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Extended abstract

We consider triplet Markov Gaussian linear systems ) , , (

1 1 1 1 N N N N Y R X T = where ) ..., , ( 1 1 N N X X X =
is a hidden continuous random sequence, ) ..., , ( 1

1 N N R R R = is a hidden discrete Markov random sequence, ) ..., , ( 1 1 N N Y Y Y =
is an observed continuous random sequence, and ) , (

1 1 N N Y X
is Markovian and Gaussian conditionally on N R 1 . Using usual notations for laws and conditional expectations, we seek to calculate ) (

1 1 1 + + n n y r p , ] , [ 1 1 1 1 + + + n n n y r X E
(which gives

∑ + + + + + + + + = 1 ] , [ ) ( ] [ 1 1 1 1 1 1 1 1 1 1 n r n n n n n n n y r X E y r p y X E
), and ] , [

1 1 1 1 + + + n n n y r X Var , from ) ( 1 n n y r p , ] , [ 1 n n n y r X E , ] , [ 1 n n n y r X Var
, and 1 + n y . Process N R 1 can be interpreted as modeling the random switches, or jumps, of the parameters defining the law of ) , ( 1

1 N N Y X .
In the classical "Conditionally Gaussian Linear State-Space Model" (CGLSSM) [START_REF] Cappé | Inference in hidden Markov models[END_REF], optimal filter is not workable with a reasonable complexity, and numerous approximation methods have been proposed. Among them particle filters are asymptotically optimal [START_REF] Doucet | Particle filters for state estimation of jump Markov linear systems[END_REF] but present drawbacks such as the degeneration of weights and a relatively high computational burden.

In this paper, we propose a new model, quite close to the CGLSSM, belonging to the general recently proposed family of models, called "conditionally Markov switching hidden linear models" (CMSHLM) (Pieczynski, 2011a), in which the computation of optimal filter with complexity linear in the number of observations is possible. In a CMSHLM, the triplet ) , , ( Then we show that it is possible to introduce a fourth discrete-valued process N U 1 , so that the triplet T 1 N = (R 1 N ,U 1 N ,Y 1 N ) is Markov. In such models, called "Conditionally switching hidden linear model with marginally Markov jumps", the couple ) , (

1 1 N N Y R
is not necessarily Markovian. This context has already proven very effective in image segmentation for modeling multiple-stationaries [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]Boudaren et al., 2012a), in hidden semi-Markov chains (Lapuyade-Lahorgue et Pieczynski, 2011a) or in hidden evidential Markov chains [START_REF] Pieczynski | Multisensor triplet Markov chains and theory of evidence[END_REF]Boudaren et al., 2012b ;[START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF], but is novel in optimal statistical filtering. Simulations are provided to illustrate the value of the new modeling in the context of non-stationary on-line filtering of time-series.

Introduction

On considère trois séquences aléatoires ) ..., , ( 1 seules les réalisations de N Y 1 sont observées. Le problème considéré est celui de l'estimation séquentielle optimale des réalisations de

1 N N X X X = , ) ..., , ( 1 1 N N R R R = , et
N X 1 et N R 1 à partir de N Y 1 . Plus précisément, on s'intéresse à l'estimation, pour tout 1 = n , …, N , des réalisations de n X et n R à partir de celle de n Y 1 .
Les méthodes étudiées sont optimales dans le sens où, d'une part, l'erreur quadratique moyenne entre la vraie réalisation de n X et son estimée est minimale et, d'autre part, la probabilité de se tromper en estimant la réalisation de n R est également minimale. La première estimée est obtenue par l'espérance conditionnelle, et la deuxième par la maximisation de la probabilité conditionnelle aux observations. L'estimation sera « séquentielle », ce qui signifie qu'afin d'obtenir des estimateurs fonctionnant avec des temps raisonnables, on recherchera les estimées ) , (

1 1 + + n n r x de ) , ( ) , ( 1 1 1 1 + + + + = n n n n r x R X (obtenues à partir de 1 1 + n y ) en utilisant les estimées précédentes ) , ( n n r x de ) , ( ) , ( n n n n r x R X =
(obtenues à partir de n y 1 ) et la nouvelle donnée

1 + n y .
Finalement, avec les notations habituelles pour les lois et les espérances conditionnelles, on cherche à déterminer

) ( 1 1 1 + + n n y r p , ] , [ 1 1 1 1 + + + n n n y r X E (ce qui donne ∑ + + + + + + + + = 1 ] , [ ) ( ] [ 1 1 1 1 1 1 1 1 1 1 n r n n n n n n n y r X E y r p y X E ), et ] , [ 1 1 1 1 + + + n n n y r X Var , à partir de ) ( 1 n n y r p , ] , [ 1 n n n y r X E , ] , [ 1 n n n y r X Var , et 1 + n y .
De telles modélisations jouent un rôle important en situations fortement non stationnaires ; en effet, le processus N R 1 peut être interprété comme modélisant les « sauts » aléatoires des paramètres définissant la loi du couple ) , ( 1

1 N N Y X . L'idée classique pour modéliser la loi du triplet ) , , ( 1 1 1 1 N N N N Y R X T =
est de considérer simultanément deux modélisations, dont chacune a fait la preuve, dans différents domaines d'applications respectifs, de son efficacité. Le processus N R 1 est supposé markovien ; ensuite on définit la loi de

N X 1 conditionnelle à N R 1 , en la considérant également comme markovienne. Le couple ) , ( 1 1 N N R X est alors le modèle classique de « chaîne de Markov cachée ». Ensuite, conditionnellement à ) , ( 1 1 N N R X , la loi de N Y 1 est très simple : les variables N Y Y ..., , 1 sont considérées indépendantes et la loi de chaque n Y conditionnelle à ) , ( 1 1 N N R X est supposée ne dépendre que de ) , ( n n R X
. Dans le cas le plus simple le processus N R 1 est markovien et la loi du couple

