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Optimal Filter Approximations in
Conditionally Gaussian

Pairwise Markov Switching Models
N. Abbassi, D. Benboudjema, S. Derrode and W. Pieczynski

Abstract—We consider a general triplet Markov Gaussian linear system
(X,R,Y), where X is an hidden continuous random sequence, R is an
hidden discrete Markov chain, Y is an observed continuous random
sequence. When the triplet (X,R,Y) is a classical “Conditionally
Gaussian Linear State-Space Model” (CGLSSM), the mean square error
optimal filter is not workable with a reasonable complexity and different
approximate methods, e.g. based on particle filters, are used. We propose
two contributions. The first one is to extend the CGLSSM to a new,
more general model, called the “Conditionally Gaussian Pairwise Markov
Switching Model” (CGPMSM), in which X is not necessarily Markov
given R. The second contribution is to consider a particular case of
CGPMSM in which (R,Y) is Markov and in which an exact filter,
optimal in the sense of mean square error, can be performed with linear-
time complexity. Some experiments show that the proposed method and
the suited particle filter have comparable efficiency, while the second one
is much faster.

Index Terms—Gaussian switching system, Exact optimal filtering,
Hidden Markov models, Conditionally Gaussian Linear State-Space
Model, Conditionally Gaussian Pairwise Markov Switching Model.

I. INTRODUCTION

LET us consider three random sequences XN
1 = (X1, . . . ,XN ),

RN
1 = (R1, . . . , RN ) and YN

1 = (Y1, . . . ,YN ), where
the sequences XN

1 and YN
1 take their values in Rm and Rq

respectively, while RN
1 is discrete finite, each Rn taking its values

in Ω = {0, . . . ,K − 1}. Both XN
1 and RN

1 are hidden, while YN
1

is observed. The problem we deal with in this paper is the sequential
search of (RN

1 ,X
N
1 ) from YN

1 . The optimal filter is given by

E
[
Xn+1

∣∣yn+1
1

]
=
∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
,

and its variance is

Var
[
Xn+1

∣∣yn+1
1

]
=
∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
Var

[
Xn+1

∣∣rn+1,y
n+1
1

]
.

So, we search to express p
(
rn+1

∣∣yn+1
1

)
, E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and E

[
Xn+1X

t
n+1

∣∣rn+1,y
n+1
1

]
from p (rn |yn

1 ), E [Xn |rn,yn
1 ],

E
[
XnXt

n |rn,yn
1

]
and yn+1. We assume that the random switch

sequence RN
1 is a Markov chain. Also, to simplify, we consider that

random variables Yn and Xn conditionally on switches have zero
mean.

Our work is related to the so-called “Conditionally Gaussian Linear
State-Space Models” (CGLSSMs), which have been widely applied
in different situations. Due to their popularity in many different
fields and, in particular, in different “tracking” problems [1], [2],
speech processing problems [3], or biomedical engineering ones [4],
these models are known under different names as “switching linear
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dynamic systems” [4], “jump Markov linear systems” [5], “switching
linear state-space models” [6], “conditional linear Gaussian mod-
els” [7], or still “conditionally Gaussian linear state-space models”
[8].

These models combine two well-known and efficient models: a
hidden Markov chain (with correlated noise) for the couple (RN

1 ,XN
1 )

and a Gaussian linear system for the distribution of (XN
1 ,YN

1 )
conditional on RN

1 . However, in spite of its intuitive and simple
formulation, exact optimal filtering or smoothing is not workable
with a reasonable computational time. Thus, a great deal of effort
has been devoted to propose different approximate solutions, whether
deterministic [9], [10] or stochastic [11], [12]. Among the latter,
methods based on sequential Monte Carlo algorithms became very
popular and can present quite satisfactory efficiency in numerous
situations [5]. They are shown to be asymptotically optimal; however,
a good choice of the importance measure, which is used to sample
particles, can be difficult in complex situations. In addition, the
requested number of particles quickly increases with the dimension
m of the state space Rm. Here we propose an alternative method,
which consists in taking a different model for which the exact optimal
filter can be computed with a complexity linear with respect to
the observation time n by using the recent models in [13]. The
difference between these recent models and the classical ones is the
following. In the classical models the triplet (XN

1 ,R
N
1 ,Y

N
1 ) and the

couple (XN
1 ,R

N
1 ) are Markov, while the couple (RN

1 ,Y
N
1 ) is not

necessarily Markov. In the recent models the triplet (XN
1 ,R

N
1 ,Y

N
1 )

and the couple (RN
1 ,Y

N
1 ) are Markov, while the couple (XN

1 ,R
N
1 )

is not necessarily Markov.
More precisely, extending result in [14], we propose the two

following contributions:
(i) The CGLSSM is a linear Gaussian system conditionally on RN

1

which verifies the following conditions:

