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Evidence for a disordered critical point in a glass-forming liquid

Ludovic Berthier1 and Robert L. Jack2

1Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
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Using computer simulations of an atomistic glass-forming liquid, we investigate the fluctuations
of the overlap between a fluid configuration and a quenched reference system. We find that large
fluctuations of the overlap develop as temperature decreases, consistent with the existence of the ran-
dom critical point that is predicted by effective field theories. We discuss the scaling of fluctuations
near the presumed critical point, comparing the observed behaviour with that of the random-field
Ising model. We argue that this critical point directly reveals the existence of an interfacial tension
between amorphous metastable states, a quantity relevant both for equilibrium relaxation and for
nonequilibrium melting of stable glass configurations.
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In the search for a theory of the glass transition, an
important question is whether the slow dynamics of su-
percooled liquids can be explained in terms of the tem-
perature evolution of ‘universal’ thermodynamic quanti-
ties, independent on the details of the material [1]. Two-
body density correlators, which are central to the theory
of simple liquids [2], fail for viscous liquids [3]. In the
framework of the random first-order transition (RFOT)
theory [4], slow dynamics is described in terms of infre-
quent transitions between amorphous free energy min-
ima, separated by large barriers. Structural relaxation
is interpreted as the nucleation of one metastable state
into another [5]. This physical picture is supported by
mean-field calculations of a free-energy V (Q). Here, the
overlap Q measures the similarity between pairs of con-
figurations: it acts as an order parameter for the glass
transition [6]. This ‘Landau free energy’ describes the
overlap fluctuations and links statics to dynamics. Be-
cause they embody high-order density correlations, over-
lap fluctuations are key candidates to construct a ther-
modynamic theory of the glass transition and, as such,
are currently the focus of a large interest [7–13]. The
central challenge, tackled here, is to understand whether
the rigorous results obtained in the mean-field limit are
relevant for realistic, finite dimensional liquids.

At mean-field level, V (Q) allows for a compact de-
scription of the liquid-glass phase transition occurring at
the Kauzmann temperature, TK , for which Q is the rele-
vant order parameter. By introducing additional external
fields, such as a coupling ǫ to a reference copy of the sys-
tem, the glass transition at (T = TK , ǫ = 0) transforms
in a first-order transition line ending at a critical point
at (Tc, ǫc > 0) [6, 11, 14]. Because Tc > TK , this critical
point might be more easily accessible than TK . This sce-
nario occurs in some disordered spin models but has not
been demonstrated in equilibrium calculations on atom-
istic systems (see [7, 15, 16] for earlier work). Here, we
present free-energy calculations that provide direct evi-
dence for such a critical point in a realistic glass-former,

and find a critical behaviour consistent with the univer-
sality class of the random field ising model (RFIM), in
agreement with theory [12, 13]. Further motivation to
analyse this critical point is that its absence would di-
rectly establish that a Kauzmann transition does not
occur at any TK > 0. (The reverse is not true: a fi-
nite Tc does not imply a finite TK .) The existence of a
first-order transition line at T < Tc is even more signif-
icant for understanding glassy phenomenology because
it is associated with phase coexistence between equiva-
lent metastable states. In particular, the corresponding
interfacial tension, Υ(T ), is an important piece of the
RFOT theory [5, 17], but even establishing its existence
has proven difficult in computational studies [7, 18, 19].
Our approach bypasses these problems and paves the way
for direct quantitative determinations of Υ. As a first
step, we analyse cases where stable glass states coexist
with liquid states, with a large barrier between them that
we attribute to an interfacial free energy. This finding is
relevant to the current effort to understand the melting
process of ultrastable glasses [21–23].

We consider a well-studied binary mixture of Lennard-
Jones particles [24], which exhibits glassy dynamics be-
low T ≈ 1.0. The unit of length is the diameter of the
larger particles, the unit of energy is the pair-interaction
scale, the Boltzmann constant is unity, and the total
number of particles is N . The position of particle i is
ri, and C = (r1, r2, . . . , rN ) denotes a configuration of
the system. Following [6], we simulate two copies of the
system. First, a reference configuration C0 is drawn at
random from the equilibrium state of the model at tem-
perature T ′. Then, we perform Monte-Carlo (MC) simu-
lations on a second configuration C, which is biased by a
field ǫ to lie close to C0. Specifically, our MCmethod sam-
ples configurations C according to the Boltzmann weight
for the Hamiltonian E(C)− ǫQ(C, C0), where E is the po-
tential energy and Q(C, C′) = 1

N

∑

ij Θ(a − |ri − r
′
j|) is

the overlap between configurations C and C′. Here, Θ(x)
is the Heaviside function and we take a = 0.3. Efficiently
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sampling this Hamiltonian is challenging, and we adopt
the strategy detailed in [9, 10] which combines parallel
tempering with umbrella sampling and reweighting tech-
niques. Using this approach we were able to study system
sizes N = 150, 256 for temperatures T ≥ 0.55.