) , ( 1 1 N N Y X conditionnelle à N R 1 est celle d'
un système linéaire gaussien markovien. Un tel modèle est dit, en anglais, "Conditionally Gaussian Linear State-Space Model" et sera dans la suite désigné par CGLSSM [START_REF] Cappé | Inference in hidden Markov models[END_REF]. Il est défini par :

N R 1 est de Markov avec ) ( ) , , ( 1 1 1 1 1 n n n n n n r r p y r x r p + + = ;
(1.1)

1 1 1 1 1 1 ) ( ) ( + + + + + + + = n n n n n n n U R C X R A X ;
(1.2)

1 1 1 1 1 1 1 ) ( ) ( + + + + + + + + = n n n n n n n V R D X R B Y , (1.3) avec ) ( 1 1 + + n n R A , ) ( 1 1 + + n n R B , ) ( 1 1 + + n n R C , ) ( 1 1 + + n n R D
des matrices de taille adéquate, dépendantes des sauts, le processus Diverses méthodes d'approximations, qui peuvent être déterministes [START_REF] Costa | Discrete time Markov jump linear systems[END_REF][START_REF] Kim | State-space models with regime switching[END_REF][START_REF] Zoeter | Deterministic approximate inference techniques for conditionally Gaussian state space models[END_REF][START_REF] Yin | CDF-KF Algorithm for conditionally linear Gaussian state space models[END_REF] ou stochastiques [START_REF] Andrieu | Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions[END_REF][START_REF] Ristic | Beyond the Kalman filter: particle filters for tracking applications[END_REF][START_REF] Doucet | Particle filters for state estimation of jump Markov linear systems[END_REF] ont alors été proposées et appliquées souvent avec succès. En particulier, les méthodes « Monte Carlo par Chaînes de Markov Séquentielles » (MCMCS), également connues sous le nom de « filtre particulaire » (FP), présentent des propriétés d'optimalité asymptotique et peuvent donc être considérées comme quasi-optimales dans un grand nombre de situations. En conséquence le FP est très couramment utilisé. Cependant, ces méthodes peuvent présenter un certain nombre d'inconvénients, comme la dégénérescence des poids pouvant impliquer l'accroissement du temps d'exécution. Les applications du filtrage optimal dans des systèmes à sauts sont multiples et touchent des domaines très variés. Citons, à titre d'exemple et de manière non exhaustive, la poursuite de cible [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF], le traitement de la parole [START_REF] Lee | Smoothing approach using forward-backward Kalman filter with Markov switching parameters for speech enhancement[END_REF][START_REF] Soo | Speech feature mapping based on switching linear dynamic system[END_REF], la modélisation et le traitement de la volatilité [START_REF] Carvalho | Simulation-based sequential analysis of Markov switching stochastic volatility models[END_REF][START_REF] Elliot | Stochastic volatility model with filtering[END_REF][START_REF] Yu | Bayesian approach to Markov switching stochastic volatility model with jumps[END_REF], le traitement d'images [START_REF] Wu | Modeling and decoding motor cortical activity using a switching Kalman filter[END_REF][START_REF] Smith | Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems[END_REF], la modélisation de la production industrielle [START_REF] Giordani | A unified approach to nonlinearity, structural change, and outliers[END_REF], la propagation des épidémies [START_REF] Zhou | One-step approximations for detecting regime changes in the state space model with application to the influenza data[END_REF], ou encore la modélisation et le traitement des différents phénomènes liés aux marchés [START_REF] Al-Anaswah | Identification of speculative bubbles using statespace models with Markov-switching[END_REF][START_REF] Johnson | Maximizing equity market sector predictability in a Bayesian time-varying parameter model[END_REF].

) , ( 1 1 V U , …, ) , ( N N V U étant un bruit blanc gaussien (alors pour 1 = n , …, 1 - N le vecteur ) , ( 1 1 + + n n V U est indépendant de ) , , ( 1 1 1 1 n n n n Y R X T = ). Conditionnellement à N R 1 ,
Plus récemment il a été proposé différents modèles « à sauts », dont certains très simples, dans lesquels le problème peut être résolu de manière exacte avec une complexité linéaire en n . Leur synthèse est présentée dans [START_REF] Pieczynski | Exact filtering and smoothing in short or long memory stochastic switching systems[END_REF]Abbassi, 2012). Ensuite, un modèle général, appelé « modèle caché conditionnellement linéaire à sauts markoviens » (MCCLSM), unifiant et étendant les différent modèles précédents, a été proposé dans (Pieczynski, 2011a). La différence entre la famille classique des modèles et le MCCLSM, dans lequel il est donc possible de mettre en place un filtrage optimal rapide présentant une complexité comparable à celle du filtre de Kalman dans des systèmes gaussiens classiques, est la suivante. Les hypothèses retenues pour définir la loi de ) , , (

1 1 1 1 N N N N Y R X T =
sont très proches, à condition de permuter ,, (

1 1 1 1 N N N N Y R X T = en considérant une distribution simple de N Y 1 conditionnellement à ) , ( 1 1 N N R X
. On arrive aux modèles où le triplet ) , , ( ,, (

