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Abstract

A new calibration strategy for integral-type nonlocal damage models for quasi-brittle materials is pro-

posed. It is based on the assumption that in the fracture process zone in quasi-brittle materials the large

majority of energy is dissipated in a localised rough crack. Measuring the roughness of the fracture surface

allows for calibrating the interaction radius of nonlocal models by matching experimental and numerical

standard deviations of spatial distributions of dissipated energy densities. Firstly, fracture analyses with

a lattice model with random fields for strength and fracture energy are used to support the assumptions

of the calibration process. Then, the calibration strategy is applied to an integral-type nonlocal damage

model for the case of a fracture surface of a three-point bending test.
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1 Introduction

Fracture in quasi-brittle heterogeneous materials, such as concrete, rock, stiff soils, wood and bones, is

characterised by the formation of a finite nonlinear zone ahead of a macroscopic crack in which energy

is dissipated; it is defined as the Fracture Process Zone (FPZ). The size of this zone influences the load

capacity of structures and is one of the parameters which determine a size effect on the nominal strength

of structural members specific for quasi-brittle materials (Bažant, 2002).

Integral-type nonlocal models are often used for describing the fracture process of quasi-brittle materials

(Pijaudier-Cabot and Bažant, 1987; Bažant and Jirásek, 2002). In these models, the stress at a point is

determined by a weighted spatial average of state variables in the vicinity of this point. The size of the

vicinity in which the averaging is performed is determined by the nonlocal interaction radius. Integral-

type nonlocal models describe localised fracture by narrow, but finite, regular strain profiles. This is

the main difference to nonlinear fracture mechanics approaches, such as cohesive crack models, in which

localised fracture is described by displacement jumps. Integral-type nonlocal models are popular because

they provide results, which are mesh size and orientation insensitive for both tensile and compressive

failure. The nonlocal averaging should describe the finite fracture process zone experimentally observed

in heterogeneous materials.

The FPZ in concrete was studied by acoustic emission tests by, for instance, Mihashi et al. (1991); Landis

(1999); Otsuka and Date (2000); Haidar et al. (2005); Muralidhara et al. (2010); Grégoire et al. (2015) in

which acoustic signals originating from fracture events are spatially located and the strength of the signal

is used to differentiate between the magnitude of energy dissipation of events. Other studies include

techniques to record the displacements (Cedolin et al., 1987; Wu et al., 2011; Skarżyński et al., 2011)

and fracture surface measurements (Lange et al., 1993; Mourot et al., 2006; Morel et al., 2008; Ponson

et al., 2006). Despite providing important insight into fracture processes in quasi-brittle materials, these

investigations have not yet resulted in calibration strategies for the interaction radius of nonlocal models.

In other studies it has been suggested to determine the nonlocal radius by inverse calibration based on
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structural results (Bažant and Pijaudier-Cabot, 1989; Carmeliet, 1999; Bellégo et al., 2003; Jirásek et al.,

2004; Iacono et al., 2006, 2008). One of the disadvantages of inverse calibration is that the parameters

strongly influencing the width of the fracture process zone, such as the nonlocal radius in integral type

nonlocal models, are obtained using structural results unrelated to this width. Consequently, a good fit

of structural results may lead to completely unrealistic widths of fracture process zones. For instance, in

Jirásek et al. (2004), simultaneous fitting of size effect data for nominal strength and nominal fracture

energy, resulted in a nonlocal radius of 75 mm, which corresponds to much wider FPZs than observed in

experiments.

In this work, a new, more direct calibration procedure for the nonlocal radius of integral type nonlocal

models is proposed, by matching experimentally and numerically determined dissipated energy densities.

