(φ) = χdφ(1 − φ) + φ ln(φ) + (1 − φ) ln(1 − φ) (29)

where φ and 1 − φ are respectively the factions of lipids
of type 1 and 2, and χd is the Flory parameter measured in
units of T . When χd > 0 the interaction favors demixing of
the system. The free energy FMFD thus describes the mean-
field free energy of a confined system which is not allowed to
fluctuate. This could be achieved for instance by applying a
large lateral tension that generates an effective surface tension
which suppresses all fluctuations.

It now remains to compute the term 〈HHel〉0. However,
this mean-field approximation is only accurate to first order in
the cumulant expansion, and we know that fluctuation-induced
interactions only appear at second order. A mean-field approx-
imation thus appears to be rather hopeless. Furthermore, if
we use this naive mean-field approximation, we find that the
membrane contribution to the total free energy (the membrane
mean-field—MMF- free energy) is, up to a constant indepen-
dent of its composition, given by

FMMF = −T ln

[∫
d[h] exp (−β〈HHel〉0)

]
= T N

2
ln(〈κ〉0)

= T N

2
ln (φκ1 + (1 − φ)κ2) , (30)

where we have carried out the functional integral in Fourier
space with the lattice cut-off −π

a
< kx, ky < π

a
, and note that

the projected area A and N are related by N = A/a2. The
term proportional to κ gives zero upon averaging and thus the
result is independent of κ . This is clearly an undesirable fea-
ture. Our analysis in section 2 shows that variations in κ are
essential to induce fluctuation interactions. Furthermore, it is
straightforward to see that when κ is constant, the mean-field
approximation predicts a spurious tendency of membrane fluc-
tuations to favor demixing, while our exact result shows that,
in this case, membrane fluctuations play no role in how the
membrane is organized.

Naive mean-field theory applied to this problem is thus
incapable of capturing fluctuation-induced interactions even
at the pairwise level and in addition introduces an artifactual
tendency toward demixing that we know is not present in the
case where κ is constant. The solution to this problem is, as
in section 2, to express the membrane partition function in
terms of the variable w(x) = −√

βκ(x)∇2h. As we have
seen already, this change of variables does not change the
partition function as a function of its composition as long as
the overall composition is fixed. With this change of variables
the membrane partition function is given by

ZM = ZHel(∆κ = 0)

∫
d[w] exp

(
−1

2

∫
dxw2(x)

+
∫

dx dx′ dx′′κ(x)

[
∂2G(x − x′)

∂x2

∂2G(x − x′′)
∂y2

−∂2G(x − x′)
∂x∂y

∂2G(x − x′′)
∂x∂y

]
w(x′)w(x′′)√
κ(x)

√
κ(x′)

)
, (31)
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where G is the Green’s function defined in equation (19) and
the first term is that for a membrane with no differences in
Gaussian rigidity coming from the change of variables. Now if
we write the rigidities as small fluctuations about a background
field as in equation (5) and take just the first term in the
cumulant expansion of ZM written in the form of equation (31),
we find that

ZM = exp(−βH2), (32)

where the Hamiltonian H2 depends on the rigidity κ at
two points, given exactly by equation (6). Therefore by
reformulating the problem we have found a representation for
the membrane partition function that contains the second-order
cumulant expansion of the original representation in terms of
the height variable h in its first-order cumulant expansion. The
use of mean-field theory in this representation is thus clearly
superior. In addition, the mean-field result when κ is constant
also agrees with the corresponding exact result available for
this case. Note that in principle the second order term in
the cumulant expansion in this representation could contain
a pairwise interaction term of order ∆κ2. However one can
directly check that this term is zero, as should be the case.

4. Mean-field theory on a lattice

Here we consider the mean-field theory for tensionless
membranes regularized on a lattice. First we consider the
basic formulation of mean-field theory using the representation
that accounts for two body fluctuation-induced interactions.
Secondly we resum this basic result using a variational
reformulation of the problem, exploiting the solvability of
the model for any rigidity field κ(x) in the absence of spatial
variations of κ(x).

