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Dataveillance and the False-Positive Paradox
Javier Parra-Arnau, Claude Castelluccia

Abstract—In recent times, we are witnessing an increasing
concern by governments and intelligence agencies to deploy
mass-surveillance systems that help them fight terrorism. In this
paper, we conduct a formal analysis of the overall cost of such
surveillance systems. Our analysis starts with a fairly-known
result in statistics, namely, the false-positive paradox. We propose
a quantitative measure of the total cost of a monitoring program,
and study a detection system that is designed to minimize it,
subject to a constraint in the number of terrorists the agency
wishes to capture. In the absence of real, accurate behavioral
models, we perform our analysis on the basis of several simple
but insightful examples. With these examples, we illustrate the
different parameters involved in the design of the detection
system, and provide some indicative and representative figures
of the cost of the monitoring program.

I. INTRODUCTION

The recent terrorist attacks have increased the level of online
surveillance performed by governments around the world. In
particular after the Charlie Hebdo attacks in Paris, the French
government has voted a new signal intelligence law [1]. This
new law includes the possibility to deploy black boxes in the
network that systematically analyze the meta-data of Internet
users in order to detect potential terrorists.

Although it is clearly legitimate for a government to actively
fight terrorism, it is questionable whether the proposed large-
scale surveillance solution is really rational and will increase
security at all. In particular, it is questionable whether this
solution is cost-efficient, since it is expected, according to the
false positive paradox, that much of the resource will be spent
analyzing the data of innocent people.

In this paper, we conduct a formal analysis of the overall
cost of a surveillance system. Our analysis starts from the
false-positive paradox, a statistical result where false positive
events (i.e., identification of innocents as potential suspects)
are more probable than true positive events (i.e., detection of
terrorists). This paradox occurs when the number of events to
be detected —terrorists in our case— is very small compared
to the whole population. It results in very inefficient systems
that produce highly unreliable results.

The aim is to understand under which conditions dataveil-
lance may be rational and economical. Although mass-
surveillance is also questionable in terms of privacy, we
decided to avoid this debate and, instead, focus our analysis on
the financial cost of such system. We formulate our analysis
as an optimization problem: given a fixed limited budget, how
we should allocate it in order to achieve the optimal results.
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E-mail: javier.parra,claude.castelluccia@inria.fr
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II. BACKGROUND

In this section, we first describe our notation and termi-
nology as well as the assumptions about the surveillance-
system model. Secondly, we illustrate the false-positive para-
dox presented in the introductory section, which constitutes
our starting point to analyze the cost of a mass surveillance.

A. Notation and Assumptions

Throughout this section, we shall follow the convention of
using uppercase letters to denote random variables (r.v.’s), and
lowercase letters to the particular values they take on. The
measurable space in which an r.v. takes on values will be called
an alphabet. With a mild loss of generality, we shall always
assume that the alphabet is discrete. Probability mass functions
(PMFs) are denoted by p, subindexed by the corresponding r.v.
Accordingly, pX(x) denotes the value of the function pX at
x. We use the notations pX|Y and pX|Y (x|y) equivalently.

In the following, the r.v. X is used with full generality
to include categorical or numerical data about an individual,
although for mathematical simplicity we shall henceforth
assume it models single-occurrence data, rather than tuples
or sequences. X may represent, for example, the number of
visited Web sites related to jihadism by an individual, the
frequency with which this individual tweets fanatic, religious
comments, or the number of social links that they actively
maintain with extremists. Without loss of generality, we as-
sume X takes on values on the alphabet {1, . . . , n}.

In our analysis, we consider an ubiquitous surveillance
system that gathers information about a population as a result
of, for example, monitoring data and traffic on the Internet,
tapping telephone lines and mining social-networking sites.
Due to the tremendous amount of information involved, the
surveillance system must necessarily automate the gathering
of such data and their posterior analysis.

We assume a surveillance system that relies on automated
computer software to carry out both tasks, and that reports
to human investigators only when it detects patterns of indi-
viduals which can be classified as terrorists. Our analysis of
the cost of this system assumes, however, that the cost of this
automated, computerized monitoring is negligible compared
to that of human inspection.

We believe this is a reasonable assumption, as it is consistent
with some recent reports on the economic cost of such
manual examination. As an example, the Canadian Security
and Intelligence Service reportedly requires around 16 full-
time personnel to install a listening device and about 33 agents
to follow a suspect 24/7 for more than a week [2]. Also, in
current practice, the number of human resources is what limits
the ability of the surveillance system to fulfill its duties [3].
We have seen this in the past, for example in the case of the
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Fig. 1: We show a simple but illustrative example of the PMFs characterizing
what might be regarded as terrorist and innocent Web-browsing patterns in
a Muslim country. The profiles τ (terrorist) and ν (innocent) here depicted
correspond to the probability distribution of the pages visited across the Web.
Conceptually, these artificial profiles tell us that 15% of all page visits by a
terrorist would be to the site islamic-news.info, whereas this would be
just 6% in the case of an innocent.

