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SUMMARY

The purpose of this paper is to analyse the development and the evolution of the fracture process zone dur-
ing fracture and damage in quasi-brittle materials. A model taking into account the material details at the
mesoscale is used to describe the failure process at the scale of the heterogeneities. This model is used to
compute histograms of the relative distances between damaged points. These numerical results are compared
with experimental data, where the damage evolution is monitored using acoustic emissions. Histograms of
the relative distances between damage events in the numerical calculations and acoustic events in the exper-
iments exhibit good agreement. It is shown that the mesoscale model provides relevant information from
the point of view of both global responses and the local failure process. © 2015 The Authors. International
Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Fracture of quasi-brittle materials such as concrete or rocks is characterized by a stress-free macro-
crack surrounded by a damage zone. At the tip of the macro-crack and ahead lies the so-called
fracture process zone (FPZ), which is a region of the material undergoing distributed damage.
The size of the FPZ in these heterogeneous materials is large enough to influence the mechanical
behaviour of the structure significantly. The understanding of the evolution of the FPZ size in such
heterogeneous materials is still an open issue in the community. It is commonly accepted that this
FPZ size does not depend on the structural size but is rather controlled by the local heterogeneities
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in the material as well as by the geometry of the specimen and the stress state. Therefore, size effect,
understood here as the dependence of the dimensionless nominal strength of a structure on its size,
is observed (e.g. when geometrically similar structures are compared; e.g. [1]).

Experimentally, this damage zone may be characterized with the help of several direct and indirect
techniques. Among the possible indirect techniques, energy-based analyses involving redistribution
of stresses in the FPZ have served as arguments for the justification of size effect (e.g. [2]). Bažant
and Pijaudier-Cabot [3] determined the FPZ size experimentally as the ratio of the fracture energy
to the energy dissipated per unit volume during the failure process. With the advent of displacement
field measurement techniques, such as digital image correlation, access to local field quantities in
the vicinity of the crack became possible in order to characterize the FPZ, opening the way for
comparisons with results obtained from nonlinear models and calibration of constitutive models that
describe the FPZ [4].

The localization of acoustic events that can be detected during crack propagation is another well-
established technique from which the FPZ can be visualized and characterized, in concrete [5–9] or
rocks [10]. The acoustic events generated during micro-cracking are recorded and post-processed
in order to localize them with the help of time-of-flight algorithms. Hence, this technique pro-
vides information on the entire crack propagation process composed of distributed micro-cracking
and further coalescence into a macro-crack. Haidar et al. [11] used a model mortar material to
observe the correlation among the width of the FPZ measured by acoustic emission (AE) analy-
sis, the parameters entering the description of size effect and the internal length used in nonlocal
constitutive relations.

As far as modelling is concerned, continuum-based approaches and discrete or mesoscale mod-
els are available. The first one involves a characteristic length that controls the size of the FPZ (e.g.
the review by Bazant and Jirasek [12]). In recent models [13–16], an evolving, nonconstant, and
nonlocal length internal length has been used, which was also assumed to be influenced by bound-
aries. Models with this advanced nonlocal length were capable of matching experimental results,
which reported an influence of boundaries on the fracture energy [17]. The second approach relies
on a mesoscale description of the material and an explicit description of the heterogeneities in the
material. Pioneering works, for example, by Van Mier and co-workers, Herrmann and co-workers
or by Zubelewicz and Bazant [18–21], have been extended to many problems, including dynamic
fracturing in impact problems [22], cracking in coupled hydromechanical problems [23], modelling
of phase interfaces at crack initiation [24], rock mechanics [25], concrete behaviour under high
triaxial loading [26], fracture process of strain-hardening cementitious composites [27], fracture
of multiphase particulate materials [28], quasi-static crack propagation [29], structural size effect
[30, 31] and general failure behaviour of concrete [32, 33]. The structural size effect on notched
bending beams is properly described using this second approach [30].

Grassl and co-workers [34] demonstrated that mesoscale modelling was very efficient at describ-
ing not only size effect on the peak load but also the entire load deflection response of bending
beams. Four geometrically similar sizes and three different notch lengths were considered. The
experimental data obtained by Gregoire et al. [1] could be quite accurately described, once the
model parameters at the mesoscale level had been calibrated for one notch length. In addition, the
authors used this model for studying the incremental distribution of the dissipated energy densities,
and they were able to track the evolution of the FPZ in the structure, depending on the size of the
beams and on the boundary conditions.

The purpose of this paper is to provide an additional insight on the pertinence of the mesoscale
model introduced by Grassl and Jirasek [35]. The first direction aims at a further understanding of
the fracture and damage process. Instead of looking at snapshots of the incremental energy dissi-
pation due to damage, we shall look at the distribution of the distances between points undergoing
damage in order to investigate possible correlations involved in the kinetics of its propagation. The
second direction is a comparison between damage events in the computational model and AE data.
Assuming that each damage event is directly related to an acoustic event, we will compare these two
processes in the course of failure on notched and un-notched bending beams.

© 2015 The Authors. International Journal for
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This paper is organized as follows. After having briefly recalled in Section 2 the lattice model
used in this paper, we proceed in Section 3 to the analysis of the distributions of distance between
damage events within a loading step and compare numerical results from notched and un-notched
bending beams. Section 4 presents the experimental apparatus used for the localization of acoustic
events and the data obtained. The comparisons between results computed from the lattice model and
AE data are presented in Section 5.