4.1. Basic mean-field theory

In this section we develop the mean-field theory suggested in
section 3 for a system which is regularized by placing it on
a lattice. We will take a square lattice with lattice spacing a.
The lattice membrane Hamiltonian can be expressed in terms
of the discrete operators Dx and Dy defined by

Dxf (x) = 1

2a
[f (x + a, y) − f (x − a, y)];

Dyf (x) = 1

2a
[f (x, y + a) − f (x, y − a)], (33)

and the lattice Laplacian

∆ = D2
x + D2

y. (34)

The membrane Hamiltonian is then given by

HHel = a2

2

∑
x

κ(x)[∆h]2+a2
∑

x

κ(x)(D2
xhD2

yh−[DxDyh]2).

(35)
As in the continuous case, we can rigorously perform the
change of variables u(x) = −∆h then w(x) = √

βκ(x)u(x).

to obtain a Hamiltonian in terms of the variable w that is
given by

βH ′
Hel = a2

2

∑
x

w2(x) + a2
∑

x,x′,x′′
κ(x)

[
D2

xGL(x, x′)

×D2
yGL(x, x′′) − DxDyGL(x, x′)DxDyGL(x, x′′)

]
× w(x′)w(x′′)√

κ(x′)
√

κ(x′′)
, (36)

where GL is the lattice Green’s function obeying

∆G(x, x′) = −δx,x′ . (37)

From the Fourier representation of the lattice Green’s function
[21] it is easy to show that at coinciding points

D2
xG(x, x) = −1

2
; D2

yG(x, x) = −1

2
;

DxDyG(x, x) = DyDxG(x, x) = 0. (38)

Now the mean-field approximation requires the computation
of 〈βH ′

Hel〉0, the average with respect to the non-interacting
lattice gas Hamiltonian. To do this we note that three-point
correlation functions for the free lattice gas depend on whether
or not the spatial points in the average coincide or not; thus we
have the general expression〈

κ(x)√
κ(x′)κ(x′′)

〉
0

= δxx′δx,x′′α+(δxx′ +δxx′′)β+δx′x′′γ +δ, (39)

where

α = A − 2B − C + 2D; β = B − D; γ = C − D; δ = D

(40)

with

A = 〈κ
κ

〉0; B = 〈 κ√
κ

〉0〈 1√
κ

〉0; C = 〈κ〉0〈 1

κ
〉0;

D = 〈κ〉0〈 1√
κ

〉2
0. (41)

Terms which contract the coordinate x with one of the oth-
ers are zero (such terms are present for κ constant and so are
zero). We now use the formulas in equation (38) to simplify
the remaining terms to find

〈βH ′
Hel〉0 = 1

2

∑
x

w2(x)

(
1 +

α + 2β

2

)
. (42)

The integral over the variables w(x) is then straightforward to
compute. We find that the part of the mean-field free energy due
to fluctuations and depending on the composition is given by

FMMF = T N

2

(
ln

(
1 +

1

2

[
〈κ
κ

〉
0
− 〈κ〉0〈 1

κ
〉0

])
+ 〈ln(βκ)〉0

)
.

(43)
Note that the second term above, stemming from the change
of variables, is the free energy for the same system but with
equal Gaussian rigidities as given in equation (16) and does
not include any interaction between different regions. For the
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two component system considered here (the result of course
can be generalized to any number of components), we find that

〈κ
κ

〉0 − 〈κ〉0〈 1

κ
〉0 = (κ1 − κ2)(

1

κ1
− 1

κ2
)φ(1 − φ). (44)

We thus find a membrane contribution to the free energy per
site given by

βfmmf(φ) = 1

2
ln

(
1 + 2χf φ(1 − φ)

)
+ φ ln(βκ1)

+ (1 − φ) ln(βκ2), (45)

where χf is an effective Flory parameter induced by membrane
fluctuations given by

χf = 1

4
(κ1 − κ2)

(
1

κ1
− 1

κ2

)
. (46)

When χf is positive the effect of fluctuations is to favor demix-
ing. This consistent with the observation in the pairwise ap-
proximation that if ∆κ and ∆κ have the same sign, then the
interaction is repulsive and mixing is thus thermodynamically
favored by the composition coupling to the height fluctuations.
In this case the parameter χf is negative and thus mixing is also
favored in the mean-field theory.