1 1 1 1 N N N N Y R X T = et le couple ) , ( 1 1 N N R X sont markoviens, mais le couple ) , ( 1 1 N N Y R ne l'est pas nécessairement. Dans un MCCLSM, le triplet ) , , ( 1 1 1 1 N N N N Y R X T = et le couple ) , ( 1 1 N N Y R sont markoviens, sans que le couple ) , ( 1 1 N N R X le soit nécessairement. La markovianité du couple ) , ( 1 1 N N Y R joue
1 1 1 N N N Y U R
. De tels modèles, dans lesquels ) , (

1 1 N N Y R
n'est pas nécessairement markovien, s'avèrent très efficaces en situations non stationnaires [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]Boudaren et al., 2012a), ce qui est à l'origine de la présente étude. En effet, ainsi que nous allons le montrer, il est possible d'étendre la famille MCCLSM des triplets ) , , (

1 1 1 1 N N N N Y R X T = en étendant ) , ( 1 1 N N Y R
, dans différentes directions, par l'introduction d'un processus auxiliaire ) ..., , ( 1

1 N N U U U = et en considérant la markovianité du triplet ) , , ( 1 1 1 N N N Y U R , ce qui mène à un quadruplet markovien ) , , , ( 1 1 1 1 N N N N Y U R X
. Notons qu'outre les différentes stationnarités mentionnées plus haut, N U 1 peut modéliser différentes autres situations mentionnées à la Section 4.

L'objet de cet article est de présenter un modèle général ) , , , (

1 1 1 1 1 N N N N N Y U R X T =
étendant la famille MCCLSM et de montrer, dans un cas particulier, son intérêt en situation de sauts non stationnaires. L'organisation de l'article est la suivante. Dans la section suivante, nous rappelons un résultat récent modifiant le modèle classique (1.1)-( 1.3) et aboutissant au modèle général appelé « Modèle couple conditionnellement Gaussien ». Dans la section 3 nous rappelons comment il est possible de définir un modèle proche du modèle général mais permettant un filtrage rapide, car appartenant à la famille des « modèles cachés conditionnellement linéaires à sauts ». La section 4 introduit le « modèle caché conditionnellement linéaire à sauts non stationnaires», par l'ajout d'un processus auxiliaire. Enfin, la section 5 procure quelques résultats numériques d'expériences qui mettent en évidence l'intérêt de cette nouvelle modélisation pour le filtrage non stationnaire en ligne de séries temporelles, et la section 6 contient les conclusions et des perspectives.

Généralisation du modèle CGLSSM

Considérons le modèle CGLSSM (1.1)-(1.3) et écrivons (1.2)-(1.3) matriciellement:

N R 1 est une chaîne de Markov ;

(2.1)

, ) ( ) ( ) ( 0 ) ( 0 ) ( ) ( 0 ) ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + + + + + + + + + + + + + + + n n n n n n n n n n n n n n n n n n n n V U R D R C R B R C Y X R A R B R A Y X (2.2) Il est possible de généraliser (2.1)-(2.2) au modèle suivant (on pose ) , ( 1 1 + + = n n n n R R R
), appelé « Modèle couple conditionnellement gaussien » (en anglais « Conditionally Gaussian Pairwise Markov Model »), qui sera noté CGPMM (Abbassi et al., 2011): N R 1 est une chaîne de Markov ;

(2.3)

, ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 1 1 4 1 1 3 1 1 2 1 1 1 1 1 4 1 1 3 1 1 2 1 1 1 1 1 1 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + + + + + + + + + + + + + + + + + n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n V U R B R B R B R B Y X R A R A R A R A Y X (2.4) avec la loi de ) , ( 1 1 Y X et les lois ) , ( 1 1 1 r y x p
, supposées gaussiennes, données,

) ( 1 1 + + n n i n R A , ) ( 1 1 + + n n i n R B
des matrices de tailles appropriées dépendantes des sauts, et

) , ( 2 2 V U , …, ) , ( N N V U
un bruit blanc gaussien de matrice de covariance identité. Notons que nous avons deux types de généralisations. Le premier consiste en considérant des termes quelconques au lieu des termes nuls dans les deux matrices de (2.2). Le deuxième consiste en l'extension de la dépendance des termes de ces matrices de 

1 + n R à ) , ( 1 + n n R R . La
à N R 1 connu. En effet, conditionnellement à N R 1 , le couple ) , ( 1 1 N N Y X
est markovien (sans que N X 1 le soit nécessairement) et il est alors possible d'utiliser la méthode généralisant le filtre de Kalman classique [START_REF] Pieczynski | Kalman filtering using Pairwise Gaussian Models[END_REF], que nous reformulons ci-après de manière quelque peu modifiée.

En oubliant la dépendance de N R 1 , nous avons le système suivant :

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + + + + + + + + + 1 1 4 1 3 1 2 1 1 1 4 1 3 1 2 1 1 1 1 1 n n n n n n n n n n n n n n V U B B B B Y X A A A A Y X (2.5) Le problème est donc de calculer ) ( 1 1 1 + + n n y x p à partir de ) ( 1 n n y x p
, ce qui est fait de la manière suivante. Notons, pour simplifier,