2. LATTICE MODEL

The 2D plane-stress lattice model proposed first by Grassl and Jirasek [35] is briefly presented in
this section. The lattice is made from beam elements and idealizes the mesostructure of concrete as a
set of three different components: aggregates, matrix and the interface between them. The following
assumptions are used:

(i) Aggregates are described as circular inclusions. Aggregates with a diameter � greater than a
fixed diameter value �min are described explicitly. Their size distribution follows the grading
of the concrete mixture, and their spatial location is given by a random distribution defined
by the cumulative distribution function proposed in reference [35]. Aggregates overlapping is
avoided.

(ii) Fine aggregates are not described. They are included in the matrix, which is an equivalent
homogeneous material (made of cement paste and fine aggregates). Disorder due to the het-
erogeneity of the matrix that contains small aggregates is still kept, however, in the form of a
correlated random distribution of mechanical properties. The correlation length is independent
from the fineness of the lattice and therefore provides results independent of lattice element
size independent [23].

(iii) The large aggregate is elastic. The matrix material follows an isotropic – scalar – damage
model.

(iv) Each aggregate is surrounded by an interface of thickness equal to one lattice element length,
which is endowed with a special constitutive relation. This interface is meant to represent the
interfacial transition zone (ITZ) in concrete. Its constitutive model is similar to that of the
matrix, with different constants because the ITZ is usually weaker than the matrix.

Once the largest aggregates have been placed randomly within the sample, the matrix is meshed
by randomly locating nodes in the domain, such that a minimum distance dmin is enforced. The
lattice elements result then from a Delaunay triangulation (solid lines in Figure 1(a)), whereby the
middle cross sections of the lattice elements are the edges of the polygons of the dual Voronoi
tessellation (dashed lines in Figure 1(a)). By contrast, the nodes located on both sides of an interface
are not randomly distributed but placed at a special location in such a way that the edges of the
Voronoi polygons define the interface between the aggregates and the mortar (Figure 1(b)).

Each node has three degrees of freedom: two translations .u; v/ and one rotation .�/ as depicted
in Figure 1(d). In the global coordinate system, the degrees of freedom of nodes 1 and 2, denoted as
ue D .u1; v1; �1; u2; v2; �2/

T , are linked to the displacement jumps in the local coordinate system
of point C , uc D .uc ; vc ; �c/T , by the following relation:

uc D Bue (1)

where

B D

2
4� cos˛ � sin˛ �e cos˛ sin˛ e

sin˛ � cos˛ �h=2 cos˛ sin˛ �h=2

0 0
p
I=A 0 0 �

p
I=A

3
5 (2)

where A is the element cross-sectional area and I its second moment (refer to [34] for details).
Point C is located at the centre of the middle cross section of the element as represented in

Figure 1(c) and (d). Matrix B depends on the orientation ˛ of the element in the global coordinate
system, the distance e between point C and the segment relating nodes 1 and 2, the distance h

© 2015 The Authors. International Journal for
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(a) (b)

(d)(c)

Figure 1. (a) Set of lattice elements (solid lines) with middle cross sections (dashed lines) obtained from the
Voronoi tessellation of the domain. (b) Arrangement of lattice elements around aggregates. (c and d) Lattice

element in the global coordinate system (reproduced from [34]).

between two nodes, the element cross-sectional area A and its second moment I . The strains " D
."n; "s; "�/

T associated with the displacement uc at point C are

" D
uc

h
D ."n; "s; "�/

T (3)

where h is the distance between the two nodes of one lattice element. The stresses � D .�n; �s; ��/T

are related to the strains " following the mechanical constitutive relation at the lattice level, here an
isotropic damage model to be described further. The subscripts n and s refer to the normal and shear
components of the strain and stress vector. The (secant) stiffness matrix K of the lattice element is
defined as follows:

K D
A

h
BTDB (4)

where D is the material stiffness matrix computed at point C .
The same isotropic damage model (Eq. (5)) is used to describe the mechanical response of the

lattice element within the ITZ and the mechanical response of the matrix:

� D .�n; �s; ��/
T D .1 � !/De" D .1 � !/� (5)

where ! is the damage variable, De is the elastic stiffness and � D
�
N�n; N�s; N��

�T
is the effective

stress. The elastic stiffness

De D

2
4E 0 0

0 �E 0

0 0 E

3
5 (6)

depends on model parameters E and � , which control Young’s modulus and Poisson’s ratio of the
equivalent continuum [36]. Equations (2) and (6) were chosen so that, for h D ` and e D 0, the
stiffness matrix K reduces to the Bernoulli beam stiffness matrix [37].
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The equivalent strain is then calculated from Eq. (7) where "0, c and q are model parameters.