In systems where lipids have large rigidity mismatches, the
bending and Gaussian rigidities for a given lipid type should
have the same order of magnitude, we should thus expect that
χf > 0 (bearing in mind that the κ are negative) and membrane
fluctuations should favor demixing, consequently raising the
demixing temperature of lipids with very different rigidities.
In the case where κi = −2κi for i = 1, 2, i.e. we have the
maximal value of |κ| for both species of lipid, we find that

χf = 1

2κ1κ2
(κ1 − κ2)

2. (47)

and thus an effective interaction favoring demixing. We
note that the mean-field theory predicts that differences in
both κ and κ are necessary to have an effective fluctuation-
induced interaction, in agreement with the pairwise calculation
in equation (6). Furthermore the membrane mean-field free
energy is always finite as the bounds in equation (4) ensure the
inequality χf > −1/2. The full n-body result for two discs of
[5], clearly shows that interactions should occur even when κ

is constant, these are higher body effects which are missed by
the first term in the cumulant expansion and and hence by our
basic mean-field calculation.

If one includes the contribution to the mean-field free
energy from the underlying lattice model from the mean-field
regular solution theory, the total mean-field free energy is
obtained as

βft = 1

2
ln

(
1 + 2χf φ(1 − φ)

)
+ χdφ(1 − φ) + φ ln(φ)

+ (1 − φ) ln(1 − φ) + φ ln(βκ1) + (1 − φ) ln(βκ2). (48)

When the function f becomes concave the mean-field
approximation is interpreted as a thermodynamic instability
leading to demixing into two phases, the compositions of which
are determined via the tangent construction and the lever rule.
Notice that the non-interacting term for ∆κ = 0 which is

written as the last term of equation (48) is linear in φ and plays
no role in demixing. When the direct interaction χd is taken
to zero so that the only interactions present are due to height
fluctuations it is straightforward to see that the free energy is
always convex and no demixing can occur. Strictly speaking
only the first-order term in χf is exact. When this term alone
is taken into account a demixing transition is possible when
the total or effective Flory parameter χt = χf + χd > 2. Even
when χd = 0 this in equality can be achieved. However, our
resummed result (leading to the logarithm in the first term of
equation (48) suggests that n-body interactions have the effect
of frustrating the attraction between similar lipid types and
reducing the interaction with respect to that expected from the
two body interaction (an effect reminiscent of the saturation of
van der Waals forces at high dielectric contrasts [22]).

We can estimate the importance of fluctuation-induced in-
teractions in this mean-field theory by estimating the shift in
the critical temperature T (0)

c when fluctuation-induced inter-
actions are included. Consider the following case, motivated
by the data given in [11], where κi = −κi and where take
as an example κ2 = 2κ1; yielding χf = 1/16. From this we
find that a free-floating membrane has a demixing temperature
Tc ≈ 1.0312T (0)

c . For a transition temperature of 303K this
corresponds to an increase of 9K in the demixing transition
temperature.

For systems where χd > 0 where phase separation can oc-
cur, the contribution of height fluctuations raises the transition
temperature when χf > 0 and lowers the transition tempera-
ture when χf < 0. In general, one should expect that κ and
κ for a single lipid species should be of the same order of
magnitude since the energy scales of these respective bending
energies are determined at a molecular level, indeed it should
be noted that in many measurements it is found that κ ∼ −κ .
This means that for lipids with a large bending rigidity mis-
match, sayκ1 
 κ2, we should expect that |κ1| 
 |κ2| and thus
we should expect that χf > 0. That is to say that mismatched
lipids should have a tendency to demix due to membrane height
fluctuations in tensionless or near tensionless membranes.