Boston Marathon bombers and more recently with the Charlie
Hebdo terrorists: they had been identified, but were not tracked
anymore for budget and resource reasons.

That said, for the sake of illustration this work considers a
simplified model for the automated detection process. More
specifically, we assume that the monitoring system applies
a binary hypothesis test [4, §11] to find out whether one
observed data has been distributed according to a PMF τ
that captures a terrorist’s characteristic behavior, or a dis-
tribution ν that reflects common patterns among innocents.
We acknowledge, however, that a surveillance system will
probably have more than one observation about an individual,
and therefore will carry out the test on the basis of sequences
of observed data, or equivalently, their corresponding empirical
distributions.

We shall refer to those two distributions also as the terrorist
and innocent profiles. Fig. 1 provides an example of such
distributions that might reflect the Web-browsing habits of
those profiles. We would like to stress that this example
does not pretend to be an accurate or realistic representation
of any actual profile. It merely aims to illustrate the kind
of information captured by the distributions involved in the
hypothesis-testing problem.

Let H be a binary r.v. representing the two possible hy-
pothesis about the distribution of the observed data. Precisely,
H = 1 with probability θ and H = 2 with probability 1− θ,
and X conditioned on H has PMF τ when H = 1 and ν
when H = 2. A randomized estimator or detector Ĥ of H
is a probabilistic decision rule determined by the conditional
probability pĤ|X . The interpretation of such estimator is as
follows: if X is observed to have value j, the detector
concludes H = 1 with probability pĤ|X(1|j), and H = 2
otherwise. Note that deterministic estimators are a particular
case of randomized detectors.

The performance of a decision rule is typically characterized
in terms of its error and detection probabilities. The prob-
ability of a false positive, which we shall also refer to as
misidentification rate, is the probability that an innocent be
considered as a terrorist by the surveillance system, that is,
pĤ|H(1|2). The probability of a true positive, on the other
hand, is the probability of correctly identifying terrorists,
i.e., pĤ|H(1|1). We shall also regard this probability as the
accuracy rate. The probabilities of false and true negatives
are defined analogously.

B. The false-positive paradox

This section reviews a fairly known result in statistics, namely,
the false-positive paradox [5].

Consider a very pessimistic or paranoic vision of the current
situation of terrorism, in which a 0.1% of the population in
France is terrorist. With a population of approximately 70
million people, we could regard this figure of 70 000 terrorists
as a worst-case scenario or loose upper bound.

Suppose that the French intelligence agency Direction
Générale de la Sécurité Intérieure has a surveillance system
such as the one described in Sec. II-A, with access to a wide
range of personal information including Internet, phone-call
and banking records. In addition, assume that the agency has
a highly accurate detection system at its disposal, with a true
positive rate of 99% and a probability of false positive of 0.5%.

Bearing in mind all these assumptions, now we wonder
about the reliability of a positive detection. In other words,
given an individual who has been labeled as a terrorist by the
automated detection system, what would be the probability
that they have been correctly identified as such?

From Bayes’ theorem, it is immediate to verify that such
probability, which in information retrieval is called preci-
sion [6], yields

pH|Ĥ(1|1) =
pĤ|H(1|1) θ

pĤ|H(1|1) θ + pĤ|H(1|2) (1− θ) '
1

6
,

which means that, in average, just one out of six positive tests
will in fact correspond to a terrorist. In absolute numbers, the
number of false positives and true positives would be 349 650
and 69 300 respectively.

In the example given, the large number of false positives
—compared to the number of true positives— appears to be
contradictory: the accuracy and misidentification rates show a
detection system that is certainly precise; but in reality, if an
individual is classified as a terrorist, the probability that the
system is correct is only 1

6 . This is known as the false-positive
paradox and it arises when the overall population has a low
incidence of terrorism (or of a health condition, in the case
of medical testing) and this incidence rate is lower than the
probability of a false positive.

The upshot is that, in a current state of affairs with
fortunately very few terrorists —fewer in proportion to the
false positive rate— there will more innocents misidentified
as terrorists than terrorists correctly identified. In terms of
resource efficiency, this has a straightforward consequence: the
surveillance system will require to conduct an investigation on
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pĤ|H(1|1) = 99.5%, pĤ|H(1|2) = 0.3%

pĤ|H(1|1) = 99.0%, pĤ|H(1|2) = 0.5%

pĤ|H(1|1) = 98.5%, pĤ|H(1|2) = 0.7%

Fig. 2: The probability of a correct positive test is plotted for different values
of accuracy and misidentification rates. Recall that the accuracy rate of a test
is defined as the probability of correctly identifying terrorists, i.e., pĤ|H(1|1).
The rate of misidentification of a test is defined as the probability of incorrectly
classifying innocents, that is, pĤ|H(1|2). As noted from this figure, the false-
positive paradox is observed when the ratio θ of terrorists to total population
is lower than the misidentification rate.

the list of those people classified as terrorists when in most
cases they will be innocent citizens.

Fig. 2 illustrates the impact that this result may have
on a surveillance system, depending on the accuracy and
misidentification rates of the test. In this figure, the probability
pH|Ĥ(1|1) is computed directly from Bayes’ theorem, assum-
ing no dependence among the different probabilities involved.