) , ( ) ( 1 n n n n N y x p Σ = µ , ) , ( ) ( 1 1 1 1 + + + + Σ = n n n n N y x p µ , ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = + + + + + 4 1 3 1 2 1 1 1 1 n n n n n B B B B B et ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = + + + 1 1 1 n n n V U W . Pour n y 1 fixé, (2.5) montre que les variables n X , 1 + n X , et 1 + n Y vérifient = + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + + + + + 1 1 4 1 3 1 2 1 1 1 1 1 n n n n n n n n n n n n W B y A X A y A X A Y X 1 1 4 1 2 1 3 1 1 1 + + + + + + + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ n n n n n n n n W B y A A X A A , et donc que ) , ( 1 1 1 n n n y y x p + +
est une loi gaussienne avec moyenne et variance données par : 

n n n n n n Y n X n y A A A A m m ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + + + 4 1 2 1 3 1 1 1 1 1 µ ; (2.6) T n n T n n n n n YY n YX n XY n XX n B B A A A A S S S S 1 1 3 1 1 1 3 1 1 1 1 1 1 1 + + + + + + + + + + + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ Σ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ (2.7) Alors ) , ( ) ( 1 1 1 1 1 1 n n n
X n Y n n YY n XY n n m m y S S 1 1 1 1 1 1 1 ) ( ) ( + + + - + + + + - = µ ;
(2.8)

YX n YY n XY n XX n n S S S S 1 1 1 1 1 1 ) ( + - + + + + - = Σ .
(2.9)

Ainsi le filtre de Kalman fonctionne dans le modèle (2.5), et coïncide avec le filtre de Kalman classique lorsque (2.3)-(2.4) est réduit à (2.1)-(2.2) (à

N N r R 1 1 = connu)
. Finalement, comme dans le CGLSSM classique, le filtre de Kalman peut être utilisé dans le CGPMM lorsque

N N r R 1 1 =
est connu. Bien entendu, lorsque N R 1 n'est pas connu, la mise en place du filtre optimal dans CGPMM présente les mêmes difficultés calculatoires que dans CGLSSM ; cependant, ces difficultés n'étant pas plus complexes, les techniques de type MCMCS utilisées dans CGLSSM s'étendent aisément aux CGPMM (Abbassi et al ., 2011).

Filtrage rapide exact dans un cas particulier de CGPMM

Considérons le cas particulier du CGPMM (2.3)-(2.4) suivant : N R 1 est une chaîne de Markov ;

(3.1)

, ) ( ) ( ) ( ) ( ) ( 0 ) ( ) ( 1 1 1 4 1 1 3 1 1 2 1 1 1 1 1 4 1 1 2 1 1 1 1 1 1 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + + + + + + + + + + + + + + + n n n n n n n n n n n n n n n n n n n n n n n n n n n V U R B R B R B R B Y X R A R A R A Y X (3.2) ainsi la particularité consiste à considérer 0 ) ( 1 3 1 = + + n n n R A
. Montrons, en reprenant les idées de (Abbassi et al., 2011), que le filtrage exact rapide est possible, ce qui signifie que la complexité est linéaire en , et précisons le déroulement du filtre. Cette possibilité vient du fait que le modèle (3.1)-(3.2) fait partie de la famille des modèles dits « Modèle caché conditionnellement linéaire à sauts », en anglais conditionally Markov switching hidden linear models, qui seront notés CMSHLM n dans la suite. En effet, ces derniers, introduits dans (Pieczynski, 2011a), autorisent le filtrage exact rapide. Plus précisément, un CMSHLM est défini par :

) , , ( 1 1 1 1 N N N N Y R X T = est Markov avec ) , , ( ) , , , ( 1 1 1 1 n n n n n n n n n y r y r p y r x y r p + + + + = (le couple ) , ( 1 1 N N Y R est alors de Markov); (3.3) ) , ( ) , ( ) , ( 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + = n n n n n n n n n n n n n n n n n n Y R H W Y R G X Y R F X , (3.4) avec ) , ( 1 1 1 + + + n n n n n Y R F , ) , ( 1 1 1 + + + n n n n n Y R G
des matrices de dimensions appropriées,

1 + n W un bruit blanc, et ) , ( 1 1 1 + + + n n n n n Y R H
des vecteurs aléatoires de dimensions appropriées.

) (

1 1 1 + + n n y r p et ] , [ 1 1 1 1 + + + n n n y r X E
peuvent alors être calculés à partir de ) , , (

1 1 n n n n y r y r p + + , ) , ( 1 1 1 + + + n n n n n y r F , ) , ( 1 1 1 + + + n n n n n y r H , ) ( 1 n n y r p , et ] , [ 1 n n n y r X E
avec une complexité indépendante de n de la manière suivante : 

, ) ( ) , , ( ) ( ) , , ( ) ( 1 
+ + + n n n n n Y R F , ) , ( 1 1 1 + + + n n n n n Y R G , et ) , ( 1 1 1 + + + n n n n n Y R H de (3.4).
En oubliant, pour simplifier, la dépendance de n et 

1 + n n R de la loi de T n n Y X ) , ( 1 1 + + conditionnelle à T n n T n n y x Y X ) , ( ) , ( = ,
+ + + + + + n n n n n n n n n n n n y r A y r A x r A m m ) ( ) ( ) ( 1 4 1 1 2 1 1 1 1 2 1 , (3.8) et de matrice de variance-covariance T n n n n n n n n n n n n n n n n n n n n n n n n R B R B R B R B R B R B R B R B ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + + + + + + + + + + + + + + ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 4 1 1 3 1 1 2 1 1 1 1 1 4 1 1 3 1 1 2 1 1 1 1 4 3 2 1 γ γ γ γ .
(3.9)

La loi de 

1 + n X conditionnelle à 1 1 + + = n n y Y (qui est donc celle de 1 + n X conditionnelle à 1 1 + + = n n y Y , n n y Y = , et n n x X = ) est alors classiquement la loi gaussienne de moyenne ) ( ) ( 2 1 1 4 2 1 m y m n - + + - γ γ , ( 3 
, ) ( *) ( * 3 1 4 2 1 γ γ γ γ γ γ - - = T (3.12) la variable 1 + n X peut s'écrire : 1 2 1 1 4 2 1 1 * ) ( ) ( + + - + + - + = n n n W m Y m X γ γ γ , (3.13) avec 1 + n
W un bruit blanc. En reportant (3.8) et (3.9) dans (3.10)-(3.13) on trouve ,( 1 1 1