"eq D
1

2
"0.1 � c/C

s�
1

2
"0.c � 1/C "n

�2
C
c�2"2s
q

(7)

The expression for the damage parameter ! is derived by considering pure tension, where the
softening curve under monotonically increasing tensile strain is chosen to be of the exponential type:

�n D ft exp

�
�
wcn

wf

�
(8)

where wcn D !h"n is the crack opening and wf is the initial slope of the softening curve, which is
related to the mesolevel fracture energy as Gf D ftwf . This stress–strain law can also be written,
for pure traction, as a function of the damage variable as

�n D .1 � !/E"n (9)

In pure tension, the nominal stress is limited by the tensile strength (ft D E"0), and thus, by
using these two expressions of �n, Eqs. (8) and (9), one obtains the expression, which governs the
evolution of the damage variable !:

.1 � !/� D "0 exp

�
�
!h�

wf

�
(10)

where "n has been replaced by �, which is a history-dependent variable determined by Eq. (11a)
with the Kuhn–Tucker loading–unloading conditions (11b):

f ."; �/ D "eq."/ � � (11a)

f � 0; P� � 0; P�f D 0 (11b)

The elastic constants and the model parameters in the damage models are calibrated from an
inverse analysis technique. The material constants defining the mechanical behaviour of three
material components are usually calibrated assuming certain ratios of their respective mechanical
properties. The ITZ has a smaller tensile strength and a smaller fracture energy compared with the
matrix. Typically, it has half the strength and half the fracture energy of mortar in the calculations.
Experimental results for these ratios are reported in the literature (e.g. [18, 38]).

3. NUMERICAL ANALYSIS OF FRACTURE OF BENDING BEAMS

Figure 2(a) and (b) presents a schematic drawing of the notched and un-notched beams considered
in the present study. The geometry and applied loads correspond to the experiments reported in
reference [1] and modelled numerically by Grassl and co-workers [34]. Four different sizes of geo-
metrically similar specimens were considered, along with three notch lengths: a D 0 (un-notched,
so-called UN), a D 0:2D (fifth-notched, so-called FN) and a D 0:5D (half-notched, so-called HN).
For a detailed presentation of the experiments, refer to [1].

Figure 2. Geometries of a three-point bending test for (a) notched and (b) un-notched beams.

© 2015 The Authors. International Journal for
Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.
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Table I. Model parameters.

E (GPa) � ft (MPa) q c Gf (N/m)

Matrix 44 0.33 3.8 2 10 86
Interface 58.7 0.33 1.9 2 10 43
Aggregate 88 0.33 — — — —
Mean 63 0.33 — — — —

The analyses were controlled by the crack mouth opening displacement (CMOD), which is the
relative horizontal displacement of the points A and B shown in Figure 2(a) and (b). For the notched
specimens, the points were located at the end of the notch. For the un-notched specimens, the two
points were apart a distance equal to the beam depth D, because the location of the fracture process
zone initiating from the surface was indeterminate.

Additional calculations on geometries that were not tested experimentally were performed in the
present study in order to investigate beams of different sizes but with a different notch length, so that
the ligament length is kept constant. This is motivated by the results obtained in [34], which show
that the distribution of energy dissipation during several load increments in the post-peak regime
seems to be independent of the notch type for a given ligament length. In order to have a ligament
length of 200 mm, we considered a beam of type UN having a depth of D D 200mm and a beam
of type FN with D D 250mm. These beams are denoted as UN200 and FN250, respectively. The
beams HN200, FN125 and UN100 correspond to a ligament length of 100 mm. Beams HN100,
FN62.5 and UN50 have a ligament length of 50 mm.

Same as in the experiments, the out-of-plane thickness was kept constant for all sizes and all
geometries at b D 50mm. The notch thickness was fixed equal to zero for consistence with the
experimental procedure, where the notch was moulded using a thin metal plate of constant thickness.
The load and support reactions were applied by means of 5-mm-wide metallic plates.

In order to limit the computation time, the nonlinear mesoscale model is used in the middle part
of each beam centred at mid-span, where damage is expected, as shown in Figure 2(a) and (b). The
remaining part of the beam is discretized with elastic lattice elements. In this region, the aggre-
gates are not described explicitly. The mechanical response of this part of the lattice corresponds
to that of the equivalent homogeneous material. The aggregate volume fraction corresponds to the
experimental data,¶ with a cut-off for small sizes: �min D 5mm. Fine aggregates are not explicitly
described. They are included in the matrix, which is an equivalent homogeneous material made of
cement paste and fine aggregates. Disorder due to the heterogeneity of the matrix is considered in the
form of a correlated random distribution of mechanical properties. The correlation length is equal
to 1 mm. Details may be found in [34]. The model parameters for the three components are sum-
marized in Table I. Young’s moduli and the tensile strength of the matrix and the ITZ are obtained
from the computation of the response of a tensile test. The other model parameters, q; c andGf , are
taken from [34]. They were obtained from the calibration of the load displacement response with
experiments for a medium-size bending (notched HN) beam. For each geometry, calculations were
repeated with 10 different random fields of aggregates and mechanical properties.

Because we are basically repeating the calculations reported in reference [34], we shall discuss
neither the global responses of the lattices nor the energy dissipation maps in the vicinity of the crack
tip. Instead, we shall try to concentrate here on the kinetics of the failure process. For this, we are
going to compute the relative distance between lattice elements undergoing damage during a load
step. Later on, this will be referred to as the distance between damage events. The histogram of these
relative distances should exhibit correlations because of the distribution of strain (and therefore the
loading conditions) within the lattice and also correlations induced by interactions during failure.
Such correlations have been investigated by Delaplace and co-workers [39, 40] in the context of
tensile tests on lattices, where similar considerations were made and for mode I fracture tests on the
basis of the statistical distribution of avalanches of local failure events.