Using the results derived above, it is straightforward to
compute the first nontrivial correction to the effective rigidity.
We find that

κe = 〈 1

κ
〉−1

0

[
1 +

1

2
〈κ
κ

〉0 − 1

2
〈κ〉0〈 1

κ
〉0

]

= κ1κ2

φκ2 + (1 − φ)κ1

[
1 + 2φ(1 − φ)χf

]
. (49)

Deviations of κe from the harmonic mean bending energy given
in equation (23) thus indicate a difference in the Gaussian
rigidity of the lipids and that this difference can thus be
estimated via the expression for χf given in equation (46).
Interestingly if χf is negative, and thus favors mixing, the
effective rigidity is reduced. This increased tendency toward
mixing induced by height fluctuations feeds back to soften the
membrane.

In figure 1 we show the form predicted for the effective
bending rigidity κe as a function of φ. We have chosen the case
where in the appropriate units we have κ1 = 1 and κ2 = 0.3.
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Figure 1. Basic mean-field theory prediction for the effective
bending rigidity of a membrane in terms of its composition φ with
κ1 = 1 and κ2 = 0.3. The solid black curve is the case where there
are no interactions corresponding to χf = 0. The upper dashed
curve (red) corresponds to the limiting case where κ1 = −2κ1 = −2
while κ2 = 0. The upper dashed curve (green) corresponds to the
other limiting case where κ2 = −2κ2 = −0.6 while κ1 = 0. The
dotted (blue) line corresponds to the case where κ = −2κ for both
species.

The solid black line in the middle corresponds to the inter-
actionless case χf = 0 and thus the absence of fluctuation-
induced interactions When χf < 0 and fluctuations thus favor
mixing, the curve lies below that of the interaction less one,
indicating softening and when χf > 0 the opposite occurs.
The two dashed curves present the limiting cases κ1 = −2κ1

with κ2 = 0 (top curve) and κ2 = −2κ2 with κ1 = 0 (bottom
curve), where the bounds of equation (4) are saturated and we
have the maximal values for |χf |.

4.2. Variationally improved mean-field theory

The calculation carried out above can be modified by carrying
out a resummation of the basic theory. Firstly we trivially
rewrite the Helfrich Hamiltonian as

HHel = a2

2

∑
x

(κ(x) + λ(x))[∆h]2 + a2
∑

x

κ(x)(D2
xhD2

yh

−[DxDyh]2) − λ(x)

2
[∆h]2, (50)

where λ(x) is a function that will be determined variationally.
The idea is to use the first term as the unperturbed Hamiltonian
and the second one as the perturbation treated in the mean-
field theory. Here we perform the change of variables
u(x) = −∆h(x) then w(x) = √

β(κ(x) + λ(x)) u(x) to obtain
an effective Hamiltonian in terms of the variable w(x)

βH ′
Hel = a2

2

∑
x

w2(x) + a2
∑

x,x′,x′′
κ(x)

[
D2

xGL(x, x′)

×D2
yGL(x, x′′) − DxDyGL(x, x′)DxDyGL(x, x′′)

]
× w(x′)w(x′′)√

κ(x′) + λ(x′)
√

κ(x′′) + λ(x′′)
− a2

2

∑
x

λ(x)w2(x)

κ(x) + λ(x)
.

(51)

Keeping track of the term coming from the change of variables,
we find the effective mean-field free energy as a functional of
λ is given by

FMMF(λ) = T N

2

(
ln

(
1 +

1

2

[
〈 κ

κ + λ
〉0 − 〈κ〉0〈 1

κ + λ
〉0

]

−〈 λ

κ + λ
〉0

)
+ 〈ln [β(κ + λ)]〉0

)
, (52)

and we note that FMMF(0) = FMMF for the standard mean-field
approximation given in equation (43). The mean-field theory
as set up provides an upper bound for the true free energy and
thus we minimize FMMF(λ) with respect to λ. This gives a self
consistent equation for λ : δFMMF(λ)/δλ(x) = 0, which gives