RN
1 is a Markov chain; (1)

Xn+1 = C1
n+1(Rn+1) Xn + C2

n+1(Rn+1) Un+1; (2)

Yn+1 = C3
n+1(Rn+1) Xn+1 + C4

n+1(Rn+1) Vn+1,(3)

where Ci
j(Rj), i = 1, . . . , 4, j = 0, . . . , N − 1, are appro-

priate matrices depending on the switches RN
1 , X0 is given,

and U1, . . . ,UN , V1, . . . ,VN are sequences of independent
centred Gaussian random vectors with unit variance-covariance
matrices and such that Un+1 and Vn+1 are independent from
Rn

1 for each n = 1, . . . , N − 1. Thus, given RN
1 = rN1 ,

the couple (XN
1 ,Y

N
1 ) is a classical Gaussian linear system

in which the classical optimal Kalman filter can be applied.
In such a system XN

1 is linear Gaussian and Markovian, and
the distribution of YN

1 given XN
1 is very simple. We propose

to extend this model to a more general one, in which, given
RN

1 = rN1 , the couple (XN
1 ,Y

N
1 ) is a “Gaussian Pairwise

Markov Model” (GPMM). Such a GPMM model, which can
be of interest with respect to the classical model and in which
neither XN

1 nor YN
1 is necessarily Markovian, is more general
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but still allows the use of exact Kalman filter [15], [16].
The general model (XN

1 ,R
N
1 ,Y

N
1 ) so obtained will be called

“Conditionally Gaussian Pairwise Markov Switching Model”
(CGPMSM);

(ii) The classical CGLSSM is thus a particular case of the
CGPMSM such that, given RN

1 = rN1 , XN
1 is Markov and YN

1

is not necessarily Markov. We consider another recent particular
case of the CGPMSM in which, given RN

1 = rN1 , YN
1 is

Markov and XN
1 is not necessarily Markov, which belongs to

the family of models in [13]. The interest of this model, called
“Conditionally Gaussian Observed Markov Switching Model”
(CGOMSM), is that the exact optimal filtering is workable with
linear complexity in time, even if RN

1 = rN1 is not observed.
The organization of the paper is as follows. The next section

is devoted to the new model we propose, extending the classical
CGLSSM. Section III contains the description of a particular case
called CGOMSM, which allows exact filtering in the presence of
unknown switches. Experiments are presented in section IV and the
last section contains conclusions and perspectives.

II. THE CGPMSM AND THE GPMM

Let us note that the classical CGLSSM given with (1)-(3) can be
reformulated as:

RN
1 is a Markov chain; (4)[

Xn+1

Yn+1

]
=

[
A1

n+1(Rn+1) 0
A3

n+1(Rn+1) 0

] [
Xn

Yn

]
+[

B1
n+1(Rn+1) 0

B3
n+1(Rn+1) B4

n+1(Rn+1)

] [
Un+1

Vn+1

]
, (5)

with A1
n+1(Rn+1) = C1

n+1(Rn+1), B1
n+1(Rn+1) =

C2
n+1(Rn+1), A3

n+1(Rn+1) = C3
n+1(Rn+1)C1

n+1(Rn+1),
B3

n+1(Rn+1) = C3
n+1(Rn+1)C2

n+1(Rn+1) and B4
n+1(Rn+1) =

C4
n+1(Rn+1).
Setting Rn+1

n = (Rn, Rn+1), the classical CGLSSM given by (4)-
(5) can be extended to the new CGPMSM according to:

(XN
1 ,R

N
1 ,Y

N
1 ) is Markovian and

p
(
rn+1

∣∣rn,xn+1,yn+1

)
= p (rn+1 |rn ) ; (6)[

Xn+1

Yn+1

]
=

[
A1

n+1(Rn+1
n ) A2

n+1(Rn+1
n )

A3
n+1(Rn+1

n ) A4
n+1(Rn+1

n )

] [
Xn

Yn

]
+[

B1
n+1(Rn+1

n ) B2
n+1(Rn+1

n )
B3

n+1(Rn+1
n ) B4

n+1(Rn+1
n )

] [
Un+1

Vn+1

]
, (7)

with given X1,Y1 and Gaussian distributions p (x1,y1 |r1 ),
with Ai

j(R
j+1
j ),Bi

j(R
j+1
j ) appropriate matrices depending on

the switches and with WN
1 = (W1, . . . ,WN ), with Wn =[

Un Vn

]t a sequence of independent centred Gaussian random
vectors with unit variances and such that Wn+1 is independent from
(Xn

1 ,R
n
1 ,Y

n
1 ) for each n = 1, . . . , N − 1.