¶The concrete mixture formulation is detailed in Table II. Experimental data and detailed gradings of the sand, the
aggregates and the mix are given in [1].

© 2015 The Authors. International Journal for
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Histograms are computed from the distribution of the relative distances between points undergo-
ing damage during an interval of dissipated energy�Gf D 12:5�10�3 J. This amount of dissipated
energy is chosen according to the ones chosen in reference [34] to build energy dissipation maps.
We consider one increment of dissipated energy �Gf between two steps of loading as depicted in
Figure 3. The first increment,�G1, starts at the peak load, and the second one,�G2, starts 10 load-
ing steps after �G1, in the softening regime (the tests are CMOD controlled with a CMOD step
equal to �CMOD D 2 � 10�6 m). The principle of post-processing is simple: we track, during the
increment�Gf , all the C points (Figure 1(d)) corresponding to the lattice elements, where damage
increases, and compute the distances between these C points. Then, we take the projections of the
distances onto a horizontal axis (perpendicular to the crack propagation) and a vertical axis (in the
direction of the crack propagation). Afterwards, the distribution of these distances is plotted. For
comparison purposes, the distributions are normalized with respect to the total number of distances
computed, and the distances are divided by the ligament length of each beam.

Figures 4 and 5 show the results. Two comments can be made:

1. In the case of pure tension, one would expect that the histograms are composed of two parts
[39]: a relatively horizontal part corresponding to a random distribution of damage events
above a correlation length and below a power-law-type distribution. This is not the case in a
bending test. For small distances, a power law distribution should provide a linear regime in a
log-log plot. This is not what is observed. Instead, a rather smooth nonlinear curve is obtained.
For large distances, the horizontal (constant) distribution cannot be observed because the strain
gradient over the beam depth prevents the random distribution of events to develop (damage
cannot occur in compression). The zone in which damage occurs within a loading increment
is constrained by the strain gradient because of bending.

Figure 3. Sketch of the different histogram-computing intervals on a typical force versus crack mouth
opening displacement (CMOD) curve.

(a) (b)

Figure 4. Histograms representing the evolution of the number of events versus the relative distances nor-
malized by the ligament length – increment starting at peak (�Gf1). FN, fifth-notched; HN, half-notched;

UN, un-notched.

© 2015 The Authors. International Journal for
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(a) (b)

Figure 5. Histograms representing the evolution of the number of events versus the relative distances nor-
malized by the ligament length – increment in the post-peak regime (�Gf 2). FN, fifth-notched; HN,

half-notched; UN, un-notched.

2. Although these histograms cannot be interpreted as easily as in a pure tension test, some
striking results are obtained: when the ligament length is kept constant, the histograms fall
onto the same curve. It means that they are the same for a beam of depth 200 mm, with a notch
length of 100 mm, a beam of depth 125 mm with a notch length of 25 mm and an un-notched
beam of depth 100 mm. The same is observed for other sizes, as long as the ligament length
is kept constant. Once the localized failure is initiated, the failure process seems to be solely
influenced by the ligament length. This feature was also observed by Grassl et al. [34], where
dissipation maps were plotted, and a good agreement for beams with the same ligament length
but different notch types was obtained.

To summarize, on the one hand, the analysis of the distribution of distances between damage
events provides results that are consistent with previous lattice analyses carried out on the same
geometries. On the other hand, the distributions themselves exhibit effects because of strain gradi-
ent and correlation of failure events that seem difficult to separate, as opposed to the case of pure
tension. A simple interpretation of these histograms, in terms of extraction of a correlation length
for instance, is not straightforward. Because a major objective of this work consists of determining
the capacity of the mesomodel to catch up relevant information on the mechanical behaviour of the
structure at the local and global scales, the previously mentioned histograms and the distribution of
dissipated energy during fracture shall be compared with experimental data.

4. EXPERIMENTAL STUDY

Three-point bending tests were performed on geometrically similar notched and un-notched speci-
mens made of the same concrete material. The experimental results presented hereafter are obtained
from a campaign similar to the one presented by Gregoire et al. [1], which includes the localization
of acoustic events during fracture additionally.

4.1. Material, specimen and test rig descriptions

The concrete formulation used here is based on a ready-mix concrete mixture obtained from
Unibeton (http://www.unibeton.fr) and detailed in Table II. Detailed gradings of the sand, the aggre-
gates and the mix are given in [1]. After demoulding, the specimens were stored under water at
20ıC. The characterization of their mechanical properties was made by compression and splitting
(Brazilian) tests according to European standards (EN 12390-1-3-6). Table III summarizes these
mechanical properties. Because the concrete used for the present study is the same as the one used in

© 2015 The Authors. International Journal for
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Table II. Concrete mixture formulation.

Product Designation Mass (kg)

Sand Cemex 0/4 40
Aggregates Durruty 4/10 1140
Cement Calcia CEM II/A 286
Admixture Axim Cimplast 115 1
Water Clarified water 179
Total 2346

Table III. Concrete mean mechanical properties.