Optical profiling techniques (Mourot et al., 2006) are used to measure the roughness of the crack surface

obtained from a three point bending test. This crack surface profile is then used to compute the standard

deviation of the distribution of the deviation of the height of the crack surface from the mean crack

plane. If the final rough crack is the dominant source of dissipated energy and the, normally varying,

energy per crack length can be considered, for the purpose of the calibration, to be uniform, then this

standard deviation is equal to the standard deviation of the dissipated energy density profile obtained by

a nonlocal model from, for instance, a uniaxial tensile test. Matching the experimentally and numerically

determined standard deviations provides the link between the fracture process zone and the nonlocal

radius.

One of the assumptions of this calibration procedure is that the large majority of energy dissipated in

the fracture process zone originates from the crack which forms the main fracture surface, for which the

roughness is measured. This assumption is supported by experimental results (Cedolin et al., 1987), and

numerical and analytical modelling results (Planas et al., 1992; Nirmalendran and Horii, 1992; Bolander

et al., 1998). Furthermore, it is assumed that the dissipation along the crack surface can be considered

to be uniform for the purpose of the calibration. The validity of these assumptions is investigated here

by qualitative two-dimensional meso-scale analyses of direct tensile tests of a periodic specimen in plane
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stress using a lattice model developed in Grassl and Jirásek (2010), which is conceptually similar to

models reported in Zubelewicz and Bažant (1987); Herrmann et al. (1989); Schlangen and van Mier

(1992); Bolander and Saito (1998); Bolander et al. (1998); Delaplace et al. (1996). For these lattice

analyses, the heterogeneity of the material is idealised by a single isotropic autocorrelated random field

for strength and fracture energy generated by a spectral representation method (Shinozuka and Jan,

1972) used previously for lattice modelling of fracture in Grassl and Bažant (2009); Grassl and Jirásek

(2010). This type of lattice analyses of tensile fracture has been shown to provide qualitatively realistic

results (Grassl and Jirásek, 2010; Grassl et al., 2015) and, if calibrated appropriately, can provide a good

agreement with fracture experiments (Grassl et al., 2012; Grégoire et al., 2015). In the present study, the

modelling approach is only used to investigate the validity of the assumptions of the calibration procedure

and a direct comparison with experiments or macroscopic nonlocal modelling results is not carried out.

The aim of this study is to propose a new calibration strategy for the interaction radius of nonlocal

models based on surface roughness measured in experiments. To the authors’ knowledge, this is the

first time that a quantitative calibration procedure for the nonlocal radius based on local experimentally

measurable results with strong physical meaning is proposed in the literature. This application of the

calibration procedure is illustrated for concrete in the present work. It is anticipated that it can be

applied to a wide range of other quasi-brittle heterogeneous materials.

2 Calibration procedure

In this section, the proposed calibration procedure for nonlocal approaches to modelling tensile failure in

concrete is described. The objective of the calibration procedure is to determine the interaction radius

which is used in nonlocal models to describe the weighted average of history variables in the vicinity of

a point. The calibration procedure, illustrated in Figure 1, is described by the following steps:

1. Perform a fracture test to obtain a crack surface. Determine the fracture energy. Measure the

distribution of roughness of the fracture surface, defined as the height deviation of the crack surface
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(a) (b)

(c) (d)

Figure 1: Schematic overview of the calibration strategy: (a) Experimental input, (b) Calibration, (c)
Nonlocal constitutive model and (d) Structural analysis.

from the mean plane. Evaluate the standard deviation of this roughness distribution (Figure 1(a)).

2. Perform a numerical or analytical analysis of a 1D uniaxial tensile test with the nonlocal model to

be calibrated to determine the dissipated energy density profile. Evaluate the standard deviation

of this dissipated energy density profile (Figure 1(b)). Here, the standard deviation is computed

as the spatial deviation from the centre of density profile. It has, as the standard deviation of the

roughness, the unit of length.

3. Calibrate the nonlocal interaction radius and other model parameters so that the standard deviation

of the spatial dissipated energy density profile in step 2 is equal to the standard deviation of the

roughness distribution measured in step 1, and the numerically obtained total dissipated energy per

nominal fracture surface is equal to the fracture energy measured in the experiments (Figure 1(c)).