III. DETECTING TERRORISTS

In the background section, we roughly evaluated the probabil-
ity that an individual labeled as a terrorist be in fact a terrorist.
For the sake of clarity, in that section we ignored the depen-
dence between the accuracy and the misidentification rates.
In this section, first we succinctly illustrate the variables that
characterize these two rates; then we propose a quantitative
measure of the economic cost of a mass surveillance program;
and finally, we formulate a detector aimed at minimizing
the overall cost of such monitoring. As we shall show in
the coming sections, the purpose of designing cost-optimized
detectors is to obtain, for several simple examples of τ and ν,
some representative lower bounds on the expenditures of such
surveillance programs.

Using basic probability theory, we can immediately check
the relationship between the accuracy and the misidentification
rates. For i, j = 1, 2, note that

pĤ|H(i|j) =

n∑
k=1

pĤ|X(i|k) pX|H(k|j),

and in particular that

pĤ|H(1|1) = 〈 pĤ|X(1|·), τ 〉,
pĤ|H(1|2) = 〈 pĤ|X(1|·), ν 〉, (1)

where the symbol “〈 , 〉” denotes the standard inner product
on Rn, and pĤ|X(1|·), τ and ν are interpreted here as vectors.

Two evident albeit insightful observations stem from (1).
First, as fully expected, we note that the accuracy and

misidentification rates depend on the reference, characteristic
distributions that describe the behaviors of a terrorist and an
innocent. Secondly, we observe that both rates are subject
to the decision rule that concludes when an individual is a
terrorist. The reference distributions are the result of profiling
both terrorists and innocents based on the available data,
and can be seen as input parameters of the estimator. The
decision rule, on the other hand, is determined by the particular
optimality criterion chosen to design it.

Some classical optimality criteria are the Bayes, minimax
and Neyman-Pearson designs [7]. Their formulations of the
hypothesis test between H = 1 and H = 2 are given,
respectively, by

(i) minpĤ|X θ pĤ|H(2|1) + (1− θ) pĤ|H(1|2),

(ii) minpĤ|X max{pĤ|H(2|1), pĤ|H(1|2)},
(iii) minpĤ|X pĤ|H(2|1) subject to pĤ|H(1|2) 6 γ.

In this work, we contemplate an optimality criteria for the au-
tomated surveillance system’s detector, which might resemble,
to some extent, the Bayes and Neyman-Pearson formulations.
In particular, we consider minimizing a measure of the overall
economic cost of such system for a desired probability of true
positives, and vice versa. The next two subsections elaborate
on this measure of economic cost and provide the formulation
of the proposed detector.

A. Measure of the Overall Economic Cost

Our measure of the total cost of a surveillance system revolves
around the false-positive paradox and the fact that each alarm
requires a costly investigation to decide whether it is real or
not.

As mentioned in Sec. II-B, one of the consequences of the
reduced incidence of terrorists is that the monitoring system
will require to conduct a further investigation on the set of
individuals labeled as terrorists, a set with unluckily a large
number of false positives compared to the number of true
positives. We denote this set of “still-suspects” by S.

We assume that the agents of the intelligence service who
are in charge of examining this set proceed in a serial manner,
that is, they do not undertake a new investigation until an
individual is correctly identified as innocent or terrorist —
this can be justified in terms of the limited although often
disproportionate number of resources available to an agency.
Our analysis of the economic cost per suspect, however, is
valid regardless of the number of agents working in parallel on
a partition of S, under the reasonable assumption that simple
random sampling is employed.

Given a subset of S, the number of individuals that an
agent will have to examine until they catch a terrorist is
clearly a geometric r.v. with parameter pH|Ĥ(1|1). We denote
by Cc the cost of checking the true condition of one particular
individual within S. This would include, for example, the costs
of tracking, detaining and interrogating them1. Recall that the
expected value of a discrete r.v. geometrically distributed is

1As a reference, [8] provides a rigorous estimate of the costs of different
location-tracking techniques.



4

false positives 
(innocents) 

 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AA 

positive tests true positives 
(terrorists) 

terrorists innocents 

I 

s
¤
j =

(
0 ; j = 1; : : : ; i ¡ 1

qj ¡
¹Q i¡1¡¾

n¡ i+1
; j = i; : : : ; n

T 

S 

Fig. 3: The set of suspects or positive tests S is composed of those individuals
who have been classified as terrorists by the detector. We propose measuring
the total cost of a surveillance system essentially as the cardinality of S. The
cost per terrorist, on the other hand, is roughly defined as the ratio of positive
tests to true positives, i.e., |I ∪ T | / |T |.

the inverse of its parameter. Accordingly, for θ > 0 we define
the cost per terrorist Ct of a security agency as

Ct =
Cc

pH|Ĥ(1|1)
.

The total cost T of the surveillance program is defined
intuitively by multiplying Ct by the number of true positives.
We would like to emphasize that this latter measure of cost
is also independent of the number of agents involved in the
inspection of S. The number of human resources to this end
has only an impact on the time taken by this examination.