Compressive strength Young modulus Poisson ratio Tensile strength

� � cv � � cv � � cv � � cv
(MPa) (MPa) (%) (GPa) (GPa) (%) (—) (—) (%) (MPa) (MPa) (%)

42.3 2.8 6.6 37.0 0.9 2.4 0.21 0.02 8.7 3.9 0.2 6.0

�, mean value; � , standard deviation; cv D �=� , coefficient of variation.

Figure 6. Photography of the servo-hydraulic testing machine (a), zoom on the test rig (b) and sketch of the
specimen geometry and measurable quantities (c).

Table IV. Specimen dimensions and experimental conditions.

Label D (mm) a0 (mm) vCMOD (	m/s)

HN200 200 100 0.3
FN200 200 40 0.3
UN200 200 0 0.3
UN100 100 0 0.2

FN, fifth-notched; HN, half-notched; UN, un-notched.

[1], detailed information about the mechanical response of the material is not repeated. The testing
rig used for the bending tests was a three-point bending set-up on a servo-hydraulic testing machine
(HB250, Zwick/Roell, Ulm, Germany; Figure 6(a) and (b)).

Figure 6(c) presents a sketch of the specimen geometry and the different measurable quantities.
Three HN200 half-notched (D D 200mm; a0 D 0:5D), three FN200 fifth-notched (D D 200mm;
a0 D 0:2D), two UN200 un-notched (D D 200mm; a0 D 0mm) and three UN100 un-notched
specimens (D D 100mm; a0 D 0mm) have been tested. The thickness was kept constant (50 mm).
All tests were CMOD controlled at an imposed velocity (vCMOD). Table IV summarizes the different
specimen dimensions and the experimental conditions. The CMOD measurement was achieved by
recording the distance between two aluminium plates glued on the bottom of the surface beam
separated by the initial moulded notch. On the un-notched beams, these metallic plates are glued
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at a distance equal to a half depth from the middle of the beam to ensure that the crack initiates
between the two plates. In this case, the measure is not a CMOD. The numerical simulations were
performed accordingly. Figure 7 gives a representation of the notched and un-notched beams and
the corresponding positions of the aluminium plates. The CMOD was gradually increased until the
complete failure of the structure.

4.2. Acoustic emission measurements

During the tests, acoustic events were recorded and localized. The AE system used in this study
comprised an eighth-channel MISTRAS system, a general-purpose interface bus (PCI-DISP4) and a
PC for data storage analysis. Four acoustic transducers (resonant frequency of 150 kHz) were placed
around the expected location of the crack, on one side of the specimen. The AE event localization
program relies on time-of-flight analysis and triangulation. The criterion used is that waves gener-
ated must reach at least three sensors. Then, the source location is determined by a 2D triangulation
algorithm, which relies on AE arrival time and wave velocity. The details about AE setting param-
eters are given in [9]. Transducers were installed so that a minimum distance of dmin D 1:25 cm
to the location where the crack could appear was respected in order to minimize errors, which may
occur when events are located near one sensor. Figure 8 shows the arrangement of the transducers
for all the tested geometries.

The detected signals were then amplified with a 40-dB gain differential amplifier in a frequency
band from 20 to 120 kHz. In order to limit the background noise, the signal detection threshold
was set at a value of 35 dB. The coupling between the transducer and the specimen is important in
order to achieve a good accuracy of the localization of events. A thin layer of silicone grease was

Figure 7. Crack mouth opening displacement measurement for (a) notched and (b) un-notched beams
(reproduced from [1]).

Figure 8. Position of the acoustic sensors for the three different beam geometries.
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used to guarantee the correct transmission of acoustic signals between the beam and the transducer.
The validation of both this coupling and the accuracy of the acoustic event localization followed
the European standard NF EN 1330. It consists of verifying if the position of an on-surface signal
generated by the break of a short piece of pencil lead is correctly determined by the triangulation
software. Thus, events were generated at several locations on the surface of each specimen, and the
results from the localization software were compared with the true location of each event. A correct
coupling is achieved when the accuracy of localization of these events is in the order of 4mm.

5. EXPERIMENTAL RESULTS AND COMPARISON WITH COMPUTATIONS

5.1. Mechanical responses and acoustic emission

The experimental and numerical results in terms of force versus CMOD data are presented in
Figure 9. Here, we compare the numerical results obtained with the mesomodel, denoted as ‘Num.’,
the results reported by Grégoire et al. [1], denoted as ‘Exp.#1’, and the experimental results from
our experimental work, denoted as ‘Exp.#2’. As expected, we observe that the experimental data
points are in good agreement with the results obtained via the mesoscopic approach. This result is
similar to the one obtained in [34], and it confirms that the experiments carried out with the AE
analysis are indeed similar to the previous experiments reported in [1] and shows the repeatability

Figure 9. Force versus crack mouth opening displacement (CMOD) raw curves.
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of the experimental tests. Note that neither some fitting nor adjustments of the model parameters in
the computation have been performed. The experiments have been performed using the same con-
crete formulation as in [1]. The numerical simulations have been performed using the parameters
presented in [34].