The calibrated nonlocal interaction radius can then be used for the failure analysis of structures in which

tensile failure dominates (Figure 1(d)).
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Figure 2: Description of the values retrieved from each crack facet for the statistical evaluation of the
final crack pattern and of the assumed dissipated energy density distributions.

In the following paragraph, the theory for the evaluation of the distribution of roughness (step 1) is

described. For step 1, suitable fracture tests, such as three-point bending or compact tension tests are

carried out to determine the failure surface. For instance, in Section 5, where the present calibration

procedure is applied, the results of a quasi-static three point bending fracture test with crack mouth

opening displacement control are used. From this fracture surface, the roughness is measured by optical

profiling (Section 5). This results in points located on a regular grid for which the heights are measured

from a reference plane. Areas close to the notch or the surface of the compressive zone of the specimen are

disregarded, so that the roughness measurements are not sensitive to the transient roughness development

observed at the onset of crack propagation close to the initial notch (Morel et al., 2008) and to possible

boundary effects linked to the compressive zone. Before these measurements are used to determine the

roughness distribution of fracture surface, they are corrected by a multiple linear regression analysis to

remove influences caused by the sample preparation, which could have introduced an overall tilt of the

fracture surface. For the corrected measurements, the average height zi of crack facet i, determined

from the heights of the four corner points, is used to calculate the standard deviation of the height

measurements (see Figure 2). Firstly, the mean of all heights is calculated as

z̄ =
N∑

i=1

wizi (1)
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Here, wi are the weights of the individual fracture facets, which are calculated as

wi =
Ai

N∑
k=1

Ak

(2)

where Ai is the area of fracture facet i. Here, it is assumed that all fracture facets dissipate the same

energy, since information about individual dissipation for each fracture facet is normally not available

from optical profiling. Then, the standard deviation is calculated as

∆h =

√√√√
N∑

i=1

wi(zi − z̄)2 (3)

The above approach to evaluate the standard deviation ∆h was also used for the meso-scale modelling

approach in Section 3. For this approach, the individual dissipation for each fracture facet is available,

which is considered by changing (2) to

wi =
Aidi

N∑
k=1

Akdk

(4)

where di is the dissipation per unit area of the facet i.

3 Meso-scale modelling approach

The calibration procedure presented in the previous section is based on the assumptions that the large

majority of energy is dissipated in a localised crack and that the standard deviation of the roughness

distribution calculated with a uniform energy dissipation across the fracture surface is very similar to

the standard deviation calculated from a crack with a nonuniform dissipation distribution typical for

heterogeneous materials. In the present section, the validity of these two assumptions is studied by

means of two-dimensional plane stress meso-scale lattice analyses of a direct tension test. These analyses

are also used to study the influence of the size of heterogeneity on the standard deviation.

The lattice model has been used previously in Grassl and Jirásek (2010) and is therefore only reviewed
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(a) (b)

Figure 3: (a) A lattice based on Delaunay triangulation and Voronoi tessellation. (b) Lattice element in
the global coordinate system.

briefly. The nodes of the lattice are randomly located in the domain, subject to the constraint of a

minimum distance dmin (Figure 3(a)). The lattice elements are obtained from the edges of the triangles

of the Delaunay triangulation of the domain (solid lines in Figure 3(a)), whereby the mid cross-sections

of the lattice elements are the edges of the polygons of the dual Voronoi tessellation (dashed lines in

Figure 3(a)).