Remark: There exists situations in which the observed chain and
the hidden chain play symmetrical roles, and no one is a “natural”
noisy version of the other. For example, let XN

1 be unemployment
and let YN

1 be inflation. It could be of interest to estimate XN
1 from

YN
1 , and it also could be of interest to estimate YN

1 from XN
1 . Thus

the general CGPMSM, which is symmetrical with respect to XN
1

and YN
1 , would be better suited than the classical CGLSSM in such

situation.
Given RN

1 = rN1 the couple (XN
1 ,Y

N
1 ) is then a “Gaussian

Pairwise Markov Model” (GPMM) in which optimal Kalman filter
can still be applied, as studied in a general context in [15], [16]. Let
us briefly recall how it runs in a GPMM considered here. Forgetting
the dependence of (XN

1 ,Y
N
1 ) on the switches, the filtering problem

is to compute p
(
xn+1

∣∣yn+1
1

)
from p (xn |yn

1 ) and yn+1. Let
p (xn |yn

1 ) = N (µn,Σn), p
(
xn+1

∣∣yn+1
1

)
= N (µn+1,Σn+1),

and Wn+1 =

[
Un+1

Vn+1

]
. For fixed yn

1 , (7) means that the variables

Xn, Xn+1, and Yn+1 verify[
Xn+1

Yn+1

]
=

[
A1

n+1

A3
n+1

]
Xn +

[
A2

n+1

A4
n+1

]
yn +Bn+1Wn+1,

and thus p
(
xn+1,yn+1 |yn

1

)
is Gaussian with mean mn+1 and

variance Sn+1 given by[
mx

n+1

my
n+1

]
=

[
A1

n+1

A3
n+1

]
µn +

[
A2

n+1

A4
n+1

]
yn, (8)[

Sxx
n+1 Sxy

n+1

Syx
n+1 Syy

n+1

]
=

[
A1

n+1

A3
n+1

]
Σn

[
A1

n+1

A3
n+1

]t
+Bn+1B

t
n+1.(9)

Then p
(
xn+1

∣∣yn+1
1

)
= p

(
xn+1

∣∣yn+1,y
n
1

)
is Gaussian with

mean and variance given by

µn+1 = Sxy
n+1(Syy

n+1)−1(yn+1 −m
y
n+1) +mx

n+1; (10)

Σn+1 = Sxx
n+1 − Sxy

n+1(Syy
n+1)−1Syx

n+1. (11)

Thus (8)-(11) define the Kalman filter in GPMM, and it can be
applied in CGPMSM (6)-(7) if the switches RN

1 = rN1 are known.
Once they are not known, p

(
rn+1

∣∣yn+1
1

)
cannot be computed

sequentially and has to be approximated using, e.g., a particle filter.

III. THE CGOMSM AND RELATED EXACT FILTER

In this section we introduce a new model, which is a particular
case of the CGPMSM given by (6)-(7) and in which the exact optimal
filter can be computed with linear complexity in time. Called “Condi-
tionally Gaussian Observed Markov Switching Model” (CGOMSM),
this new model is a CGPMSM such that A3

n+1(Rn+1
n ) = 0.

More precisely, we define a CGOMSM as a triplet Markov chain
(XN

1 ,R
N
1 ,Y

N
1 ) verifying :

(XN
1 ,R

N
1 ,Y

N
1 ) is Markovian and

p (rn+1 |rn,xn,yn ) = p (rn+1 |rn ) ; (12)[
Xn+1

Yn+1

]
=

[
A1

n+1(Rn+1
n ) A2

n+1(Rn+1
n )

0 A4
n+1(Rn+1

n )

] [
Xn

Yn

]
+[

B1
n+1(Rn+1

n ) B2
n+1(Rn+1

n )
B3

n+1(Rn+1
n ) B4

n+1(Rn+1
n )

]
︸ ︷︷ ︸

Bn+1(R
n+1
n )

[
Un+1

Vn+1

]
. (13)

Let

Qn+1(rn+1
n ) =

[
Q1

n+1(rn+1
n ) Q2

n+1(rn+1
n )

Q3
n+1(rn+1

n ) Q4
n+1(rn+1

n )

]
= Bn+1(rn+1

n )Bt
n+1(rn+1

n ). (14)

Let us derive how the exact fast (with complexity linear in
time) optimal filter can be computed in any CGOMSM. The
computation of initial p (r1 |y1 ), E [X1 |r1,y1 ], E

[
X1X

t
1 |r1,y1

]
,

and Var [X1 |y1 ] from p (r1) and p (x1,y1 |r1 ) is trivial.
For n = 1, . . . , N − 1, we can express p

(
rn+1

∣∣yn+1
1

)
,

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and E

[
Xn+1X

t
n+1

∣∣rn+1,y
n+1
1

]
from p (rn |yn

1 ), E [Xn |rn,yn
1 ] and E

[
XnXt

n |rn,yn
1

]
,

p
(
rn+1,yn+1 |rn,yn

)
and yn+1, using simple relations given in

introduction.
An important point, which makes the difference between

CGOMSM and classical models, is that, according to (12)-(13),
(RN

1 ,Y
N
1 ) is a Markov chain. In fact, as we are going to see,

this allows the exact computation of p
(
rn+1

∣∣yn+1
1

)
, which is not

possible in classical models and which needs to be approximated with
a particle filter for example.