Figure 10 shows the results of the cumulative locations of the acoustic events. The plotted points
indicate the detected AE sources over the observation window centred at the notch. Events carry
different energies, and we have plotted here all the events. The warmer/darker the marker of one
event, the higher the acoustic energy (in black and white). One can filter the events and retain only
those with a sufficiently large acoustic energy. These events should correspond to the macro-crack
propagating in the specimen. Such an analysis points out that the process begins with low-energy
events distributed in a diffuse way, followed by a concentration of events with an increased rate of
dissipated energy (also [5]). For notched specimens, the inception and the path of the macro-crack
is characterized by a strong concentration and by alignment of the most energetic events. For un-
notched specimens, acoustic events are spread on the bottom of the beam prior to the propagation
of a single macro-crack on which the most energetic events are recorded. The location of crack
initiation results from a competitive effect between the strain gradient and the local distribution of
weak defects.

Figure 10. Distribution of acoustic events in different geometries of the beam – map of the distribution
of energies.
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5.2. Comparison of dissipation maps

5.2.1. Methodology. Assuming that the acoustic energy recorded for each event is proportional
to the energy dissipated during the corresponding damage event, it is possible to compare the
dissipation maps during an increment of the load:

� On one hand, the dissipated energy during damage is obtained numerically from the mesoscale
analysis. Maps of dissipated energy have been already computed in [34, 35], and we follow
the same procedure. The domain to be analysed is first discretized with a square grid with a
cell size of d D 2:46mm. Within each cell, the energy dissipation due to damage is computed
for each lattice element located in the cell. The dissipated energy in a single lattice element
is calculated as �Dd D �!Ah1

2
"D". Here, �! is the increment of damage parameter; h,

A, " and D were defined in Section 2. Then, we sum this energy dissipation for all lattice
elements contained in the cell. When a lattice element crosses several cells, the energy is allo-
cated in proportion to the element length within each cell. As discussed in reference [34], the
extent of spatial distribution of energy density obtained from this method represents the fracture
process zone.
� On the other hand, the maps of the distribution of acoustic energy within the same load-

ing increments are computed according to the same discretization. Within an increment, the
energy of all the event contained in the same cell is summed up. Because of the localiza-
tion resolution by the AE technique, less acoustic events than numerical events are detected.
Therefore, the size and the discretization of the load increments are determined to ensure
that enough events are captured experimentally in order to achieve statistically representative
experimental histograms.

In both approaches, the energy maps are averages from the same number of tests. Three D D
200mm half-notched, three D D 200mm fifth-notched, two D D 200mm un-notched and three
D D 100mm un-notched specimens have been tested both experimentally and numerically. Three
different loading increments are considered here corresponding to the same interval of dissipated
energy (�G1 D �G2 D �G3 D 120 � 10�3 J). Figure 11 presents the different intervals sketched
on the averaged force versus CMOD experimental curves. Note that the interval of dissipated energy
is approximately 10 times larger than the one used in Section 3, when only numerical results were
post-processed. Indeed, this interval of dissipated energy is increased in order to achieve statistically
representative histograms from experimental AE data.

5.2.2. Influence of the size of the cell on the dissipation maps. Because the total energy dissi-
pated within a cell is taken into account, the size of the cells has almost no influence on the
dissipation maps. The size of the cells corresponds to the size of the discretization of the energy
functional as in the numerical analysis of continuum functionals. However, a minimum size of
discretization has to be respected because the energy functional is not continuous. Numerically,
the minimum size corresponds to the lattice discretization. Experimentally, the minimum size
corresponds to the resolution of the AE detection of the the acoustic sensors. Except for these
minimums, the dissipation maps are similar whatever the size of the cells in the sense of the
numerical analysis. The numerical minimum is far lower than the experimental minimum. Because
the first goal of the paper is to test the relevance of the mesomodel by comparing the numerical
results with experimental ones, we adopt the same discretization, which is driven by the exper-
imental minimum. Numerical dissipation maps with a much lower cell size are presented alone
in [34].

5.2.3. Influence of the length of the interval of dissipated energy on the dissipation maps. The
length of the interval of dissipated energies has a significative influence on the results. By taking
into account the interval of dissipated energies, the results represent an average. Because our first
goal is to characterize the growth and evolution of the fracture process zone, we aim at consider-
ing the shortest interval of dissipated energies to perform the analysis. However, and unfortunately,
there are intrinsic minimums of internal lengths that have to be respected. The first minimum
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(a) (b)

(d)(c)

Figure 11. Different intervals of dissipated energy represented on the averaged force versus crack mouth
opening displacement (CMOD) experimental curves.

corresponds to the loading step. No information is acquired experimentally nor estimated numeri-
cally between two loading steps. The second minimum corresponds to the fact that a minimum of
damage events has to be captured to perform the post-processing. Numerically, there is almost no
limitation because many damage events are acquired within a loading step. Experimentally, this is
much more restrictive because only few acoustic events are acquired by AE technique. Therefore,
the size of the interval of dissipated energies are determined to ensure that enough events are cap-
tured experimentally in order to achieve a statistically representative post-processing. Because the
first goal of the paper is to test the relevance of the mesomodel by comparing the numerical results
with experimental ones, we adopt the same interval length, which is driven by the experimental min-
imum. Numerical dissipation maps with a lower interval of dissipated energy are presented alone
in Section 3.