λ(x) = c

2
(κ(x) − 〈κ(x)〉0) + (c − 1)κ(x) (53)

with c a constant given by

c =
(

1

2

[
〈 κ

κ + λ
〉0 − 〈κ〉0〈 1

κ + λ
〉0

]
+ 〈 κ

κ + λ
〉0

)−1

; (54)

The resulting self-consistent equation for c obtained by
substituting equation (53) into equation (54) actually yields
the trivial relation equation c = c. This is simply due to the
presence of a zero mode in the free energy, which turns out to
be independent of c, and which is given by

FMMF = T N

2

[
ln(β) + 〈ln

(
κ +

1

2
κ − 1

2
〈κ〉0

)
〉0

]
. (55)

In addition, with this choice of λ the perturbative correction
is identically zero, corresponding to the vanishing of the first
term in equation (52), meaning that the variationally improved
perturbation theory is also compatible with what is often known
as self-consistent perturbation theory, where the unperturbed
Hamiltonian is self-consistently chosen so that the first order
correction is zero [23]. For the case of a two-component
system, the membrane mean-field free energy per lipid patch
is then given by

βfmmf(φ) = 1

2
φ ln

[
κ1 +

1

2
(1 − φ)(κ1 − κ2)

]

+
1

2
(1 − φ) ln

[
κ2 − 1

2
φ(κ1 − κ2)

]
. (56)

We immediately see that an effective interaction exists between
the two lipid species even when κ1 = κ2 as long as the Gaussian
rigidities are not the same. This is in qualitative agreement
with the exact two body result equation (9) found in [5]. To
understand the consequences of this result, consider the free
energy difference per patch ∆fmmf between a mixture and one
that is phase separated into two components which is given by

β∆fmmf = 1

2
φ ln

[
1 +

1

2κ1
(1 − φ)(κ1 − κ2)

]

+
1

2
(1 − φ) ln

[
1 − 1

2κ2
φ(κ1 − κ2)

]
. (57)

Expanding this as a series in ∆κ = κ1 − κ2 we obtain

β∆fmmf = 1

4
∆κ

(
1

κ1
− 1

κ2

)
φ(1 − φ) − 1

16
∆κ2φ(1 − φ)

×
[

1 − φ

κ2
1

+
φ

κ2
2

]
+ O(∆κ3). (58)
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Figure 2. Variationally improved mean-field theory prediction for
the effective bending rigidity of a membrane in terms of its
composition φ with κ1 = 1 and κ2 = 0.3 The solid black curve is the
case where there are no interactions corresponding to χf = 0. The
upper dashed curve (red) corresponds to the case where
κ1 = −2κ1 = −2 while κ2 = −0.1. The upper dashed curve (green)
corresponds to the other limiting case where κ2 = −2κ2 = −0.6
while κ1 = −0.1. The dotted (blue) line corresponds to the case
where both Gaussian rigidities are minimal, i.e. κ = −2κ .

We see that the first term proportional to φ(1 − φ) is the
effective two body Flory parameter, as given in equation (46);
its sign can be positive or negative. The second term is however
always negative and favors mixing at small values of φ or 1−φ.
Indeed it is this term that dominates when κ1 = κ2.

One should also note that the value 〈κ〉0 can be shown to
be an upper bound for the expression given in equation (60).

Once again the bounds of equation (4) ensure that the
variationally improved mean-field free energy is finite. As
in the case of the ordinary mean-field approximation, in the
absence of additional interactions between the lipids, we find
that the fluctuation-induced interactions are not sufficient to
generate a phase separation as when χd = 0 we have verified
numerically that the free energy remains convex.