= + - + + = + + + + - + + + + + 1 1 4 1 1 1 4 2 1 2 1 1 1 1 1 * ) ) ( ( ) ( ) ( ) ( n n n n n n n n n n n n n n n W Y r A Y Y r A X r A X γ γ γ 1 1 1 4 2 1 4 1 1 4 2 1 2 1 1 1 1 * ) ( )] ( ) ( ) ( [ ) ( + + - + + - + + + + + + - + n n n n n n n n n n n n n W Y Y r A r A X r A γ γ γ γ γ , et donc finalement : ); ( )
1 1 1 + + + + + = n n n n n n n n r A Y R F (3.14) *; ) , ( 1 1 1 γ = + + + n n n n n Y R G (3.15) , ) ( )] ( ) ( ) ( [ ) , ( 1 1 4 2 1 4 1 1 4 2 1 2 1 1 1 1 + - + + - + + + + + + - = n n n n n n n n n n n n n Y Y R A R A Y R H γ γ γ γ (3.16) avec *
γ donné par (3.9) et (3.12), et 2 γ , 4 γ donnés par (3.9).

REMARQUE. -Sachant que les calculs rapides du filtre optimal sont possibles dans un CMSHLM et ne sont pas possibles dans un CGLSSM classique, une question qui se pose naturellement est de savoir dans quelle mesure ces modèles sont différents. Cette question a été étudiée de plusieurs manières différentes :

(i) considérons l'égalité (2.2) sous forme compacte

1 1 1 1 1 1 ) ( ) ( + + + + + + + = n n n n n n n W R B Z R A Z . Les matrices de covariance ) ( 1 1 1 + + Γ n n R , ) ( 1 n n R Γ de 1 + n Z et n Z (conditionnelles à 1 1 + n R ) sont alors classiquement liées par la relation ) ( ) ( ) ( ) ( ) ( ) ( 1 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + Γ = Γ n T n n n n T n n n n n n n R B R B R A R R A R
. Il est alors possible de considérer

1 1 * 1 1 * 1 1 ) ( ) ( + + + + + + + = n n n n n n n W R B Z R A Z de forme (3.2), avec * 1 + n A et ) ( 1 * 1 + + n n R B telles que pour ) ( ) ( 1 * 1 n n n n R R Γ = Γ on ait ) ( ) ( ) ( ) ( ) ( ) ( 1 1 1 1 1 1 1 1 1 1 1 * 1 + + + + + + + + + + + Γ = Γ n T n n n n T n n n n n n n R B R B R A R R A R
. De proche en proche on a donc un modèle (3.2) présentant les mêmes matrices de covariances que le modèle (2.2) [START_REF] Pieczynski | Exact optimal filtering in an approximating switching system[END_REF] 

Filtrage rapide exact dans les « Modèles cachés conditionnellement linéaires à sauts marginalement markoviens » (MCCLSMM).

Considérons un processus ) , , , (

1 1 1 1 1 N N N N N Y U R X T = , avec N X 1 continu caché, N Y 1 continu observé, N R 1 fini modélisant les sauts, et N U 1 processus auxiliaire fini { } L U n ..., , 1 = Λ ∈ , pouvant admettre différentes interprétations. Définition 4.1 ) , , , ( 1 1 1 1 1 N N N N N Y U R X T = est un « modèle caché conditionnellement linéaire à sauts marginalement markoviens » (MCCLSMM) à sauts si pour tout 1 = n , …, 1 - N : ) , , , ( 1 1 1 1 1 N N N N N Y U R X T = est de Markov; (4.1) ) , , , , ( ) , , , , , ( 1 
1 1 1 1 1 n n n n n n n n n n n n n y u r y u r p y u r x y u r p + + + + + + = ; (le triplet (R 1 N ,U 1 N ,Y 1 N ) est alors de Markov); (4.2) ). , , ( ) , , ( ) , , ( 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + = n n n n n n n n n n n n n n n n n n n n n n n Y U R H W Y U R G X Y U R F X (4.3) avec ) , , ( 1 1 1 1 + + + + n n n n n n n Y U R F , ) , , ( 1 1 1 1 + + + + n n n n n n n Y U R G
des matrices de dimensions appropriées,

1 + n W un bruit blanc, et ) , , ( 1 1 1 1 + + + + n n n n n n n Y U R H
des vecteurs aléatoires de dimensions appropriées.

Proposition 4.1

Soit

) , , , (

1 1 1 1 1 N N N N N Y U R X T = un MCCLSMM. Alors ) , ( 1 1 1 1 + + + n n n y u r p , ] , , [ 1 1 1 1 1 + + + + n n n n y u r X E , et ] , , [ 1 1 1 1 1 1 + + + + + n n n T n n y u r X X E , qui donnent ] [ 1 1 1 + + n n y X E , et ] [ 1 1 1 + + n n y X Var , peuvent être calculés à partir de ) , , , , ( 1 1 1 n n n n n n y u r y u r p + + + , ) , , ( 1 1 1 1 + + + + n n n n n n n Y U R F , ) , , ( 1 1 1 1 + + + + n n n n n n n Y U R G , ) , , ( 1 1 1 1 + + + + n n n n n n n Y U R H , ) , ( 1 n n n y u r p , ] , , [ 1 n n n n y u r X E , et ] , , [ 1 n n n T n n y u r X X E avec une complexité indépendante de n . En posant ) , ( 1 1 1 N N N U R V =
, nous avons :