The temperatures T and T ′ may be different (C0 need
not even be thermalized), but the case T = T ′ has spe-
cial importance. For ǫ = 0, C and C0 are independent.
As ǫ increases, the configurations become more similar
and their mutual overlap grows. Our goal is to investi-
gate the presence of singularities in overlap fluctuations
in the (ǫ, T ) plane. To this end, a central role is played by
the (ǫ-dependent) distribution of the overlap, P (Q). This
distribution is obtained by first performing a thermal av-
erage over C, and then averaging the results over refer-
ence configurations C0 (we typically use 60 independent
configurations for each T and N). This double average
is indicated with simple brackets 〈·〉.

We emphasize that the reference configuration C0 is
fixed (or ‘quenched’) within each simulation, and sam-
pling is restricted to configuration C. This approach is
relevant for glassy systems, because we expect C0 to be
representative of equilibrium metastable states at tem-
perature T ′. The configuration C, at temperature T , may
then either occupy the same metastable state (when Q
is large) or a different one (when Q is low). If phase
coexistence occurs at T ′ = T , then it takes place be-

tween equivalent metastable states. The ‘annealed’ case
in which both configurations fluctuate is qualitatively dif-
ferent because the high-Q configurations are not repre-
sentative equilibrium states [9, 25–29].

In Fig. 1 we show results for T ′ = T . The isotherms
〈Q〉(ǫ, T ) shown in Fig. 1(a) recall the relationship be-
tween pressure and density in a liquid-vapor system. On
lowering the temperature, they become increasingly flat.
This evolution is more pronounced for the larger sys-
tem. Below the critical point, one would observe, in
the thermodynamic limit, horizontal tie-lines associated
with phase coexistence. Fig. 1(b) shows the suscepti-
bility χ(ǫ, T ) = N

(

〈Q2〉 − 〈Q〉2
)

, which exhibits a pro-
nounced maximum at a field ǫ∗(T ) that shifts to lower
values when T decreases, suggesting a reduction in the
thermodynamic cost of localizing the system near a ref-
erence configuration (related to the configurational en-
tropy). Interestingly χ(ǫ∗, T ) grows rapidly as T is low-
ered, and also increases strongly with system size. This
behavior is expected if the system approaches a critical
point, but can also be obtained if a correlation length
larger than the system size develops. The evolution of
ǫ∗(T ) is shown in Fig. 1(c) in the (ǫ, T ) phase diagram. In
the liquid-vapor analogy, this corresponds to the critical
isochore and, for temperatures above the critical point,
to a Widom line [30]. The observed linear decrease of ǫ∗

with T is consistent with mean-field theories.
Finally, Fig. 1(d) shows the free energy V (Q) =

(−T/N) logP (Q) measured at various T , for ǫ = 0. It
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FIG. 1: (a) Dependence of the average overlap 〈Q〉 on the field
ǫ along various isotherms for N = 256 (full) and N = 150
(dashed). The behaviour is reminiscent of isotherms in a
liquid-vapor system. (b) Total susceptibility χ(ǫ, T ) for the
same parameters showing increasing fluctuations as tempera-
ture is reduced and system size is increased. (c) Temperature-
dependence of the field ǫ∗ that maximises χ, indicating the
boundary between low-Q and high-Q regimes. (d) Free en-
ergy V (Q) for the same temperatures as in (a, b) for N = 256,
with a dashed line indicating linear behavior.

has the usual convex form at high T with a minimum
near Q ≈ 0. For lower T and intermediate values of Q,
its curvature decreases markedly, consistent with the in-
creasing variance of Q. For T < Tc, one expects V (Q)
to acquire a region of zero curvature, due to Maxwell’s
construction, similar to the behavior shown at the low-
est studied temperature T = 0.55. Whereas the value of
V (Q) in the high-overlap regime provides a direct esti-
mate of the configurational entropy [10], the postulated
surface tension Υ(T ) between states cannot be obtained
directly from V (Q).

To gain further insight, we analyse the overlap distri-
bution, P (Q), because it can better reveal critical fluc-
tuations and phase coexistence. We show in Fig. 2(a)
the temperature evolution of these distributions evalu-
ated along the ǫ∗(T ) line. The distribution is narrow and
essentially Gaussian at high temperature, T ≥ 0.7. It be-
comes broader, develops a non-Gaussian flat center, and
eventually becomes weakly bimodal for T = 0.55, N =
256. Bimodality is more pronounced for the largest sys-
tem. To investigate thisN -dependence, we calculated the
Binder cumulant ratio B = 〈(Q− 〈Q〉)2〉2/〈(Q− 〈Q〉)4〉.
On a first-order transition line, B increases with N , tend-
ing to unity as N → ∞ whereas above Tc it decreases
with N towards 1

3
. At Tc, B is size-independent with

a limiting value intermediate between 1

3
and unity. At

high temperatures, we find B ≈ 1

3
as expected, and for
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FIG. 2: (a) Overlap distributions P (Q) measured along the
ǫ∗(T ) line for N = 256 (full lines); dotted lines are for N =
150 and T = 0.6 and 0.55. For the lowest temperature, a
bimodal structure appears. (b) Behaviour of P (Q) for various
ǫ, increasing from low-ǫ (blue) to ǫ = ǫ∗ (black) and large-ǫ
(purple) for N = 256 and T = 0.55.