5.2.4. Results. Figures 12 and B.1–B.3 in Appendix B present a comparison of average distri-
butions of energy densities between numerical and experimental results for the three dissipated
energy intervals considered and all geometries. We did not superimpose these 3D maps for the
sake of clarity. Moreover, the energies involved are quite different. The acoustic energy is only
a small part of the dissipated energy upon local fracture. The largest part is converted into the
creation of free surfaces (cracks). Although the dissipated energy obtained numerically and the
AE energy obtained experimentally are not the same, they are strongly related (e.g. [41]), and a
qualitative direct comparison makes sense. Note that the AE energy is expressed in attojoules by
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(a) (b)

(d)(c)

(e) (f)

Figure 12. Energy maps during the different energy increments obtained from acoustic emission (AE) anal-
ysis (experimental) and mesoscale computations (numerical) for HN200 bending beam (long notch, size

D D 200 mm). The prenotch is highlighted with a dashed line.

cubic metres, whereas the numerical dissipated energy is expressed in joules by square metres.
Because the numerical simulations are 2D, the dissipated energy stands here for a unit metre
in width.

At first, one can remark that experimental results exhibit a more pronounced scattering than
numerical ones. AE acquisitions are filtered to avoid spurious detection. A low filter threshold
(35 dB) is preferred to ensure that all events associated with micro-cracking are captured. At the
same time, with a low value, disperse and low-energy events may be taken into account, while they
are not associated with micro-cracking. This may be a source of experimental scattering. Despite
this scattering, the extents of the energy maps (which represent the FPZ) are similar. At initiation
(�G1), in notched beams (Figures 12 and B.1), most of the acoustic and fracture energies are dis-
sipated in a localized region following the axis of the prenotch reaching the maximum value at
the prenotch tip to become wider far from the notch, while energy decreases. In un-notched beams
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(Figures B.2 and B.3), a similar trend is observed. The expected distributed damage prior to the onset
of localized cracking is not observed, because the number of acoustic events is not large enough
in order to obtain a representative distribution prior to the initiation of the macro-crack. After ini-
tiation and during the crack propagation (�G2, �G3), similar trends are observed in notched and
un-notched beams.

The similarity of the damage and AE maps is better observed by looking at projections of the
energy maps in the horizontal and vertical directions. Figures 13 and C.1–C.3 in Appendix C show

Figure 13. Horizontal and vertical projections of energy dissipation for HN200 bending beams (long notch,
size D D 200 mm).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14. Horizontal and vertical projections of the experimental and numerical histograms at peak (first
energy increment �G1 in Figure 11).
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profiles obtained for all beam geometries and all dissipated energy increments. Qualitatively, the
profiles have the same extent. They are rather similar, although the experimental ones are more dis-
crete, with successive peaks that can be related to the accuracy of the measurements and quantity of
available data (the size of the aggregate may also have an influence). Note that the AE measuring
windows corresponding to the area between the AE sensors are presented in all figures. Experimen-
tal events occurring outside the AE windows may not be localized accurately. Finally, the agreement
between numerical and experimental data is rather correct for all beam geometries and all dissipated
energy increments.

This similarity between the mesoscale results and the AE test data indicates that the computa-
tional model is not only capable of matching global experimental data (such as force versus CMOD
curves) but also local data (such as the distribution of energy dissipation). Comparisons between the
distribution of relative distances between events will further document this conclusion. Numerically,
a damage event corresponds to a lattice material point (point C in Figure 1) undergoing damage
during a load step. Experimentally, a damage event corresponds to a material point producing AEs
upon failure, which have been detected (and then localized by triangularization) by at least three
acoustic sensors. The distance between these events occurring during the considered loading interval
defines the distance between damage events.

5.3. Comparison of histograms of relative distances between damage events

Figures 14, D.1 and D.2 in Appendix D present the comparisons of histograms of relative distances
between damage events at peak and during the softening phase, respectively (see the increments
�G1,�G2 and �G3 in Figure 11). Globally, the agreements are rather good, also given the fact that
no adjustable parameter is included in the numerical results.

Particularly, we may notice that the agreement is really good at a peak where the numerical and
experimental histograms are quite similar, whatever the geometry (Figure 14) . A large scatter-
ing is observed during the experimental UN200 test. Indeed, only few damage events have been
detected with the AE apparatus at the peak for this geometry on both samples. Therefore, it enlarges
the scattering, especially on small relative distances, which are less detected during the experi-
ments. During the softening phase (Figures D.1 and D.2 in Appendix D), the agreements are still
acceptable, but differences between numerical and experimental histograms may be observed. Small
relative distances may not be detected with the AE apparatus during the experiments, whereas
all damage events are recorded numerically. Therefore, the weight of the small relative distances
is more important in the numerical histograms than in the experimental ones. This is particu-
larly the case in the horizontal direction and when the crack propagates far away from the notch
tip (stage 3).

Finally, the numerical and experimental histograms are quite similar, which proves that the
mesoscale approach is capable of capturing the local aspect of the fracturing process.

6. CONCLUSION

We have presented a detailed analysis of the cracking process in three-point bending spec-
imens from both experimental and numerical points of view. The computational model is a
mesoscale, lattice-based approach, which already proved to be able to capture size effect test
data as well as force versus CMOD response for notched and un-notched bending beams. Exper-
iments coupled with AE analyses provided global responses of the same bending beams and
local data in the form of the distribution of the acoustic events and its evolution in the course
of fracture.