The proposed measures of cost can also be interpreted in
terms of the sets of false positives and true positives. This is
illustrated in Fig. 3, where we denote those sets by I and T ,
respectively. Consistently with the false-positive paradox, this
figure shows a set I much larger than T . Recall that we defined
S as the set of suspects, that is, S = I ∪ T . Accordingly, it
is straightforward to check that Ct/Cc = |S| / |T | and that
T /Cc = |S|. In a nutshell, we may regard our measure of
total cost essentially as the number of suspects listed by the
automated detector.

B. Cost-Optimized Detection

Having defined a metric of the overall economic cost of a
surveillance system, a detector may be designed accordingly
to minimize it, maybe accompanied with some constraints
on the probabilities of error and detection. In this work,
we contemplate two equivalent design principles for such
detector. Our first design considers the case in which the
intelligence agency wishes to minimize the total cost of its
surveillance system, while ensuring that a target, minimum
percentage of terrorists κmin is captured. The formulation of
the corresponding detector is given by

min
pĤ|X

θ pĤ|H(1|1) + (1− θ) pĤ|H(1|2)

subject to pĤ|H(1|1) > κmin. (2)

We shall denote by T ∗ the minimum total cost attained by
said detector. We hasten to stress that, in the trivial case when

TABLE I: Description of the variables used in our analysis.

Symbol Description

X observed data about an individual

n cardinality of the alphabet of X

H, Ĥ true condition (i.e., terrorist or innocent) of an individual, and
estimated condition by the surveillance system’s detector

τ, ν terrorist and innocent reference profiles

θ ratio of terrorist to total population

Cc the cost of checking is defined as the cost of carrying out
a human investigation to ascertain the true condition of a
suspect

Ct the cost per terrorist is defined as the product of Cc and the
average number of suspects that an agent must examine to
capture one terrorist

T the total cost is defined as the product of Ct and the number
of true positives

κmin minimum percentage of terrorists the surveillance system
aims at capturing

βmax maximum budget of the surveillance system to conduct hu-
man investigations on the list of suspects

I, T, S sets of false positives, true positives and positive tests

θ = 0, a positive κmin does not make sense. On the contrary,
when θ > 0, a target percentage of terrorists to be caught of
κmin = 0 leads clearly to a minimum total cost T ∗ = 0.

Our second design approaches the complementary case
to (2). That is, it considers a scenario in which the security
agency wants to maximize the number of captured terrorists
for a maximum budget βmax. Said otherwise, we simply con-
template exchanging the objective and the constraint functions
of the previous detector.

In this case, the formulation of the associated detector is
given by the optimization problem

max
pĤ|X

pĤ|H(1|1) subject to T 6 βmax.

It can be shown, however, that this latter optimization problem
characterizes the same optimal trade-off between total cost
and accuracy rate described by (2). Consequently, because the
analysis of either of these two formulations will yield entirely
equivalent results, next subsections will just refer to (2) for
simplicity. Table I provides a summary of the notation used
in this section.

IV. NUMERICAL EXAMPLES

This section illustrates the different parameters involved in the
design of a detection system, and provides some indicative
and representative figures of the cost of a mass monitoring
program. In the absence of real, accurate data that allow
us to characterize mainly the terrorist’s profile —but also
the innocent’s—, we conduct our analysis on the basis of
some simple but insightful examples of such distributions. We
would like to emphasize that, accordingly, the results shown
here are not a precise, detailed characterization of the actual
cost of a real surveillance system. As we shall see in the
next subsections, this is strongly influenced by the behavioral
models assumed.
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(a) Scenario A. τ1 = (0.15, 0.55, 0.30), ν1 =
(0.16, 0.54, 0.30).
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(b) Scenario B. τ2 = (0.20, 0.50, 0.30), ν2 =
(0.30, 0.50, 0.20).
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(c) Scenario C. τ3 = (0.50, 0.20, 0.30), ν3 =
(0.15, 0.25, 0.60).
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(d) Scenario D. τ4 = (0.95, 0, 0.05), ν4 =
(0.05, 0.10, 0.85).
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(e) Scenario E. τ5 = (0.97, 0, 0.03), ν5 =
(0.01, 0.05, 0.94).
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(f) Scenario F. τ6 = (1, 0, 0), ν6 = (0, 0, 1).

Fig. 4: Examples of probability distributions for terrorists τ and innocents ν, sorted from (a) to (f) in decreasing order of similarity.

The section is organized as follows. First, we introduce
in Sec. IV-A two common metrics of distribution distance.
Then, Sec. IV-B shows the reference profiles that will be used
throughout our analysis. And finally we present our results in
Sec.IV-C.

A. Measures of Profile Similarity

As we shown in Sec. III, the performance of a detector
is determined by the reference distributions τ and ν that
model terrorist and innocent behaviors. Although not explicitly
stated in that section, it is clear that the error and detec-
tion probabilities, as well as the corresponding cost of the
surveillance system, will largely depend on to what extent
these two profiles diverge. Intuitively, the more dissimilar these
profiles are, the less is the probability of incorrectly identifying
individuals and hence the cost of the system. To quantify
the impact of profile similarity on said cost, this section
briefly introduces two measures of statistical distance between
distributions, namely the cosine distance and the Kullback-
Leibler (KL) divergence.