T = 0.55 and N = (150, 256), we get B = (0.48, 0.52),
consistent with this temperature being close to Tc, al-
though our range of system sizes is rather small. For
T = 0.55, N = 256 we show P (Q) in Fig. 2(b), which
evolves from a unimodal distribution at low-Q when
ǫ < ǫ∗ to a similarly unimodal distribution at high Q
when ǫ > ǫ∗, with an intermediate bimodal distribution
at ǫ∗. This evolution is qualitatively consistent with the
crossing of a first-order-like transition line in a finite-
size system, but systematic finite-size scaling is needed
to draw conclusions about the thermodynamic limit.

Random critical points in systems with quenched disor-
der have distinct properties from standard liquid-vapor
transitions [31]. In particular, the system may behave
differently for different realizations of the disorder [32],
in our case different reference configurations C0. It is thus
useful to decompose averages, using 〈·〉C0

for a thermal
average over C at fixed C0, and an overbar (·) for a dis-
order average over C0. We find that the isotherms 〈Q〉C0

have strong sample-to-sample fluctuations. The overlap
grows more or less abruptly with ǫ for different samples,
so that the critical field ǫ∗

C0
is a distributed quantity. In

Fig. 3(a) we show that at low temperature, T = 0.55,
the distribution of ǫ∗

C0
is so broad that the distributions

P (Q) for most samples at the average value ǫ∗ = ǫ∗
C0

are dominated by either their small-Q or large-Q peaks.
Most of these distributions do become bimodal when the
field is ajusted to ǫ∗

C0
for each sample separately. These

results strongly suggest that the quenched disorder plays
a significant role in the overlap fluctuations.

In mapping the supercooled liquid to the RFIM, the
configuration C corresponds to an Ising model in a ran-
dom magnetic field, and the specific realisation of the
disorder corresponds to C0. In the RFIM, each realisa-
tion of the random field slightly favors either positive or
negative magnetisation. As a result, each sample typi-
cally has only one thermally-populated state [32], in con-
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FIG. 3: (a) Sample-to-sample fluctuations of the distribu-
tions P (Q) for T = 0.55, N = 256 evaluated at the average
ǫ∗. Colors indicate whether the samples are predominately in
high-, intermediate, or low-Q states. As expected for RFIM
behaviour, most distributions are unimodal, averaging to a
total bimodal distribution (black). (b) Temperature depen-
dence of the susceptibilities χdis and χT measured at ǫ∗. The
solid line is the RFIM prediction, Eq. (1).

strast to the pure case for which both states are equally
likely. In large systems, this disorder effect dominates
the critical fluctuations, which changes the universality
class from Ising to RFIM.

For quantitative analysis, we decompose fluctuations
into thermal, χT = N(〈Q2〉C0

− 〈Q〉2
C0
), and disorder

parts, χdis = N(〈Q〉2
C0

−〈Q〉C0

2

). Clearly, χ = χdis +χT .
Numerical results, shown in Fig. 3(b), indicate that
for the largest system the disorder fluctuations increase
much more rapidly than thermal ones,

χdis ∝ χ2

T , (1)

implying that the disorder should eventually completely
dominate the behaviour of the total susceptibility, χ ≈
χdis ≫ χT . Physically, Eq. (1) can be understood by
assuming that fluctuations are completely dominated by
the sample fluctuations of the field ǫ∗

C0
. In that case,

standard results for ensemble-dependence of fluctuations
[33–35] yield χdis ≈ N Var(ǫ∗)χ2

T /T
2, where Var(ǫ∗) is

the variance of ǫ∗
C0

among samples. The resulting scal-
ing relation (1) is characteristic of the RFIM universality
class. It is exact in mean-field analysis [12], and the de-
viations predicted from nonperturbative renormalization
treatments in d = 3 [36] are too small to be numerically
observable [37]. Interestingly, the ratio χdis/χ

2

T provides
a measure of the (effective) variance of the field, which is
a dimensionless measure of the strength of the disorder in
the effective RFIM description of the critical point [13].
It would be interesting to perform similar measurements
for other models to perform a quantitative comparison of
effective theories for different liquids [38].