; ) ( ) , , ( ) ( ) , , ( ) ( 1 
, 1 1 1 1 1 1 1 1 1 ∑ ∑ + + + + + + + = n n n v v n n n n n n v n n n n n n n n y v p y v y v p y v p y v y v p y v p (4.4) ∑ + + + + + + + + + + + + = n v n n n n n n n n n n n n n n n n n n n y v H y v X E y v F y v v p y v X E )] , ( ] , [ ) , ( )[ , ( ] , [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; (4.5) avec ; ) ( ) , , ( ) ( ) , , ( ) , ( 1 1 1 1 1 1 1 1 1 ∑ + + + + + + = n v n n n n n n n n n n n n n n n y v p y v y v p y v p y v y v p y v v p (4.6) E[X n+1 X n+1 T v n+1 , y 1 n+1 ] = p(v n v n+1 , y 1 n+1 )[K n+1 (v n n+1 , y 1 n+1 )] v n ∑ (4.7) avec : K n+1 (v n n+1 , y 1 n+1 ) = F n+1 (v n n+1 , y n n+1 )E[X n X n T v n , y 1 n ]F n+1 T (v n n+1
, y n n+1 ) +

+ + + + + + + ) , ( ] , [ ) , ( 1 1 1 1 1 1 1 n n n n T n n n n n n n n n y v H y v X E y v F + + + + + + + ) , ( ) , ( 1 1 1 1 1 1 n n n n T n n n n n n y v G y v G
(4.8)

+ + + + + + + ) , ( ] , [ ) , ( 1 1 1 1 1 1 1 n n n n T n n n T n n n n n n y v F y v X E y v H ) , ( ) , ( 1 1 1 1 1 1 + + + + + + n n n n T n n n n n n y v H y v H , ) ( ) ( 1 1 1 1 1 1 1 ∑ + + + + + = n u n n n n y v p y r p ; ) ( ) ( 1 1 1 1 1 1 1 ∑ + + + + + = n r n n n n y v p y u p (4.9) . ] , [ ) ( ] [ 1 1 1 1 1 1 1 1 1 1 1 ∑ + + + + + + + + = n v n n n n n n n y v X E y v p y X E (4.10)

Démonstration

(4.4) vient de la markovianité du couple ) , ( 

1 1 N N Y V : ; ) ( ) , , ( ) ( ) , , ( ) ( ) , , ( ) , ( ) , ( ) ( 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ∑ ∑ ∑ ∑ ∑ + + + + + + + + + + + + + + = = = = n n n n n n v v n n n n n n v n n n n n n v n n n n n n v n n n v n n n n n y v p y v y v p y v p y v y v p y y p y y v v p y v v p y v v p y v p Pour montrer (4.5) on considère ] , [ 1 1 1 1 + + + n n n y v X E avec 1 + n X donnée par (4.
y v H y v v X E y v F y v v p y v v Y V H W Y V G X Y V F E y v v p y v Y V H W Y V G X Y V F E y v X E )] , ( ] , , [ ) , ( )[ , ( ] , , ) , ( ) , ( ) , ( [ ) , ( ] , ) , ( ) , ( ) , ( [ ] , [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Selon l'hypothèse (4.2) n X et ) , ( 1 1 + + n n Y V sont indépendants conditionnellement à ) , ( n n Y V , ce qui implique ] , [ ] , , [ 1 1 1 1 n n n n n n n y v X E y v v X E = + + , d'où (4.5) ; (4.6) vient de ) ( ) ( ) , , ( ) ( ) , , ( ) , ( 1 1 1 1 1 1 1 1 1 1 1 1 1 n n n n n n
) , , ( 1 1 1 N N N Y U R , où N U 1 modélise différentes stationnarités, à la place d'une chaîne de Markov cachée classique ) , ( 1 1 N N Y R
peut conduire à une amélioration significative des résultats obtenus [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]. Au plan plus théorique, les différentes interprétations de N U 1 peuvent mener à différentes modélisations comme les semi-Markov cachés (Lapuyade-Lahorgue et [START_REF] Pieczynski | Exact filtering in conditionally Markov switching hidden linear models[END_REF] ou les chaînes cachées évidentielles [START_REF] Pieczynski | Multisensor triplet Markov chains and theory of evidence[END_REF]Boudaren et al., 2012b ;[START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF]. Notons également l'utilisation récente du processus auxiliaire pour modéliser, dans le cas multivarié, les états à retard existant entre les canaux observés [START_REF] Cam | Identification de distributions dans des series temporelles multivariées présentant des correlation à délais[END_REF]. Toutes ces modélisations peuvent être utilisées dans le cadre d'un MCCLSMM introduit dans cet article, ce qui constitue autant de perspectives pour les travaux futurs.

Expérimentations

Nous présentons dans cette section les résultats de simulations dans lesquelles les processus

N X 1 et N Y 1 sont scalaires (i.e. 1 = = q m ), avec deux classes pour N R 1 ( 2 = K ) et trois classes pour N U 1 ( 3 = L
). La longueur des chaînes est fixée à 2000 = N échantillons, et les résultats sont des moyennes de 300 expériences indépendantes. Nous considérerons uniquement des systèmes homogènes, ce qui signifie que les paramètres

) ( 1 1 + + n n i n V A , 4 , 2 , 1 = i , et ) ( 1 1 + + n n i n V B , 4 , , 1 … = i dans (3.2) -avec 1 + n n V à la place de 1 + n n R -ne dépendent pas de n , et tels que le couple ) , ( 1 1 1 N N N U R V =
forme une chaîne de Markov homogène définie de la manière suivante :

-N U 1 est une chaîne de Markov homogène définie par la distribution de 

1 N N Y X des sauts N V 1 et notons ) , , , ( ) , ( 2 2 1 1 2 1 2 1 Y X Y X Z Z Z = = . La distribution gaussienne de 2 1 Z (conditionnelle à ) , ( ) , ( 2 1 2 1 v v V V =
) est donnée par la matrice de covariance suivante : La dépendance de la matrice (5.3) de ) , (

1 1 1 + + + = n n n U R V
, ainsi que celle des matrices (5.5) et (5.6) qui en résulte, est donnée dans le tableau 1. 