3

According to (12)-(13), p (rn+1 |rn,yn ) = p (rn+1 |rn ), and thus
we have

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn ) p

(
yn+1

∣∣rn+1
n ,yn

)
, (15)

where

p
(
yn+1

∣∣rn+1
n ,yn

)
= N

(
A4

n+1(rn+1
n )yn,Q

4
n+1(rn+1

n )
)
. (16)

Besides, since (RN
1 ,Y

N
1 ) is Markov, we have

p
(
rn, rn+1

∣∣yn+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn,rn+1

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )
,

and thus

p
(
rn
∣∣rn+1,y

n+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )
.

(17)
According to (13), conditionally on RN

1 = rN1 , the vec-
tor (Xn+1,Yn+1) depends on (Xn,Yn) linearly and is Gaus-
sian (please note that (Xn,Yn) is not Gaussian as its
distribution is a Gaussian mixture). This implies that the
Gaussian Xn+1 also depends on (Xn,Yn,Yn+1) linearly
and thus can be written as Xn+1 = Fn+1(Rn+1

n )Xn +
In+1(Rn+1

n )Yn +Jn+1(Rn+1
n )Yn+1 +Gn+1(Rn+1

n )Wn+1, with
E
[
Wn+1

∣∣rn+1,y
n+1
1

]
= E [Wn+1] = 0 and Fn+1, In+1, Jn+1,

Gn+1 expressed from parameters in (13) by eq. (22)-(25) specified
below. To simplify notations let us set

Hn+1(Rn+1
n ,Yn+1

n ) = In+1(Rn+1
n )Yn + Jn+1(Rn+1

n )Yn+1,
(18)

so that we finally have

Xn+1 = Fn+1(Rn+1
n )Xn + Gn+1(Rn+1

n )Wn+1

+Hn+1(Rn+1
n ,Yn+1

n ). (19)

So the filter is given by

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

(
p
(
rn
∣∣rn+1,y

n+1
1

)
[
Fn+1(rn+1

n )E
[
Xn

∣∣rn+1
n ,yn+1

1

]
+ Hn+1(rn+1

n ,yn+1
n )

])
.

Using (13), we can show that (Rn+1,Yn+1) and Xn are independent
conditionally on (Rn,Yn). Thus we have E

[
Xn

∣∣rn+1
n ,yn+1

1

]
=

E [Xn |rn,yn
1 ], and finally get

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

(
p
(
rn
∣∣rn+1,y

n+1
1

)
[
Fn+1(rn+1

n )E [Xn |rn,yn
1 ] + Hn+1(rn+1

n ,yn+1
n )

])
.(20)

E
[
Xn+1X

t
n+1

∣∣rn+1,y
n+1
1

]
is computed in a similar way:

E
[
Xn+1X

t
n+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

(
p
(
rn
∣∣rn+1,y

n+1
1

)
[
Fn+1(rn+1

n )E
[
XnXt

n |rn,yn
1

]
Ft

n+1(rn+1
n ) +

Fn+1(rn+1
n )E [Xn |rn,yn

1 ] Ht
n+1(rn+1

n ,yn+1
n )

+Hn+1(rn+1
n ,yn+1

n )E
[
Xt

n |rn,yn
1

]
Ft

n+1(rn+1
n )

+Gn+1(rn+1
n )Gt

n+1(rn+1
n )

+Hn+1(rn+1
n ,yn+1

n )Ht
n+1(rn+1

n ,yn+1
n )

])
. (21)

Finally, let us specify Fn+1, In+1, Jn+1, and Gn+1. Accord-
ing to (13), p

(
xn+1,yn+1

∣∣xn, r
n+1
n ,yn

)
is Gaussian with mean

[
A1

n+1(rn+1
n )xn + A2

n+1(rn+1
n )yn

A4
n+1(rn+1

n )yn

]
and variance-covariance ma-

trix Qn+1(rn+1
n ) in eq. (14).