The cosine distance [9] is a simple and robust measure of
dissimilarity between vectors, and is defined as

C(τ ‖ ν) = 1− 〈 τ, ν 〉‖τ‖‖ν‖ ,

where ‖·‖ denotes the Euclidean norm. It is important to notice
that the cosine distance is not a proper metric as it does not
satisfy the triangle inequality. Nevertheless, it does provide a
measure of distance: in the case of probability distributions, it
ranges from 0, meaning the PMFs are identical, to 1, indicating
orthogonality.

The second distance measure we shall utilize to explore the
effect of profile similarity on the cost of a surveillance system

is the KL divergence, a fundamental quantity in information
theory that arises, for instance, in the (optimal) likelihood
ratio test of the Neyman-Pearson formulation [4]. The KL
divergence between τ and ν is defined as

D(τ ‖ ν) =

n∑
i=1

τi log
τi
νi
.

When not specified, the base of the logarithms is taken to
base 2. Exactly as with the cosine distance, the KL divergence
is not a metric as it is neither symmetric nor satisfies the trian-
gle inequality. It provides, however, a measure of discrepancy
between distributions, in the sense that D(τ ‖ ν) > 0, with
equality if, and only if, τ = ν.

In the definition of divergence, we shall use the convention
that 0 log 0

0 = 0, 0 log 0
ν = 0 and τ log τ

0 = ∞. This can
be justified by continuity arguments. As we shall show in
Sec. IV-C, this information-theoretic quantity will allow us
to capture the special case when τi > 0 and νi = 0 for some
i = 1, . . . , n, for which D(τ ‖ ν) =∞.

B. Scenarios

Our analysis is carried out for some examples of reference
profiles, under the assumption that these profiles are modeled
as PMFs, that is, as histograms of relative frequencies of data
(from terrorists and innocents) within an arbitrary alphabet.
A fairly realistic example of reference profiles could be the
percentage of time spent by terrorists and innocents in some
specific Web pages related to jihadism.

Throughout this series of examples, we shall assume a
surveillance system monitoring a population of 70 million
people, like in France approximately. The results presented
in next section are shown for the six pairs of distributions
(τ j , νj)6j=1 depicted in Fig. 4. The number of data categories
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Scenarios 

Statistical distance A B C D E F 

Cosine distance 0.0002 0.0263 0.2583 0.8896 0.9585 1.0000 

KL divergence 0.0006 0.0585 0.5041 3.8312 6.2528  ∞ 

Fig. 5: We show the approximate values of dissimilarity between the terrorist
and innocent distributions plotted in Fig. 4.

considered in our analysis is n = 3. In terms of the example of
profiles mentioned above, i = 1, 2 could be two pages related
to Islamic extremism, and i = 3 the rest of the Web.

The pairs of profiles represented in that figure merely
attempt to reflect some plausible scenarios in regards to the
similarity between the two PMFs. Although in Sec. IV-A we
introduced two quantitative measure of discrepancy between
distributions, we shall also refer to those scenarios in qual-
itative terms, from low (scenario A) to high (scenario F)
dissimilarity, consistently with the fact that C(τ i ‖ νi) and
D(τ i ‖ νi) are strictly increasing with i. Table 5 shows the
values of dissimilarity between each of the pairs of profiles
assumed in our analysis.

In all the examples shown, the optimization problem inher-
ent in the definition of the detector (2) has been computed
numerically. The numerical method chosen is the sequential
quadratic programming optimization algorithm [10], imple-
mented by the Matlab R2014a function fmincon.

C. Results

We shall start our analysis by examining the example of
distributions shown in Fig. 4(c), which represents an inter-
mediate case in terms of profile similarity—a cosine distance
of approximately 0.2583 seems to indicate this. We consider
a ratio of terrorists to total population θ = 0.1‰, and
assume that the intelligence agency wishes to capture at least
κmin = 75% of them. Interpreted as an R2×3 matrix, the
detector that minimizes the total cost for the pair (τ3, ν3) is
given approximately by

X
1 2 3

Ĥ
1 1.000 1.000 0.167
2 0.000 0.000 0.833

where the entry i, j is the probability of deciding Ĥ = i when
X = j is observed. The estimator above has been computed
numerically, using the method mentioned in Sec. IV-B, and
tells us that an individual will be considered innocent only
when X = 3, and with probability 0.833. The corresponding
accuracy and misidentification rates can be obtained straight-
forwardly from this matrix and the reference distributions,
through the expression (1). They yield 0.75 and 0.50, re-
spectively. Recall that T /Cc is the number of suspects that
the agents of the surveillance system will have to further
investigate on an individual basis. For the estimator at hand,
this number reaches the high figure of 35 001 750 individuals,
just about half of the population assumed.