The following concluding statements can be made:

� The analysis of the distribution of the relative distances between damage events in the com-
putational model shows that the histograms depend on the ligament length. For the same

© 2015 The Authors. International Journal for
Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

Int. J. Numer. Anal. Meth. Geomech. 2015; 39:1639–1664
DOI: 10.1002/nag



MESOSCALE ANALYSIS OF FAILURE IN QUASI-BRITTLE MATERIALS 1657

ligament length, whatever the notch length in the beam, the histograms are the same. Grassl
and co-workers [34] observed the same trend by looking at maps of energy dissipated.
� Contrary to the case of direct tension, these histograms cannot be interpreted easily because the

effect of the strain gradient in bending beams cannot be easily separated from the interaction
between damage events that may develop in the course of fracture. Hence, the paper has been
more dedicated to comparison between experimental and numerical data on the same set of
geometries and loading conditions.

� The energy dissipated due to damage in the computational model and the acoustic energy
recorded during the experiments provide maps that are qualitatively very similar.

� The histograms of the distances between damage events in the computational model and
between acoustic events in the experiments agree quite closely. These histograms are com-
puted for events located within a loading increment after the peak load. Similar results in the
softening regime have been presented.

� At this stage, a restrictive 2D mechanical mesomodel has been used to analyse inherent
3D AE data. We are currently developing a 3D version of this mesomodel. We will then
be able to analyse the 3D effects on the numerical results. However, we do not expect
drastic differences because the thickness of the beam is small (50 mm) and the AE analy-
sis is itself 2D. The failure process is of course 3D, but four acoustic sensors have been
placed on only one side of the beams, and therefore, the analysis of the AE localiza-
tion is only 2D. A whole combined 3D study (3D mesomodel and 3D AE localization)
should be performed to analyse the 3D effects, especially the shape of the FPZ on the
surface boundaries.

Discrepancies between experimental and numerical results may be due to the following:

� the experimental inaccuracy in the acoustic event localization;

� the AE acquisition filtering;

� a 2D numerical analysis and a 2D AE analysis of a 3D failure process;

� the relatively few number of specimens tested experimentally; and

� the relatively few number of damage events acquired experimentally and, consequently, the
relatively large intervals of dissipated energy considered to achieve a statistically representative
post-processing.

However, and despite all these sources of discrepancies, the overall agreement that has been
observed between the mesoscale approach and the experimental data demonstrates that the
mesoscale approach is capable not only of providing consistent global responses (e.g. force versus
CMOD responses) but also capturing the local failure process realistically. The agreement between
the distributions of the relative distances between damage events shows that the mesoscale model
depicts the FPZ and its evolution during failure in a very consistent way compared with AE data.
This conclusion opens the path for further analyses of the fracture process, solely based on numerical
analyses with the mesoscale model, keeping in mind that the numerical model will be represen-
tative of the experimental reality. From these studies, a better understanding of the correlations
between damage events that should result in nonlocal continuum modelling at the macroscale is to
be expected.

APPENDIX A: FIGURES WITH ESSENTIAL COLOUR DISCRIMINATION

Certain figures in this article, particularly Figures 4, 5, 10, 13, C.1, C.2 and C.3 , may be difficult to
interpret in black and white. The full colour images can be found in the online version.

APPENDIX B: COMPLETIVE FIGURES IN TERMS OF ENERGY DENSITY MAPS
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(a) (b)

(c) (d)

(e) (f)

Figure B.1. Energy maps during the different energy increments obtained from acoustic emission (AE)
analysis (experimental) and mesoscale computations (numerical) for FN200 bending beam (small notch,

size D D 200mm). The prenotch is highlighted with a dashed line.

(a) (b)

(c) (d)

(e) (f)

Figure B.2. Energy maps during the different energy increments obtained from acoustic emission (AE)
analysis (experimental) and mesoscale computations (numerical) for UN200 bending beam (no notch, size

D D 200mm).
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(a) (b)

(d)(c)

(e) (f)

Figure B.3. Energy maps during the different energy increments obtained from acoustic emission (AE)
analysis (experimental) and mesoscale computations (numerical) for UN100 bending beam (no notch, size

D D 100 mm).

APPENDIX C: COMPLETIVE FIGURES IN TERMS OF HORIZONTAL AND VERTICAL
PROJECTIONS OF ENERGY DISSIPATION MAPS

(a) (b)

(c) (d)

(e) (f)

Figure C.1. Horizontal and vertical projections of energy dissipation for FN200 bending beams (small notch,
size D D 200mm).
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(a) (b)

(c) (d)

(e) (f)

Figure C.2. Horizontal and vertical projections of energy dissipation for UN200 bending beams (no notch,
size D D 200 mm).

(a) (b)

(c) (d)

(e) (f)

Figure C.3. Horizontal and vertical projections of energy dissipation for UN100 bending beams (no notch,
size D D 100mm).
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APPENDIX D: COMPLETIVE FIGURES IN TERMS OF HISTOGRAM PROJECTIONS

Figure D.1. Horizontal and vertical projections of the experimental and numerical histograms in the
softening phase (second energy increment �G2 in Figure 11).
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Figure D.2. Horizontal and vertical projections of the experimental and numerical histograms in the
softening phase (third energy increment �G3 in Figure 11).
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