Then p
(
xn+1

∣∣rn+1
n ,xn,yn,yn+1

)
is Gaussian

with mean A1
n+1(rn+1

n )xn + A2
n+1(rn+1

n )yn +
Q2

n+1(rn+1
n )(Q4

n+1(rn+1
n ))−1(yn+1 − A4

n+1(rn+1
n )yn)

and variance-covariance matrix Q1
n+1(rn+1

n ) −
Q2

n+1(rn+1
n )(Q4

n+1(rn+1
n ))−1Q3

n+1(rn+1
n ). We see that

Fn+1(rn+1
n ) = A1

n+1(rn+1
n ); (22)

Jn+1(rn+1
n ) = Q2

n+1(rn+1
n )(Q4

n+1(rn+1
n ))−1; (23)

In+1(rn+1
n ) = A2

n+1(rn+1
n )− Jn+1(rn+1

n )A4
n+1(rn+1

n );(24)

Gn+1(rn+1
n )Gt

n+1(rn+1
n ) = Q1

n+1(rn+1
n )−

Jn+1(rn+1
n )Q3

n+1(rn+1
n ). (25)

So eq. (18) writes

Hn+1(rn+1
n ,yn+1

n ) = A2
n+1(rn+1

n )yn + Jn+1(rn+1
n )

(yn+1 −A4
n+1(rn+1

n )yn). (26)

Finally, let us consider the CGOMSM model (12)-(13). The
proposed filter runs as follows. For n = 1, . . . , N − 1

1) Compute Qn+1(rn+1
n ) matrix from (14);

2) Compute p
(
rn+1,yn+1 |rn,yn

)
=

p (rn+1 |rn ) p
(
yn+1

∣∣rn+1
n ,yn

)
from p (rn+1 |rn ) and

the Gaussian distribution p
(
yn+1

∣∣rn+1
n ,yn

)
given by (16);

3) Compute p
(
rn
∣∣rn+1,y

n+1
1

)
from (17);

4) Compute Fn+1(rn+1
n ) from (22), Jn+1(rn+1

n ) from (23),
Gn+1(rn+1

n )Gt
n+1(rn+1

n ) from (25) and Hn+1(Rn+1
n ,Yn+1

n )
from (26);

5) Compute E
[
Xn+1

∣∣rn+1,y
n+1
1

]
from (20) and

E
[
Xn+1X

t
n+1

∣∣rn+1,y
n+1
1

]
from (21).

As no computation above depends on n, we see that the filter running
time is linear in the number of observations.

IV. EXPERIMENTS

We present two series of experiments, where, in both of them,
XN

1 and YN
1 are real valued. In the first series, we try to understand

how far -when the optimal filtering is concerned- the corresponding
CGOMSM, obtained from CGPMSM by modifying some parameters,
is from the true CGPMSM. To study this point, data are sampled with
a CGPMSM and then filtered using the same CGPMSM on the one
hand, and a CGOMSM on the other hand. In the second series of
experiments, we examine the behaviour of the CGOMSM based filter
with respect to the classical CGLSSM based one.

Therefore, consider XN
1 and YN

1 as scalar-valued processes
(m = q = 1). In all experiments, we consider homogeneous
systems, which means that matrices Ai

n+1, Bi
n+1, for i = 1, . . . , 4,

in (7) do not depend on n. Let us briefly examine the differences
between a general CGPMSM and the “corresponding” CGOMSM,
obtained from the considered CGPMSM in some way. The dis-
tributions of both of them are thus defined by the distribution of
(T 1,T 2) = (X1, R1,Y1,X2, R2,Y2), and this distribution can
be written as p (t1, t2) = p (r1, r2) p (x1,y1,x2,y2 |r1, r2 ). As
the distribution of the Markov chain RN

1 will be the same in
the CGPMSM and in the corresponding CGOMSM, we have to
compare p (x1,y1,x2,y2 |r1, r2 ). Finally, let us temporarily forget
the conditioning by (R1, R2) and compare the Gaussian distributions
p (x1,y1,x2,y2).
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Let Z2
1 = (Z1,Z2) = (X1,Y1,X2,Y2). To simplify, let assume

that all means are zero and all variances are 1. The Gaussian
distribution of Z2

1 is then given by the covariance matrix

ΓZ2
1 =


1 b a d
b 1 e c
a e 1 b
d c b 1

 =

[
Γ Σt

Σ Γ

]
. (27)

Thus the distribution of Z2
1 is defined by five co-variances a, b,

c, d, and e, with the condition that ΓZ2
1 is definite positive. The

dependence graph is presented in Fig. 1.
The corresponding equation (5) is here of the simple form[

Xn+1

Yn+1

]
=

[
A1 A2

A3 A4

] [
Xn

Yn

]
+

[
B1 B2

B3 B4

] [
Un+1

Vn+1

]
, (28)

with [
A1 A2

A3 A4

]
= ΣΓ−1 =

1

1− b2

[
a− eb e− ab
d− cb c− db

]
, (29)

[
B1 B2

B3 B4

] [
B1 B2

B3 B4

]t
= Γ−ΣΓ−1Σt. (30)

Thus we can say that the CGPMSM model is a CGOMSM model
when A3 = 0, which is equivalent to d−cb = 0. To obtain the latter,
we can modify either b, c, or d.