1 + n U 1 + n R µ X Y µ 2 X σ 2 Y

  et on termine la construction de la loi de )

  à l'origine du présent travail, est alors le suivant. Lorsque l'on a opté pour l'utilisation d'un MCCLSM on calcule d'abord ) calcul étant indépendant du second, tout se passe comme si on était confronté au problème de la recherche de N R 1 à partir de N Y 1 , qui est le problème de segmentation et qui a été étudié dans les cadres des différentes extensions de la loi classique -typiquement celle d'un Markov caché -du couple ) ainsi possible d'utiliser ces différentes extensions, qui se sont souvent montrées d'un remarquable intérêt, dans le cadre des systèmes à sauts considérés dans ce travail. Plus précisément, il est en particulier possible d'introduire un processus auxiliaire )

  en oeuvre pratique du filtre à partir de (3.1)-(3.2), il nous faut préciser les liens entre les coefficients des matrices de (3.2) et les quantités )

Γ

  soit une matrice définie positive. Le graphe de dépendance est présenté en figure 1.

Figure

  Figure 1. Graphe de dépendance de ) , , , , ( 2 1 2 2 1 1 v v y x y x p

  Valeurs des paramètres utilisés pour la restauration selon le filtre F2

  plus grande généralité du modèle (2.3)-(2.4) par rapport au modèle (2.1)-(2.2) apparaît ainsi avec évidence ; cependant, il garde les propriétés analogues à celles de ce dernier et le même type de méthodes approchées peut être utilisé. En particulier, on peut aisément étendre les filtres particulaires utilisés dans le modèle classique au CGPMM (2.3)-(2.4)(Abbassi et al., 2011). Comme dans les cas classiques, il est possible, dans un CGPMM, d'utiliser le filtre de Kalman

  .

		(ii) Dans le modèle classique (2.2) les lois marginales	p	(	x	, n y	n	)	sont des
	mélanges dont le nombre des composantes croit exponentiellement avec le nombre
	d'observations. Cette propriété implique que deux observateurs utilisant deux
	modèles (2.2) avec les mêmes transitions, mais ayant commencé les observations à
	des instants différents, ne peuvent pas avoir les mêmes lois	p	(	x	, n y	n	)	, c'est qui est
	manifestement un inconvénient. Il est alors possible de modifier les matrices
	n C	1 +	( 1 + n R	)	dans (1.2) -ou dans (2.2) -en les faisant dépendre de	1 + R de façon à ce n n
	que les lois marginales			p	(	x	, n y	n	)	soient des mélanges dont le nombre des
	composantes est constant. A chaque élément de cette famille de modèles classiques
	« modifiés » il est alors possible d'associer un modèle (3.1)-(3.2) très proche : pour
	tout						n		=	1	, …,		N		-	1	, les lois		( n n r x p	)	,	( p	y	1 1 + + n n r	)	,	( p	x	n	,	x	n	1 +	n r	,	n r	1 +	)	,
	( p	x	n	1 +	,	y	n	n r	,	n r	1 +	)	,		( p	y	n	,	y	n	1 +	n r	,	n r	1 +	)	,	( p	x	n	,	y	n	n r	)	, et	( p	x	n	1 +	,	y	n	1 +	n r	1 +	)	sont les
	mêmes dans les deux modèles et la seule différence réside dans le fait que les lois
	( p	x	n	,	y	n	1 +	n r	,	n r	1 +	)	sont différentes. En particulier,	( p	x	n	1 +	x	n	,	n r	,	n r	1 +	)	et	( p	y	n	x	n	,	n r	)	,
	que l'on utilise pour définir les modèles classiques, sont les mêmes (Derrode et
	Pieczynski, 2013).																									
		(iii) De manière générale, le modèle classique CGLSSM est déterminé, à sauts
	connus, par la loi	p	(	, 1 y 1 x	)	de			(	X	, 1 Y 1	)	et deux suites de lois :	( 1 n n x x p +	)	, et
	( p	y	n x	n	)	. On peut alors montrer qu'il existe un modèle (3.1)-(3.2) dans lequel ces
	lois, à sauts donnés, sont les mêmes (Petetin et Desbouvries, 2013 ; Petetin, 2013).
	On est devant un argument important en faveur du modèle (3.1)-(3.2) car, dans la
	pratique, la loi	p	(	, 1 y 1 x	)	et les deux suites de lois	( 1 n n x x p +	)	,	( p	y	n x	n	)	sont celles
	qui modélisent les propriétés « physiques » du phénomène à étudier.