The distribution P (Q) allows an estimation of the
surface tension Υ(T ), provided the first-order transition
regime characterized by well-separated peaks can be ac-
cessed. Unfortunately, the computational effort required



4

Equil.
Inactive

T = 0.6

Q

10.80.60.40.20

T ′ = 0.55
T ′ = 0.45

T = 0.55

Q

P
(Q

)

10.80.60.40.20

4

2

0

FIG. 4: (a) Comparison of distributions P (Q) and T = 0.55,
for T ′ = T and T ′ = 0.45, at their corresponding fields ǫ∗. (b)
Comparison at T = 0.6 between equilibrated C0 at T ′ = 0.6
and (biased) inactive C0. In both cases, the more stable states
are associated with strongly bimodal P (Q), indicating that
coexistence between these low-energy states and the equilib-
rium fluid incurs a significant interfacial free energy cost.

to sample P (Q) for T ≪ 0.55 is prohibitive. To cir-
cumvent this difficulty, we exploit the flexibility offered
by the independent sampling of configurations C and C0.
When T ′ 6= T , mean-field theory predicts that the three-
parameter space (ǫ, T, T ′) contains a line of RFIM critical
points. The phase diagram in Fig. 1(c) corresponds to
the T ′ = T plane in that space, but fixing for instance
T ′ = 0.45 should yield another critical point (ǫ̃c, T̃c). If
T̃c > Tc, then sampling temperatures below T̃c should
be easier. This is demonstrated in Fig. 4(a) where P (Q)
for (T ′, T ) = (0.45, 0.55) shows dramatically enhanced
bimodality as compared to T ′ = T = 0.55. The natural
inference is that the reduction in T ′ has resulted in an in-
crease of the critical temperature, so that T = 0.55 is now
effectively deeper into the coexistence region. Thus, we
interpret the free energy minimum in P (Q) as an inter-
facial cost, now corresponding to the spatial coexistence
of equilibrium states at temperatures T ′ and T .

We show in Fig. 4(b) a similar comparison for T = 0.6
where configurations C0 at taken either from equilib-
rium at T ′ = 0.6, or sampled from the non-equilibrium
s-ensemble at that same temperature with a biasing
field towards atypically low dynamical activity [20, 21].
In terms of inherent structure energies, these inactive
states represent glasses with very low fictive tempera-
tures, T ′ ≈ 0.4 [21]. We observe again strong bimodality,
in contrast to the corresponding equilibrium behaviour,
which has nearly Gaussian fluctuations. The free-energy
minimum in P (Q) is the interfacial cost between low-Q
states (typical of the equilibrium fluid at T = 0.6), and
high-Q states (stable glassy states).

The results in Fig. 4(a,b) are significant because they
directly evidence the existence of a free-energy cost for
spatial coexistence between amorphous states. For (T ′ =
0.45, T = 0.55) we obtained data for N = 150 and 256
and find that this cost increases with N . Additional sys-

tem sizes are needed to infer a numerical value for Υ, via
the scaling ∆F ∼ ΥLθ. The exponent θ is not known,
but should obey θ ≤ d − 1, because interfaces can use
quenched disorder to optimize their geometry and reduce
their cost [31]. Physically the existence of an interfacial
cost for the coexistence of stable glassy configurations
with the equilibrium fluid, as in Fig. 3(b), suggests that
nucleation and growth is the appropriate mechanism to
interpret the kinetic stability and melting dynamics of
ultrastable glasses [22, 23]. Systematic studies along the
present lines should help understanding kinetic stability
from first-principles.

We have presented the results of extensive free-energy
calculations in supercooled liquids to assess the exis-
tence of thermodynamic singularities in constrained su-
percooled liquids, and to explore their consequences.
Overall, our results are consistent with effective field
theories predicting the existence of a random critical
point, associated (below Tc) with phase coexistence be-
tween metastable states. These results are also consis-
tent with static correlations on length scales comparable
with our largest system size [39, 40]. Whatever the sta-
tus of the phase transition in the thermodynamic limit,
we find that significant static fluctuations are present
at a temperature T ≤ 0.55, where dynamics is glassy.
Note that if the critical point in this system is indeed
at Tc ≈ 0.55, a significant surface tension Υ only ex-
ists when T ≪ 0.55. Thus, the emergence of activated
dynamics between metastable states might well fall out
of the dynamic range currently accessible to simulations.
Our approach generically allows the determination of Υ
in any material (including hard spheres), and extends to
stable glassy states. This offers the potential for quan-
titative analysis of glass stability based on surface and
bulk free energies. Overall, while our results do not
speak directly to the mechanism of structural relaxation
in glasses and supercooled liquids, they provide direct
evidence that an interfacial free-energy barrier between
metastable states is relevant both in the ‘melting’ of sta-
ble glasses and in glassy dynamics at equilibrum.
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