Each lattice node of an element, shown in Figure 3(b), possesses three degrees of freedom, namely two

translations and one rotation, which are related to displacement discontinuities at point C of the element

by rigid body kinematics. The displacement discontinuities are transformed into strains by dividing them

by the distance between the two lattice nodes. The strains are related to the stresses by an isotropic

damage model. The elastic stiffness matrix in the damage model depends on two model parameters which

control the elastic material properties, represented by the Young’s modulus E and Poisson’s ratio ν of the

material. The evolution of the damage parameter depends on the equivalent strain, which is a function

of the normal stress σn and shear stress σq, and describes in the nominal stress space an elliptic strength

envelope (Figure 4(a)). For pure tensile loading, the nominal stress is limited by the tensile strength ft,

whereas for pure compressive and pure shear loading, it is limited by the compressive strength fc = cft

and shear strength fq = qft, respectively. An exponential softening law is applied to describe the

post-peak stress-strain response (Figure 4(a)). Here, wf is a model parameter which controls the initial

slope of the softening curve and is related to the fracture energy of the material. The heterogeneity of
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(a) (b)

Figure 4: (a) Elliptic strength envelope in the nominal stress space. (b) Exponential stress crack opening
curve.
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Figure 5: (a) Exponential autocorrelation function R of separation distance ξ. (b) Example of random
field f for a mean of unity and a coefficient of variation of cv = 0.2
.

the material properties is considered by autocorrelated Gaussian random fields of tensile strength and

fracture energy, which are assumed to be fully correlated (Shinozuka and Jan, 1972). An exponential

autocorrelation function is used which is controlled by the autocorrelation length la (Figure 5(a)). This

length determines the size of the area in which the random field assumes similar values (Figure 5(b)).

Therefore, the autocorrelation length is related implicitly to the size of the heterogeneities by determining

the geometry of strong and weak zones within the specimen. It is independent of the spacing dmin of the

lattice nodes. Thus, the geometry of the background lattice is not related to the material structure.

The lattice modelling approach is used to analyse a specimen with a periodic background lattice and

periodic boundary conditions (Figure 6(a)). The motivation for using periodicity is that the crack patterns

are not influenced by the boundaries, since the mesh is irregular throughout the specimen. The periodicity
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(a) (b)

Figure 6: Geometry of the periodic cell: (a) cell with its eight periodic neighbours and (b) detail of a
schematic lattice in the periodic cell with elements crossing the boundary.

of both background lattice and boundary conditions is achieved by allowing elements to cross boundaries

and by relating the DOFs of nodes located outside the cell to their periodic counterparts through a

macroscopic strain and stress field applied to the cell (Figure 6(b)). For instance, the displacements of

the node J ′ in Figure 6(b) is related to those of node J inside the specimen through the macroscopic

strain field. The mathematical formulation of this periodic boundary condition is described in detail in

Grassl and Jirásek (2010). In the analyses in this work, the periodic specimen was subjected to an axial

stress with the condition that the average lateral stress is equal to zero. Displacement control was used

so that softening, i.e. decreasing stress with increasing displacements, can be modelled.

For all analyses, the edge length of the square specimen was chosen as 100 mm. The minimum distance

used for generating the background lattice was set to dmin = 0.75 mm. For the first set of analyses, which

was used to investigate the two assumptions of the proposed calibration procedure, the autocorrelation

length and coefficient of variation were set to la = 1 mm and cv = 0.2, respectively. The other model

parameters were chosen so that the overall macroscopic properties resulted in Young’s modulus E =

30 GPa, Poisson’s ratio ν = 0.2, tensile strength ft = 4.6 MPa and fracture energy GF = 160 J/m2.

Initially, the response of one individual analysis is presented. Then, the average response of 100 analyses

is discussed. The stress-strain curve of one random analysis is shown in Figure 7 and the crack patterns
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Figure 7: (a) Stress-strain curve for one meso-scale analysis with three stages marked for which the
fracture patterns are shown in Figure 8.

(a) (b) (c)

Figure 8: Crack patterns for three stages of loading marked in Fig 7(a). Red (colour online) lines
indicate cross-sections of elements which dissipate energy at this stage of analysis. Grey lines indicate
cross-sections of elements which dissipated energy at previous steps but not at the current.

are shown in Figure 8 for three stages marked in Figure 7. Before peak, the elements dissipate energy

over the entire specimen. Just after peak, many of the elements stop dissipating energy and the zone of

dissipation is limited to a localised crack, which remains the same for the remaining part of the analysis.