Consider now the complete homogeneous CGPMSM whose dis-
tribution is defined by p (r1, r2) and ΓZ2

1(r21), with a, b, c, d,
and e replaced by a(r21), b(r21), c(r21), d(r21), and e(r21). Given
(R1, R2) = (r1, r2), the co-variances a(r21), b(r21), c(r21) and e(r21)
can be the same in both CGPMSM and CGOMSM distributions,
and the only difference can be at the d(r21) value level: it is of any
value in CGPMSM while it is equal to c(r21)b(r21) in CGOMSM.
In other words, the distributions of (R1, R2), (X1,Y1,X2), and
(Y1,X2,Y2) are strictly the same in the CGPMSM considered and
in its “approximate” CGOMSM version.

In all experiments below, we will consider two switches Ω =
{0, 1}, and the following simplified parameter set

(i) p (r1, r2) = p (r1) p (r2 |r1 ) with p (r1 = 0) = p (r1 = 1) =
0.5, and p (r2 = 0 |r1 = 0) = p (r2 = 1 |r1 = 1) = q;

(ii) b(r21) = b(r2), a(r21) = a(r2), c(r21) = c(r2), d(r21) = d(r2)
and e(r21) = e(r2).

Finally, each CGPMM used in experiments will be defined by eleven
parameters: q, b(0), a(0), c(0), d(0), e(0), b(1), a(1), c(1), d(1),
and e(1). We will consider the following slightly simplified model[

A1(rn+1
n ) A2(rn+1

n )
A3(rn+1

n ) A4(rn+1
n )

]
=

[
α(rn+1) β(rn+1)
γ(rn+1) δ(rn+1)

]
. (31)

In the two series of experiments below, the number of samples
was set to N = 2000 and results are means of 200 independent
experiments.

A. First series of experiments

The aim of this series is to simulate realizations of TN
1 =

(XN
1 ,R

N
1 ,Y

N
1 ) according to the general CGPMSM, and to estimate

(RN
1 ,X

N
1 ) from YN

1 with different particular methods, seen as ap-
proximate methods of the optimal one. We considered five methods:

(i) the “Reference Method”, denoted by RM-KS (KS stands for
“Known Switches”), where RN

1 = rN1 is considered as known
and where the estimated XN

1 = x̂N
1 is obtained by the optimal

Kalman filter given by (8)-(11);
(ii) the particle filter suited to CGPMSM, by extension of [5],

denoted by RM-US (US stands for “Unknown Switches”);

(iii) the new alternative method we propose, denoted by M1-US, by
considering that γ(0) = γ(1) = 0, and by applying the exact
filter described in section III;

(iv) the Kalman filter based on CGOMSM and known switches,
denoted by M1-KS;

(v) the Kalman filter based on the classic CGLSSM (see below)
and known switches, denoted by M3-KS.

To further simplify, we consider here that b(0) = b(1) = b. To
obtain the classical CGLSSM-based filter in (v), we consider, in (29)
and (30), that e(rn)−ba(rn) = 0, c(rn)−bd(rn) = 0, and c(rn) =
a(rn)b2, which are its classical properties (see Fig. 1).

In all models studied here, we set q = 0.9, b = 0.3, a(0) = 0.1,
a(1) = 0.5, c(0) = 0.4, c(1) = 0.9, e(0) = 0.75, and e(1) = 0.33.
Then we chose 9 different couples (di(0), di(1)), defining 9 different
CGPMSM, in such a way that the corresponding γ = γ(0) = γ(1)
(see (31)) vary from 0 to 0.4 with a step of 0.05. Therefore we
increase γ on purpose: the larger γ the greater the difference between
the model CGPMSM used to simulate data and the model used to
restore them with M1-US (i.e., the model CGOMSM obtained by
setting γ = 0). We also filter data with M3-KS, where the CGLSSM
used is obtained in the following way. First we set q = 0.9, b =
0.3, a(0) = 0.1, and a(1) = 0.5. Then, as known in the classical
CGLSSM (see Fig. 1), we also set e(0) = d(0) = a(0)b, c(0) =
a(0)b2, e(1) = d(1) = a(1)b, and c(1) = a(1)b2.