The leading order correction due to the presence of
variations in Gaussian rigidity is to map the problem onto one
with no variations in the Gaussian bending rigidity but with an
effective local bending rigidity given by

κeff(x) = κ(x) +
1

2
(κ(x) − 〈κ(x)〉0) . (59)

This in turn leads to an effective bending rigidity for small
Fourier modes given by

κe =
〈 1

κ + 1
2 (κ − 〈κ〉0)

〉−1

0
. (60)

In the case where both Gaussian rigidities are minimal,
κ = −2κ , the effective rigidity has the very simple form
κe = 〈κ〉0. This is the straight-line behavior shown in figure 2
(dotted line) for the case where κ1 = 1 and κ2 = 0.3. For the
same bending ridigities, in the same figure, we see the case
where κ1 = −2 while κ2 = −0.1. This curve is lower than
the noninteracting (solid black line) in a small region where

the concentration of the more rigid species 1 is small. As
the concentration of species 1 increases, the rigidity increases,
crossing the noninteracting curve around φ = 0.06. The lower
dashed line shows the case where κ1 = −0.1 and κ2 = −0.6.
Here we see that the addition of a small amount of the phase
2 to a pure membrane of the phase 1 dramatically reduces the
effective rigidity of the membrane.

5. Conclusions

We have discussed how variations in the bending and Gaussian
rigidity of the components of simple model membranes induce
effective fluctuation interactions due to their modification of
height fluctuations. Apart from these, there are always inter-
actions between the lipids composing membranes due to steric
and van der Waals interactions. These interactions are present
both when the membrane is flat, for instance if it is adhered to
a flat surface, and when it is allowed to fluctuate. In this paper
we have considered the additional interactions induced by the
coupling of composition to height fluctuations via composition
dependent rigidities. In the case of tensionless membranes,
we have exploited a simple transformation from the height
variable to the reweighted mean curvature to demonstrate that
variations in bending rigidity alone cannot induce height fluc-
tuation mediated interactions between membrane components.
When variations in the Gaussian rigidity κ are present, there
are effective long range interactions, as first shown in [3] at
the pairwise level. A naive mean-field theory of this system
thus fails to describe the proper physics and indeed predicts er-
roneous results for the case where we have exact results. This
is to be expected as the basic formulation of mean-field theory
only treats the first term in the cumulant expansion, whereas
fluctuation-induced interactions only show up in the second
order term of the cumulant expansion. However, by reformu-
lating the theory in terms of the reweighted bending rigidity,
the resulting theory contains all pairwise interactions in the
first term of the cumulant expansion. The corresponding mean-
field approximation thus captures the basic fluctuation-induced
interactions for this system, at least at the pairwise level.

The resulting mean-field theory is characterized by an
effective Flory parameter χf which depends on the bending
rigidities of a two lipid system via equation (46). This result
could in principle be used to estimate the difference in the
Gaussian rigidities via an analysis of tensionless, or near
tensionless, membrane fluctuations for membranes composed
of lipid mixtures, by fluctuation mode analysis for example.
We emphasize that only relative differences can be measured,
however this does present a step forward as previously only
methods relying on topological changes in bilayer systems had
been proposed to measure Gaussian rigidities [11].

The underlying model used is very idealized in the sense
that the leaflets composing the bilayer are assumed to be sym-
metric, having the same composition on either side of the
membrane - in this sense it is really a monolayer model. This
condition can be relaxed by considering two coupled underly-
ing lattices and taking the sum of the underlying bilayer bend-
ing energies. The effects of surface tension have also been
ignored in this model. In practice, even if the system is not
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under any external constraints one should introduce a surface
tension to fix the average area occupied by the lipids. Finally,
we note that most theoretical studies associate a bending rigid-
ity with a lipid species as we have done here. However when
one considers lattice based models, it is clear that rigidity is
associated with lattice links rather than sites and should thus
depend on the lipid at a site and its neighbors. The mean-field
approach proposed here could be applied to such models, po-
tentially giving rise to a richer behavior as well as more detailed
comparison with experiments and numerical simulations, no-
tably for the behavior of the effective bending rigidity [24].

The system studied here is rather special in that we have
heavily exploited the exact solution for systems where κ is
constant. For dielectric mixtures, one could presumably try to
find a similar strategy where one reformulates the field theory
in such a away that pairwise van der Waals interactions are
treated exactly at the first order of the cumulant expansion.
The development of a successful mean-field theory as a first
method of studying the thermodynamics of systems dominated
by fluctuation-induced interactions could be very useful to
predict phases exhibited by such systems and consequently
could guide both experimental and numerical studies.
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