From this single analysis, it is apparent that the majority of the energy is dissipated in one localised

crack. To find out if this is a common response for the present meso-scale simulations, the average

response of 100 analyses with different background lattices and random fields was derived. For averaging

the response of multiple specimens, the fracture process zones obtained from the individual analyses have

been post-processed as described in Grassl and Jirásek (2010). Firstly, the y-coordinate of the fracture
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process zone was determined by considering the dissipated energy of all elements. Then, all elements were

shifted in the y-direction so that the centre of the dissipated energy density coincides with the centre of

the periodic cell. Next, the specimen was subdivided into a regular rectangular grid of cells. The mean

energy dissipation density in each of those cells is determined by integrating all the energy dissipated

in each cell and dividing it by the cell size. Then, the the values of energy dissipation density of 100

analyses are averaged for each cell. The response of 100 energy dissipation densities gives the average

energy dissipation.

The average stress-strain curve of these 100 meso-scale analyses is shown in Figure 9(a). In each of those

analyses, it was assumed that the final crack was formed by cross-sections of the elements which dissipate

energy at the end of the analysis. For the single analysis studied previously, the final crack is composed

of the cross-sections of elements indicated by the red (colour online) lines shown in Figure 8(c). The

averages of the total energy dissipated by all elements and the energy dissipated by the elements forming

the final crack were compared, which showed that, on average, the localised crack dissipates 79.5 % of

the total dissipated energy. This confirms the first assumption of the calibration approach, that the large

majority of energy is dissipated in the final crack. Averaged energy increment profiles in the direction of

loading were constructed from 100 random analyses following the procedure in Grassl and Jirásek (2010).

These energy profiles are shown in Figure 9(b) and 10(a) and (b) for three steps, respectively, marked in

Figure 9(a).

Before peak, the energy is almost uniformly distributed, whereas in the post-peak regime the energy

profile is localised with its width remaining almost constant during the fracture process. Already soon

after peak, the roughness of the final crack determines the shape and width of the fracture process zone.

The formation of the final crack can be seen as a damage percolation process within the fracture process

zone. It is worth mentioning that the element size of the background lattice is independent of la and was

chosen to be small enough not to influence the standard deviation of the roughness of the final crack.

The second assumption of the calibration approach is that the standard deviation of the roughness can

be determined from the geometry of the final crack without the knowledge of the dissipation of individual
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Figure 9: (a) Average stress-strain curve for 100 meso-scale analyses (b) Profiles of the increment of
dissipated energy across the FPZ at three load steps marked in (a) as step a. The error bars show the
range between the mean plus and minus one standard deviation.
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Figure 10: Profiles of the increment of dissipated energy across the FPZ a load steps marked in Figure 9(a)
as (a) step b and (b) step c. The error bars show the range between the mean plus and minus one standard
deviation.
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Figure 11: (a) Comparison of two alternative methods to reconstruct the energy profiles for the auto-
correlation length la = 1 mm. (b) Influence of the autocorrelation length la on the mean of the standard
deviation ∆h obtained from 100 analyses. Error bars show the range between the mean plus and minus
one standard deviation.

crack segments. To assess the validity of this assumption, two approaches to evaluate the dissipated

energy profile were adopted. In the first one, each facet of the final localised crack was assigned a uniform

energy dissipation, determined from the total dissipated energy divided by the fracture surface. In the

second approach, the random energy dissipation obtained from the meso-scale analyses was used. These

two energy profiles, which are based on an average of 100 analyses, are shown in Figure 11(a). The width

and shape of the profiles is almost the same for the two approaches. Consequently, the second assumption

of the calibration approach is also valid, based on the present qualitative modelling results. The energy

distribution along the fracture plane is highly nonuniform for heterogeneous quasi-brittle materials. It is

only assumed that using a uniform distribution will not strongly influence the width of the energy profile,

as demonstrated by these results.