Thus, in each case, tN1 = (xN
1 , r

N
1 ,y

N
1 ) have been simulated

according to the real parameters and xN
1 is estimated using RM-

KS, RM-US, M1-KS, M1-US, and M3-KS. The difference between
xN
1 and the estimated x̂N

1 is calculated with the Mean Squared Error
(MSE) 1

N

∑N
n=1 (xn − x̂n)2. The number of particle for the particle

filter method depends on the model and on the parameters of the
model. Experiments not reported here lead to a number NP = 200
of particles. We make use of Sequential Importance Resampling (SIR)
when N̂eff = 1∑NP

j=1 (wj)2
< 1

3
, where wj is the weight of particle

j.
Results are presented in Fig. 2. Computation time for the particle

filter method (RM-US) is approximately 1.47 seconds, whereas it is
0.014 second for the exact CGOMSM method (M1-US). Generally
speaking, the computation time is about half time the number of
particles longer for RM-US than for M1-US. From these results, we
can put forth the following conclusions:

1) The main conclusion is that when γ increases, i.e. when the
CGOMSM used by method M1-KS and the reference CGPMSM
used to sample data break away, the results obtained using M1-
KS remain very close to those obtained using RM-KS based on
known switches (curves are nearly superposed). This means that
M1-KS algorithm is very robust with respect to γ;

2) The particle filter applied to the true CGPMSM model gives
quite satisfactory results. They are nearly equivalent to those
obtained with M1-US method but with a computation time about
100 times shorter;

3) Comparing M1-KS with M1-US shows that the new method
seems quite robust with respect to the knowledge / ignorance of
the switches (even if the switches are rather poorly estimated);

4) The results obtained with M3-KS based on the classical
CGLSSM and known switches are quite poor, which means that,
at least in the context considered, CGLSSM is a rather poor
approximation of the general CGPMSM;

5) Both RM-US and M1-US (in which (RN
1 ,Y

N
1 ) is Markovian)

allow to estimate rN1 : we find about 20% of error ratios in both
estimators, and the results vary little with γ.

6) Variation of γ has very little influence on the results.
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Fig. 1. Dependence graph of p (x1,y1,x2,y2) in the general CGPMSM (left - 5 parameters) and in the classical CGLSSM (right - 2 parameters).
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Fig. 2. MSE for the five methods studied in the first set of experiments.

In experiments not reported, we evaluated if the parameters of
the switching chain p (r2 = 0 |r1 = 0) = p (r2 = 1 |r1 = 1) = q
modify the conclusions obtained above. We showed that, as q
increases, the MSE growths for all methods except for CGLSSM.
When q is small (i.e. switches are frequent), the RM algorithms are
more performing than the M1 ones.

B. Second series

The aim of this series of experiments is to study which one
among CGOMSM and CGLSSM models is “closer” to the general
CGPMSM model, when optimal filtering is concerned. In these
experiments, we set b(0) 6= b(1). To ensure that the results are
not possibly due to a dissymmetry of the CGPMSM, we used a
CGPMSM in which XN

1 and YN
1 play symmetric roles. Therefore we

considered a(rn) = c(rn) and d(rn) = e(rn). There is no classical
CGLSSM of interest verifying this condition; indeed, in CGLSSM
we would have c(rn) = a(rn)2b(rn), and thus either b(rn) = 1
or b(rn) = −1, which are cases with no interest. Thus we used
the “Extended CGLSSM” (ECGLSSM), obtained from (7) by setting
A2

n+1(Rn+1
n ) = 0 (thus β(rn) = 0 in (31), but δ(rn) are not

necessarily zero). Thus the CGPMSM (7) extends the ECGLSSM,
which itself extends the classical CGLSSM (2)-(3). ECGLSSM and
CGOMSM can be seen as two symmetrical approximations of the
CGPMSM with the same number of free parameters.

Finally, data are sampled with respect to a symmetrical CGPMSM
and restored with methods based on the true CGPMSM (reference
method RM-KS), with methods based on the CGOMSM obtained by
setting γ(rn) = 0 (methods M1-KS and M1-US), and with methods

Case 1 Case 2 Case 3 Case 4 Case 5
b(0) 0.9000 0.7000 0.5000 0.3000 0.8000
α(0) 0.2000 0.2000 0.2000 0.2000 0.5500
β(0) 0.1254 0.0817 0.0536 0.0307 0.3500
a(0) 0.3128 0.2571 0.2268 0.2092 0.8300
d(0) 0.3054 0.2217 0.1536 0.0907 0.7900
b(1) 0.4000 0.4000 0.1000 0.8000 0.3000
α(1) 0.6000 0.6000 0.6000 0.6000 0.4000
β(1) 0.3761 0.2450 0.1608 0.0921 0.2000
a(1) 0.7504 0.6980 0.6160 0.6736 0.4600
d(1) 0.6161 0.4850 0.2208 0.5721 0.3200

TABLE I
PARAMETERS OF THE FIVE SYMMETRICAL CGPMM CASES STUDIED IN

THE SECOND SERIES OF EXPERIMENTS.