The low-similarity cases E and F will show next that this
enormous cost, given above in number of suspects, is in part
a consequence of the semblance between τ3 and ν3. Fig. 4(e)

0 0.05 0.10 0.15 0.20
0

2

4

6

8

θ

lo
g
1
0
C t

/
C c

 

 

τ1, ν1

τ2, ν2

τ3, ν3

τ4, ν4

τ5, ν5

τ6, ν6

[‰]

Fig. 6: We plot the minimum cost per terrorist, given in number of suspects
per true positives, as a function of the ratio θ of terrorists to total number
of individuals. We assume that the intelligence agency aims at capturing, at
least, κmin = 75% of those terrorists.

represents two distributions such that ν2 > τ2 = 0. Intuitively,
this means that, if X = 2, the individual in question will never
be regarded as a terrorist, which will have an impact on the
misidentification rate and therefore on the total cost of the
system. For the same values of θ and κmin, and for the PMFs
(τ5, ν5), the estimator that solves (2) is given by the matrix

X
1 2 3

Ĥ
1 0.773 0.000 0.000
2 0.227 1.000 1.000

An interesting observation that follows from this detector is
the relatively low value of pĤ|X(1|1). At first sight, this may
seem surprising since the probability of observing X = 1 for a
terrorist (97%) is much higher than that for an innocent (1%).
However, this is an expected consequence of the optimality
criterion chosen. To illustrate this, simply note that a proba-
bility pĤ|X(1|1) > 0.773 would imply, from (1), an accuracy
rate pĤ|H(1|1) = pĤ|X(1|1)τ51 > κmin. Such a detector would
obviously be feasible, on account of the inequality constraint
imposed in (2). But certainly, it would give a greater number
of true positives and thus would incur a higher cost.

As anticipated, the performance of this detector is much
better than that of scenario C. The misidentification rate is
reduced significantly, yielding pĤ|X(1|1) ν51 = 0.773%, and
the minimum number of suspects to examine T ∗/Cc drops to
546 433 individuals. This latter figure represents 1.56% of the
total cost of case C.

Not entirely unexpectedly, these results are further enhanced
by the extreme case F, which we represent in Fig. 4(f). For the
same θ = 0.1‰ but for a more stringent requirement κmin = 1,
the optimal estimator is given by the matrix

X
1 2 3

Ĥ
1 1.000 0.000 0.000
2 0.000 0.000 1.000

which concludes that an individual is a terrorist if, and only if,
X = 1. Naturally, T ∗/Cc attains the total number of terrorists,
7 000, and the probabilities of true-positive and false-positive
tests become 1 and 0 respectively. Simply put, the surveillance
system does not misidentify any terrorist and any innocent.
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Fig. 7: Minimum total cost, given in number of suspects, and its derivative with respect to the ratio of terrorists (per mille) for κmin = 75%.

Compared to case E, this implies a reduction of 98.72% in
total cost. The relative increment in cosine distance between
the scenarios E and F, however, is only 4.33%, which seems
to indicate that this said distance is not suitable to quantify
significant differences in overall cost. The KL divergence, on
the contrary, appears to capture this notable reduction in T ∗.

Recall that Ct/Cc is the ratio of positive tests (i.e., individ-
uals labeled as terrorists by the automated detection system)
to true positives tests, that is, the inverse of precision. For
a fixed κmin = 0.75, Fig. 6 shows the value of such ratio,
which results from dividing the minimum total cost T ∗/Cc
by the number of true positives. Later on we shall examine
this minimum total cost for a range of values of κmin. The
displayed results correspond to the six pairs of distributions
represented in Fig. 4.

Consistently with our previous observations about the total-
cost metric, we note that those cases in which the differences
between τ and ν are more pronounced lead to lower minimum
costs per terrorist. In all but case F, we also observe a
ratio Ct/Cc that increases exponentially as θ approaches 0;
clearly, our measure of cost per terrorist is not defined at this
extreme value. The behavior of these ratios are in line with
the conclusions drawn in Sec. II-B about the large number of
false positives—compared to the number of true positives. As
an example, for θ 6 0.1‰ we notice that cases A-E would
require examining, in average, a minimum of 100 suspects to
capture one terrorist. The extreme case F, then again, yields
an expected minimum ratio of 1 positive test per terrorist,
regardless of the ratio of terrorists assumed.

Fig. 7, on the other hand, shows the dependence of the
minimum total cost T ∗/Cc on the ratio of terrorists. The curves
are also plotted for κmin = 75% and θ ∈ (0, 0.0002]. Although
T is defined for θ = 0, this figure does not represent such
values since we are considering a positive κmin.

Fig. 7(a) confirms the intuitive, preliminary findings sug-
gested at the beginning of this section: the higher the similarity
between the reference distributions, the higher the minimum
overall cost. The results indicate that T ∗ is roughly linear with
the ratio of terrorists. Fig. 7(b) plots the derivative of T ∗/Cc
with respect to θ, which, in addition, allows us to appreciate
the relatively low rates of increase guessed in Fig. 7(a). An

interesting observation arising from this former figure is that
an increase in the ratio of terrorists ∆θ = δ leads to an
increase in the minimum total cost ∆T ∗ < δ. Informally, this
means that a possible overestimate of the ratio of terrorists
by the intelligence agency would not have a great impact in
terms of cost—at least for the distributions considered here.
Lastly, consistently with Fig. 6, we check that case F yields
T ∗/Cc = 5 250, that is, the total number of terrorists the
agency aims at detaining.