The dissipation profile obtained from the meso-scale analyses depends on how the heterogeneity of the

material is represented. In the present study, an isotropic autocorrelated function is used, for which

the size of the dominant feature of the heterogeneity is controlled by the autocorrelation length la. To

demonstrate the influence of la on the width of the fracture process zone, three additional sets of 100

meso-scale analyses with autocorrelation lengths, la = 0.5, 2 and 4 mm were performed. The final crack
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(a) (b)

(c) (d)

Figure 12: Final crack patterns for autocorrelation lengths (a) la = 0.5, (b) 1, (c) 2 and (d) 4 mm.

patterns from the random analyses are used to evaluate the standard deviation ∆h of the roughness,

defined in (3) in Section 2. The influence of the autocorrelation length la on the mean of the ∆hs of

100 analyses is shown in Figure 11(b). With increasing autocorrelation length, the standard deviation

of the roughness increases. Thus, the fracture zone becomes wider with increasing la. Examples of the

final crack patterns for arbitrarily chosen analyses with la = 0.5, 2 and 4 mm are shown in Figure 12.

These crack patterns illustrate that for individual analyses the correlation between la and the crack

roughness is not obvious. For instance, the roughness of the crack for la = 2 mm appears to be less than

for the one for la = 1 mm. However, if the mean of ∆h of 100 analyses is determined, the correlation

between la and ∆h shown in Figure 11(b) is visible. The overall response of the analyses with the three

different autocorrelation lengths is very similar to those with la = 1 mm. Again, the majority of energy

is dissipated in one localised crack. The ratio of localised energy dissipated in the final crack versus the

total energy dissipated is not influenced by la. For all three analyses, approximately 80% of the energy is
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dissipated in the localised crack. Although not shown in the present study, it is expected that ∆h is also

influenced by the coefficient of variation cv of the random field. With decreasing cv, the roughness of the

crack, and therefore ∆h, will decrease. A low value of cv can be interpreted to represent a material with

inclusions of low strength.

The meso-scale modelling in the present section provides only qualitative information about the evolu-

tion of the fracture process and the roughness of the fracture patterns. The auto-correlated Gaussian

random fields of tensile strength and fracture energy can only roughly approximate the complex meso

and microstructure of concrete. For obtaining quantitative results for concrete, for instance, the model

parameters need to be calibrated using ideally experimental results of geometrically similar specimens of

different sizes, as provided recently in two independent studies in Grégoire et al. (2013) and Hoover et al.

(2013).

4 Nonlocal model

In this section, the nonlocal isotropic damage model used for both 1D and 2D analyses in Section 5 is

presented. The stress-strain law is

σ = (1− ω)De : ε = (1− ω)σ̃ (5)

where σ is the nominal stress, ω is the damage variable, De is the isotropic elastic stiffness based on

Young’s modulus E and Poisson’s ratio ν, ε is the strain and σ̃ is the effective stress. Damage is driven

by a history variable κd and is determined by an exponential damage law of the form

ω (κd) =






0 if ε0 ≥ κd

1− (ε0/κd) exp (− (κd − ε0) /(εf − ε0)) if κd ≥ ε0

(6)
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(a) (b)

Figure 13: Isotropic damage model: (a) softening stress strain curve, (b) smoothed Rankine strength
envelope.

where ε0 and εf are two dimensionless parameters controlling the peak and softening part of the stress

strain curve (see Figure 13(a)).

The history variable κd is

κd(t) = max ε̄eq(τ) for τ ≤ t (7)

where t is the time representing the history of the material and ε̄eq is the nonlocal equivalent strain,

which is

ε̄eq (x) =

∫

V
α (x, ξ) εeq(ξ)dξ (8)

Here, x is the point at which the nonlocal equivalent strain ε̄eq is evaluated as a weighted average of local

equivalent strains εeq at all points ξ in the vicinity of x within the integration domain V .