Case 1 Case 2 Case 3 Case 4 Case 5
Square error between xN

1 and x̂N
1

RM-KS 0.27182 0.60697 0.82975 0.64165 0.57802
M1-KS 0.31054 0.60792 0.82992 0.64190 0.58090
M2-KS 0.50170 0.66560 0.86202 0.64394 0.63725
RM-US 0.51635 0.67744 0.90203 0.73091 0.61710
M1-US 0.48351 0.66294 0.88792 0.68142 0.60033
M2-US 0.66988 0.78122 0.94102 0.77297 0.87519

Error ratio between rN1 and r̂N1 (%)
RM-US 30.911 32.782 35.697 33.159 30.308
M1-US 29.392 31.275 34.671 32.019 29.046
M2-US 38.094 35.026 35.756 33.265 36.984

TABLE II
SQUARED ERROR AND ERROR RATIOS OBTAINED WITH THREE MODELS
AND SIX METHODS (RM-KS, RM-US, M1-KS, M1-US, M2-KS AND

M2-US). PARAMETERS USED ARE REPORTED IN THE TEXT.

based on the ECGLSSM obtained by setting β(rn) = 0 (method
M2-KS). The symmetrical CGLSSM chosen to sample data is given
by (31) with α(rn) = δ(rn), β(rn) = γ(rn), a(rn) = c(rn), and
d(rn) = e(rn). Applying (29)-(30) for two switches rn = 0, 1 leads
to [

a(rn)
d(rn)

]
=

[
1 b(rn)

b(rn) 1

] [
α(rn)
β(rn)

]
. (32)

We set q = 0.4 and thus each CGOMSM studied is defined by ten
parameters b(0), a(0), d(0), α(0), β(0), b(1), a(1), d(1), α(1), and
β(1) verifying (32), which leads to five free parameters. We consider
five cases whose parameters are given in Table I, whose results are
specified in Table II.

According to the results, we propose the following conclusions:

1) The main conclusion is that, in both “known switches” and “un-
known switches” cases, algorithm M1 always gives better results
than M2 one, and the difference can be significant (Case 1). This
means that, when the optimal filtering is considered, CGOMSM
better approaches the general CGPMSM than ECGLSSM does;

2) Comparing the difference of the results obtained with M1-US
with respect to those obtained with M1-KS, with the analogous
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difference when replacing M1 by RM, we see that the new
method is a bit more robust than the particle filter based ones;

3) Regarding the estimation of the switches, which can be an
objective in itself, the method M1-US appears more efficient
than M2-US. As in the first series, the computation-time is about
100 times shorter for M1-US or for M2-US than for RM-US.
This is a crucial advantage of the new method with respect to
the particle filter based ones.

4) The error ratio in switches estimation could seem being large,
but this is normal because of the low signal-to-noise ratio. In
fact, as the means are all set to zero, the influence of switches on
the distribution of YN

1 is reduced to variances and covariance.

V. CONCLUSION

Extending some preliminary results from [14], we proposed an
exact filter called “Conditionally Gaussian Observed Markov Switch-
ing Model” (CGOMSM). The CGOMSM family of models is very
flexible, so that it was possible to build a model as a close approxi-
mation to the CGPMSM (also see theoretical justifications in [17] of
its closeness with the classical CGLSSM). We showed that, at least
in the context of this study, our filter showed comparable efficiency
with respect to a suited particle filter, while being much faster. Indeed,
its computation times is nearly comparable to that of Kalman filter
applied in absence of switches. In addition, problems like weights
degeneracy can appear in the particle filter based methods, which is
not the case in the proposed CGOMSM-based method.

Let us mention some perspectives for further works. First, it will be
interesting to pursue comparison with an extension of the Interacting
Multiple Model [12] to the pairwise context considered here. Also,
parameter estimation and related unsupervised filtering provide a
natural perspective for further works.

REFERENCES

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[2] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman filter:
particle filters for tracking applications. Artech House, 2004.

[3] N. S. Kim, T. G. Kang, S. J. Kang, C. W. Han, and D. H. Hong,
“Speech feature mapping based on switching linear dynamic system,”
IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 2, pp. 620–
631, 2012.

[4] J. F. Smith, A. S. Pillai, K. Chen, and B. Horwitz, “Identification and
validation of effective connectivity networks in functional magnetic res-
onance imaging using switching linear dynamic systems,” NeuroImage,
vol. 52, no. 3, pp. 1027–1040, 2010.

[5] C. Andrieu, M. Davy, and A. Doucet, “Efficient particle filtering for
jump Markov systems. Application to time-varying autoregressions,”
IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1762–1770, Jul. 2003.

[6] B. Ait-El-Fquih and F. Desbouvries, “Fixed-interval Kalman smoothing
algorithms in singular state-space systems,” The Journal of Signal
Processing Systems, vol. 65, no. 3, pp. 469–478, 2011.

[7] M. R. Morelande and B. Moran, “An unscented transformation for
conditionally linear models,” in Proc. IEEE Int. Conf on Acoustics,
Speech and Signal Processing (ICASSP’07), Honolulu, Hawaii, USA,
Apr. 2007.
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