The optimal trade-off between total cost and accuracy rate
is illustrated in Fig. 8 for θ = 0.1‰. The figure plots, more
specifically, the minimum quotient T /Cc as a function of the
minimum percentage of terrorists κmin the surveillance system
wants to capture. Conversely, for a maximum budget βmax/Cc
(in number of suspects to interrogate), it gives us the maximum
number of terrorists detained.

The trade-off curves are plotted again for the six examples
of reference profiles. Remarkably enough, we observe that
such curves exhibit a convex, piecewise-linear behavior, analo-
gously to the receiver operating curve of the Neyman-Pearson
test [10]. This observation has an evident practical implication.
In the scenario C, for instance, we see that an increase of
1‰ in κmin (i.e., 7 more terrorists) leads to examining 212
more suspects; this is for κmin ∈ [0, 0.50]. However, this
same increase in the interval [0.69, 1] translates into 1 398 new
suspects.

On the other hand, Fig. 8 shows relatively low values of total
cost in those cases where the corresponding profiles are more
dissimilar. For example, case E, with D(τ5 ‖ ν5) ' 6.2528,
yields only T ∗/Cc = 36 310 individuals for κmin = 0.50. The
scenario with the most similar profiles, in contrast, indicates
that half of the population should be investigated. Also, we
note that the quotient T ∗/Cc in cases A-C becomes the size
of the whole population when κmin = 1. In cases D and E such
quotient is slightly reduced, being approximately 90% and
95% of the total number of individuals. Finally, in accordance
with our previous observations about the cost per terrorist, case
F gives the total number of terrorists.

Our last figure, Fig. 9, illustrates the impact that profile simi-
larity, quantified through the two distance measures introduced
in Sec. IV-A, may have on total cost. In particular, this figure
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Fig. 8: Optimal trade-off between the cost of a surveillance system, given in
number of individuals to investigate, and the minimum percentage of terrorists
this system is required to capture. In this figure, we assume a ratio of terrorists
to total population θ = 0.1‰.

shows the minimum T /Cc versus the KL divergence and the
cosine distance, for θ = 0.1‰ and for each of the examples of
distributions plotted in Fig. 4. We assume κmin = 0.50% and,
consequently, the abscissa ranges from approximately half of
the number of terrorists to about half of the overall population.

Apart from the fact that the minimum total cost decreases
with these two measures of profile dissimilarity, an immediate
observation is that the KL divergence is more sensitive to cost
differences than the cosine distance. For example, from case E
to D, T ∗ increases approximately 406.58%, whereas the cosine
distance experiences a relative reduction of just 7.19%. This
is in contrast to KL divergence, which is dropped 38.73%.

Another interesting remark is that this latter measure may
capture the interesting scenario when τi > 0 and νi = 0 for
some i = 1, . . . , n, for which D(τ ‖ ν) = ∞. Precisely, this
corresponds to case F, which gives the minimum attainable
total cost, 3 500. We must hasten to stress, however, that this
does not imply that any pair of distributions satisfying the
above requirements will lead to this minimum total cost value.
For example, the KL divergence between the distributions τ =
(0, 0.3, 0.7) and ν = (0.3, 0, 0.7) is infinite, but T ∗/Cc is
around 14 million of positive tests.

The cosine distance, on the other hand, does reflect, in a
more general way, this sense of orthogonality observed in
the scenario F, which confirms the intuition that orthogonal
profiles may lead to minimum attainable total costs and hence
calls for the exploration of behavioral models satisfying this
property.

V. CONCLUSIONS

This paper aims to provide insight into the economic cost
of a surveillance system. Our analysis starts with the false-
positive paradox, a fairly-known result in statistics in which
false positives are more likely than true positives.

Our work does not evaluate the actual cost of a monitoring
program —since the real distributions are not available in
general—, but provides some indicative and representative
figures of its cost on the basis of some simple but insightful
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Fig. 9: We plot profile dissimilarity versus the minimum quotient T /Cc for
κmin = 0.50%, θ = 0.1‰ and for the six reference distributions considered
in this section. Profile dissimilarity is measured with the KL divergence and
the cosine distance.

examples of such distributions. The analysis is also conducted
under the assumption that the surveillance system estimates
the condition of an individual based on a single observation,
rather than sequences of observed data. The simplicity of the
model assumed allows us to show the relationships among the
design parameters of such system in an illustrative manner.
The main contributions of this work are, more specifically,
a quantitative measure of the overall economic cost of a
monitoring system, and the illustration of the optimal trade-
off between this measure of cost and the requirements of this
system in terms of the percentage of terrorists it wishes to
capture.