According to the standard scaling approach (Pijaudier-Cabot and Bažant, 1987), the weight function

α (x, ξ) =
α0 (x, ξ)∫

V α0 (x, ζ) dζ
(9)

is constructed from a function α0 normalised by its integral over the integration domain V such that the

averaging scheme does not modify a uniform field. The function
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α0 (x, ξ) = exp

(
−‖x− ξ‖

γ(x)R

)
(10)

is defined here as an exponential (Green-type) function with the interaction radius R reflecting the internal

material length and γ(x), which scales the weight function dependent on the minimum distance of point

x to the boundary. It is defined as

γ (x) = 1− (1− β) exp

(
−d (x)

tR

)
(11)

according to Grassl et al. (2014). Here, β and t are model parameters.

The local equivalent strain in (8) is

εeq =
1

E

√√√√
3∑

I=1

〈σ̃I〉2 (12)

where 〈...〉 is the positive-part operator and σ̃I are the principal values of the effective stress σ̃. This

equivalent strain definition results in the Rankine failure criterion with a smooth round-off in the region

of multiaxial tension as shown for the 2D case in Figure 13(b).

5 Application

This section describes the application of the calibration procedure introduced in Section 2. Firstly, the

fracture surface of a three-point bending tests originally tested in Grégoire et al. (2015) was used to

determine the roughness distribution using the techniques described in Section 2. Then, the nonlocal

model in Section 4 was applied to a 1D direct tensile test to calibrate the nonlocal interaction radius

so that the standard deviation of the dissipated energy density distribution matched the experimentally

determined roughness distribution. Finally, the calibrated nonlocal model was applied to a 2D analysis

of a three-point bending test used for determining the roughness distribution to check if the resulting
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(a) (b)

Figure 14: Three-point bending test for roughness measurements and nonlocal analysis: (a) Geometry
and loading setup. The out of plane thickness is 50 mm. (b) Geometry of the scanned region of the
fracture surface.

FPZ in the 2D analysis agrees with the one used for the calibration for the 1D analysis.

The roughness distribution of the crack surface was obtained from a three-point bending test of a notched

beam, which was originally tested as part of study comparing the results of lattice modelling of fracture

with acoustic emission measurements reported in Grégoire et al. (2015). The geometry of the beam is

shown in Figure 14(a). The mechanical concrete properties are Young’s modulus E = 37 GPa, tensile

strength ft = 3.9 MPa and Poisson’s ratio ν = 0.2. The concrete used in this test had a maximum

aggregate size of 10 mm. It was based on the same concrete mix used for a recent size effect study,

which was modelled in Grassl et al. (2012) using a meso-scale approach. The macroscopic fracture energy

used for the calibration in this meso-scale approach for geometrically similar specimens of different size

was used as a guidance for the choice of the fracture energy used in this study. Based on this previous

modelling application, a value of GF = 80 J/m2 was assumed. It was not attempted to calibrate this

parameter to obtain a good fit with the single experimental curve used in this study, since the main

objective of this application is to demonstrate that the parameters calibrated on a 1D direct tension

test result for bending tests to a dissipated energy profile, which is in agreement with the one used as

an input for the calibration. The determination of a unique set of model input parameters requires

calibration based on a larger number of experimental results. The recent results of two independent size
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Figure 15: Roughness measurements: Surface plot of measured roughness after correction.

effect studies presented in Grégoire et al. (2013) and Hoover et al. (2013) provide a useful set of data for

such a calibration.

A focused area of the fracture surface away from the notch and the top of the specimen was analysed

with a non-contact optical profiler of the type Conoprobe 1000 together with a standard lens with focal

length of 75 mm for determining the roughness distribution. The geometry of the analysed area is

shown in Figure 15(b). The measured roughness of the fracture surface is shown in Figure 15. The

standard deviation of the roughness distribution was determined using the approach in Section 2 as

∆hexp = 1.23 mm.