  Malgré la similitude mathématique entre les modèles MCCLSM et MCCLSMM, la différence, apparaissant au niveau de l'interprétation des processus cachés, peut être très importante du point de vue pratique. Dans le problème de segmentation, utiliser une chaîne de Markov triplet

	p	v	n	v	n	+	y	n	+	=	p	v	n p	n + y n v	+	n n y y +	y	n	=	p	v	n	+	y	n p +	y v	+	y y	p	v	y	;
	La démonstration de (4.7)-(4.8) est analogue à celle de (4.5) ; (4.9) et (4.10) sont
	immédiats.																															
	REMARQUE. -																															

  Tableau 1. Valeurs des paramètres utilisés dans les expériences de simulation/restauration

	0	0.0	0.0	0.5	1.5	0.30	0.60	0.30	0.12	0.40
	0									
	1	0.0	2.0	1.5	0.8	0.50	0.30	0.30	0.11	0.80
	0	0.0	0.0	0.5	0.8	0.15	0.60	0.18	0.14	0.25
	1									
	1	0.0	2.0	0.5	1.0	0.30	0.30	0.10	0.03	0.40
	0	0.0	0.0	0.5	1.0	0.20	0.60	0.20	0.12	0.20
	2									
	1	0.0	2.0	1.0	2.0	0.40	0.20	0.00	0.00	0.60
								B 2 B 3	
	0	0.0	0.0	0.54	0.05	0.20 0.56 0.92 0.00 0.77
	0									
	1	0.0	2.0	0.14	0.95	0.38 0.82 0.00 0.00 0.83
	0	0.0	0.0	-0.75	0.88	0.23 0.63 0.87 0.00 0.09
	1									
	1	0.0	2.0	0.44	0.27	0.10 0.51 0.51 0.00 0.85
	0	0.0	0.0	0.57	-0.14 0.20 0.64 0.87 0.00 0.45
	2									
	1	0.0	2.0	0.35	0.27	0.00 0.84 0.24 0.00 1.39

  Figure 2. Extraits de données restaurées avec, en haut, les filtres F1 et F2 à sauts connus et, en bas, les filtres F1 et F2 à sauts inconnus

	Tableau 3. Résultats de restauration à sauts connus (F1-SC, F2-SC) et à sauts
		inconnus (F1-SI, F2-SI)		
		EQM	τ	(r	)	τ	(u	)
	F1-SC	0.369		-			-
	F1-SI	0.623	15.8%	37.4%
	F2-SC	0.484		-			-
	F2-SI	0.663	16.9%		-

R

M

.

(5.2) La loi de ) , ( 

ce cas assez particulier produit un modèle dans lequel N R 1 n'est markovien, un cas donc différent des modèles classiques où il l'est.

Oublions un instant la dépendance de ) , (

=

selon le modèle spécifié par les paramètres du tableau 1 : on simule ( )

selon la loi gaussienne ( ) 

), les paramètres de restauration pour ce filtre étant définis « en moyennant » les paramètres du modèle, aboutissant à la distribution de la chaîne de

Markov N R 1 donnée par

⎟ ⎟ ⎠

La qualité de restauration de x est mesurée à l'aide de l'erreur quadratique moyenne (EQM), celles de r et de u , dans le cas à sauts inconnus, le sont par le taux d'erreur de classification (τ ). Les résultats moyens obtenus sur 300 expériences sont reportés dans le tableau 3. Un exemple de restauration de x à sauts connus et à sauts inconnus est présenté dans la figure 2.

Les résultats présentés, et d'autres résultats obtenus par des simulations analogues, montrent que, lorsque les données suivent un modèle à sauts non stationnaires proposé, l'utilisation du modèle à sauts stationnaires peut dégrader les résultats obtenus avec le vrai modèle de manière non négligeable.

Conclusions et perspectives

Nous avons considéré dans cet article le problème de filtrage statistique optimal, au sens de l'erreur quadratique moyenne, dans des systèmes linéaires à sauts. Notons X le processus caché, Y le processus observé, et R le processus des sauts. Dans les modèles classiques, où les sauts sont modélisés par une chaîne de Markov et le couple ) , ( Y X est markovien conditionnellement aux sauts, il est impossible de mettre en place un filtrage rapide, dont la complexité serait linéaire en temps, même dans les cas les plus simples où la loi du couple ) , ( Y X conditionnellement aux sauts est celle d'un système markovien gaussien. Un tel filtrage rapide est possible dans une famille particulière de modèles à sauts, où le couple ) , ( Y X est markovien conditionnellement aux sauts comme dans les modèles classiques, cependant, le processus caché X ne l'est plus nécessairement (Pieczynski, 2011a) [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]. Nous pouvons donc avoir des modèles

, dont la loi est la loi marginale de * T , ne soit dans F . En particulier, on peut prendre ) , ( R U markovien, en obtenant un modèle où la loi des sauts est la loi marginale d'une loi markovienne (les lois semi-markoviennes en font partie).

Nous avons présenté des simulations dans le cas très simple où les différentes valeurs de U présentent différentes stationnarités de R , et il s'avère que les résultats obtenus avec U peuvent améliorer de façon significative ceux obtenus sans U , où l'on suppose les sauts stationnaires.

Les perspectives pour ce travail contiennent les différentes extensions en complexifiant la loi de ) , , ( Y R U

; en particulier, on peut considérer des processus « partiellement » de Markov, autorisant des bruitages à mémoire longue [START_REF] Lanchantin | Unsupervised segmentation of triplet Markov chains hidden with long-memory noise[END_REF]Pieczynski, 2013a). On pourra alors envisager d'utiliser ces différents modèles à des fins de lissage ou prédictions, en étendant ainsi les premiers résultats obtenus dans le cadre des

dans F , présentés dans [START_REF] Bardel | Exact Bayesian prediction in a class of Markovswitching models[END_REF][START_REF] Pieczynski | Exact smoothing in hidden conditionally Markov switching linear models[END_REF]. L'estimation des paramètres, en s'inspirant éventuellement de (Fox et al., 2011), constitue une autre perspective intéressante.
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