The main results of this analysis are summarized next:

• We show that the proposed metrics of total cost and cost
per terrorist are strongly dependent (or sensitive) on the
feature distributions of terrorists and innocents.

• The optimal trade-off between overall cost and accuracy
rate is observed to be convex, piecewise linear, which
resembles the receiver operating curve of the Neyman-
Pearson test.

• We observe an extremely large number of false positives,
except in the scenario where the distributions of terrorists
and innocents are orthogonal, as effectively captured
by the cosine distance. In order to be orthogonal, the
terrorist profiles and features have to be unique and
very distinctive from other people profiles. Defining such
profiles is challenging since scientists do not have access
to the data of many terrorists. Besides, current results tend
to show that terrorists have personality traits that are in-
distinguishable from traits of the general population [11].
Also, it is very likely that terrorists will use tools such
as encryption tools or proxies, in order to perturb their
profiles.

• Our results show that the total cost increases linearly with
the ratio of terrorists, but the rate of increase is relatively
low in the six scenarios considered. As depicted in Fig. 7,
the total cost is similar regardless of the percentage of ter-
rorists. This is a quite interesting observation because this
means that, when the security agency has to decide the
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budget, it will not need to be very accurate in estimating
the percentage of terrorists within the population. On the
other hand, this figure also shows that the efficiency of
the system increases with the number of suspects, but is
very low when the number of terrorist is small compared
to the population size, which is fortunately the case. Mass
surveillance of the entire population is logically sensible
only if the number of persons to identified is high, which
happens in McCarthy-type national paranoia or political
espionage [12].

In closing, this paper demonstrates that dataveillance is not a
very economical solution to fight against terrorism. More false
positive will only overstress technologies, thus causing even
more work for signals-intelligence agents, who are already
overloaded [13]. In fact, the Charlie Hebdo terrorists were
known by the French security agency prior to their attack.
They were not followed and tracked anymore for budget
and resource reasons. One might wonder how a dataveillance
system that generates so many false positive, and is so easy
to circumvent, will help improving the situation.

Lastly, as a future research line we plan to extend our cost
analysis to the case when the automated detection process
relies on sequences of observed data. In this same direction, we
intend to analyze the few terrorist databases publicly available
with the aim of building approximate behavioral models that
better reflect the cost of a mass surveillance system.

REFERENCES

[1] A. J. Rubin and D. E. Sanger, “Familiar swing to security over
privacy after attacks in france,” May 2015, accessed on 2015-05-09.
[Online]. Available: http://www.nytimes.com/2015/05/07/world/europe/
france-expanded-surveillance-charlie-hebdo.html

[2] I. MacLeod and L. Berthiaume, “New anti-terror bill will give Canadian
spies police-like powers to disrupt terrorist plots,” Jan. 2015, accessed
on 2015-05-20. [Online]. Available: http://news.nationalpost.com/news/
canada/government-tables-anti-terror-bill

[3] B. Schneier, “Why mass surveillance can’t, won’t, and never has
stopped a terrorist,” Mar. 2015, accessed on 2015-05-10. [Online].
Available: http://digg.com/2015/why-mass-surveillance-cant-wont-and-
never-has-stopped-a-terrorist

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New York: Wiley, 2006.

[5] R. M. Gray, Probability, Random Processes, and Ergodic Properties.
New York: Springer-Verlag, 1988, (Online version edited in 2001). [On-
line]. Available: http://www-ee.stanford.edu/\textasciitildegray/arp.pdf

[6] W. B. Frakes and R. A. Baeza-Yates, Eds., Information Retrieval: Data
Structures & Algorithms. Prentice-Hall, 1992.

[7] B. C. Levy, Principles of Signal Detection and Parameter Estimation,
1st ed. Springer-Verlag, 2008.

[8] K. Bankston and S. Soltani, “Tiny constables and the cost of surveil-
lance: Making cents out of united states v. jones,” pp. 335–356, Jan.
2014.

[9] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G. Stum,
“Evaluating similarity measures for emergent semantics of social tag-
ging,” in Proc. Int. WWW Conf. ACM, 2009, pp. 641–650.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[11] “Terrorists’ personality traits indistinguishable from traits of the
general population: Experts,” May 2015, accessed on 2015-05-10.
[Online]. Available: http://www.homelandsecuritynewswire.com/
dr20150512-terrorists-personality-traits-indistinguishable-from-traits-
of-the-general-population-experts

[12] F. Rudmin, “Why does the nsa engage in mass surveillance of
americans when it’s statistically impossible for such spying to detect
terrorists?” May 2006, accessed on 2015-05-09. [Online]. Available:
http://www.counterpunch.org/2006/05/24/why-does-the-nsa-engage-in-
mass-surveillance-of-americans-when-it-s-statistically-impossible-for-
such-spying-to-detect-terrorists

[13] M. Hartley, “Cyber threats: Information vs. intelligence,”
Oct. 2014, accessed on 2015-05-09. [Online]. Avail-
able: http://www.darkreading.com/analytics/threat-intelligence/cyber-
threats-information-vs-intelligence/a/d-id/1316851