In the next step, the nonlocal interaction radius R was calibrated on a 1D tensile specimen so that the

standard deviation of the dissipation density distribution ∆hnum matches the corresponding standard

deviation ∆hexp determined in the experimental part of the calibration. For this 1D analysis, the response

is independent of boundaries so that γ = 1 in the weight function in the nonlocal model in (10) in Section 4

for all points along the 1D specimen. Since the purpose of the 1D nonlocal analysis is to calibrate the

interaction radius R so that it can be used in 2D analyses, the nonlocal averaging must be same for the

one and two-dimensional analyses, if it is not affected by boundaries. In Grassl et al. (2014) it has been
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Figure 16: 1D uniaxial tension test with isotropic damage model: (a) stress-strain curve, (b) dissipated
energy density in the centre of the specimen.

shown that this can be achieved by defining the averaging for the 1D case as

ε̄eq(z) =

∫ ∞

−∞

∫ ∞

−∞
α∞(

√
(z − ξ)2 + s2)εeq(ξ)dξds (13)

where z is the coordinate along the 1D specimen. This approach was adopted in the present study.

The input parameters for the nonlocal model related to stiffness and strength were chosen as E =

37 GPa, ν = 0.2, ε0 = ft/E = 0.000105. The remaining two parameters, i.e. nonlocal radius R and

softening parameter εf , are calibrated simultaneously so that the standard deviation of the roughness

measurements matches the standard deviation obtained from the experiments (∆hnum = ∆hexp) and

the energy dissipated per unit area of fracture surface is equal to fracture energy of the material. This

resulted in the model parameters εf = 0.0062 and R = 0.48 mm for GF = 80 N/m and ∆h = 1.23 mm.

The value for the nonlocal radius R is smaller than commonly assumed for ordinary concrete, which

can be explained by the very weak aggregates in concrete used for measuring the surface roughness. An

increase of the strength of the aggregates is expected to result in an increase of ∆h (and R). The stress

strain curve and dissipated energy distribution for this set of parameters is shown in Figure 16(a) and (b),

respectively.

One of the assumptions of the calibration procedure is that the standard deviation of the roughness

distribution measured by a three-point bending test can be used to calibrate the input parameters of a
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Figure 17: 2D beam analysis: Comparison of (a) load-CMOD curve of analysis and experiments and (b)
dissipation density for 2D beam and 1D direct tensile analysis.

nonlocal model used for 1D uniaxial tensile analyses. To demonstrate that this assumption is not strongly

influencing the results obtained, the calibrated nonlocal damage model was applied to the analysis of the

notched beam used for the determination of the fracture process zone. The beam in Figure 14 is idealised

by 2D triangular constant plane stress finite elements. The mesh in the mid region of the beam was

refined so that a detailed representation of the dissipation density across the fracture process zone was

obtained. The nonlocal isotropic damage model with the model parameters used for the 1D direct tension

test was applied to the 2D analysis. To avoid boundary effects influencing the results, the distance based

nonlocal averaging approach described in Section 4 with parameters β = 0.3 and t = 1 was used. This

set of parameters has been shown to provide good results in Grassl et al. (2014).

The comparison of load-CMOD from the nonlocal analysis and the experiment is shown in Figure 17(a).

Furthermore, the profile of the average dissipated energy across the depth of the beam for the focused

region in Figure 15 is shown in Figure 17(b). The two dissipation density profiles in Figure 17 are very

similar. However, the dissipation density in the 2D profile is slightly overestimated in the centre of the

profile. The standard deviation computed from the dissipation profile is 1.35 mm, which is similar to the

value of 1.23 mm used for the calibration of the nonlocal radius.
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6 Conclusions

The interaction radius of integral-type nonlocal models for tensile fracture in quasi-brittle materials is

calibrated by matching experimentally and numerically determined dissipated energy densities based on

the assumption that the large majority of energy is dissipated in a rough crack, which is demonstrated

by the results of 2D lattice analyses with random fields of strength and fracture energy for direct tensile

fracture. The lattice analyses also reveal that the width of the fracture process zone, determined from

the energy dissipated in the localised crack, increases with increasing size of the heterogeneities modelled

by the autocorrelation length of the random field.
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