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Abstract Forecasting the dispersal of volcanic clouds during an eruption is of primary importance,
especially for ensuring aviation safety. As volcanic emissions are characterized by rapid variations of
emission rate and height, the (generally) high level of uncertainty in the emission parameters represents a
critical issue that limits the robustness of volcanic cloud dispersal forecasts. An inverse modeling scheme,
combining satellite observations of the volcanic cloud with a regional chemistry-transport model, allows
reconstructing this source term at high temporal resolution. We demonstrate here how a progressive
assimilation of freshly acquired satellite observations, via such an inverse modeling procedure, allows for
delivering robust sulfur dioxide (SO2) cloud dispersal forecasts during the eruption. This approach provides
a computationally cheap estimate of the expected location and mass loading of volcanic clouds, including
the identification of SO2-rich parts.

1. Introduction

In the event of an eruption, volcanic products can pose significant hazards to aircrafts. Ash represents the
main hazard as it causes damages ranging from engine failure, windshields abrasion, and disruption of sen-
sitive avionics equipment [Prata, 2009]. Sulfur dioxide (SO2) also generates a potential danger if exposure
is chronic, as sulphidation of the metals in jet turbine fans could lead to engine damage [Carn et al., 2009].
Therefore, providing robust forecasts of the atmospheric evolution of the emitted ash- and gas-rich vol-
canic cloud, in terms of location and concentration, is crucial to reliably assess the extent of restricted flight
airspace and thereby to ensure safe air travels [Bonadonna et al., 2012].

On one hand, on a continental scale, numerical chemistry-transport models, forced by meteorological
observations, now allow for estimating with a high degree of confidence the expected trajectory within the
atmospheric circulation system of any given ash/gas parcel emitted by a volcano [e.g., Haywood et al., 2010;
Heard et al., 2012]. Overall, SO2 and ash are likely to follow the same trajectory if emitted at similar injection
heights [e.g., Thomas and Prata, 2011]. As SO2 is the most easily detected species from space, SO2 is often
taken as a convenient indicator of the likely presence of ash [Carn et al., 2009; Sears et al., 2013]. However,
ash and SO2 can be separated due to different production mechanisms at source or a distinct settling veloc-
ity combined with wind shear [Schneider et al., 1999; Prata and Kerkmann, 2007]. Most importantly, volcanic
ash and SO2 release is characterized by rapid variations in both emission rate and height [Stohl et al., 2011;
Boichu et al., 2013]. Unfortunately, most of the active volcanoes in the world are still not or poorly monitored
so that our knowledge of these emission parameters remains limited [Marzocchi et al., 2012]. As a conse-
quence, the initialization of numerical simulations of atmospheric chemistry-transport and the resulting
robustness of volcanic cloud dispersal forecasts are subject to large uncertainty [Webley and Mastin, 2009;
Bonadonna et al., 2012].

When local ground observations are lacking or become practically inoperative, satellite observations of vol-
canic clouds can be used to track the evolution of eruptive activity. Assuming that the swath of satellite
observations allows fully capturing the volcanic cloud, various space-based methods have been proposed
to estimate the SO2 emission flux. The crudest approach consists in differentiating in time the SO2 mass bur-
dens retrieved from successive acquisitions [e.g., Krueger et al., 1996; Surono et al., 2012; Lopez et al., 2013].
Unfortunately, this approach only provides estimates of SO2 fluxes averaged over 12 to 24 h at best, depend-
ing on polar-orbiting satellite revisit frequency. In order to reconstruct time series of SO2 emission fluxes at
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higher temporal resolution, it is necessary to exploit the spatial variations of the SO2 concentration within
the plume. This can be achieved by integrating SO2 column densities along a series of transects crossing the
volcanic cloud and multiplying by wind speed [e.g., Carn and Bluth, 2003; Merucci et al., 2011; Theys et al.,
2013]. However, this method has neither been developed nor has it been tested for operational purposes of
volcanic cloud dispersal forecast, probably due to its heuristic nature.

To establish more firmly the link between in-cloud spatial heterogeneities of SO2 concentration and
temporal variability of the volcanic source, an inverse modeling approach is required, whereby satellite
observations of the volcanic cloud are coupled with a chemistry-transport model. As demonstrated by
Boichu et al. [2013], such an approach can effectively reconstruct retrospectively SO2 flux time series with an
hourly temporal resolution, without the need for a priori knowledge on the SO2 flux.

Here we focus on the 2010 Eyjafjallajökull eruption to show that this inverse modeling approach provides
more robust forecasts of the volcanic SO2 cloud spatial extent and mass loading than regular mass-burden
methods. When applied progressively to a set of satellite observations of the volcanic cloud acquired at reg-
ular time intervals during the course of an eruption, the reconstruction of the source term can be updated
to provide refined forecasts for the next 12–36 h.

2. Methodology

The atmospheric evolution of the volcanic cloud is described using the CHIMERE regional Eule-
rian chemistry-transport model [Menut et al., 2013; Boichu et al., 2013], driven by Global Forecasting
System-Weather Research and Forecasting model reanalysis meteorological fields [Skamarock et al., 2008],
with a 25 km × 25 km horizontal grid (for both meteorological and chemistry-transport models) and
18 hybrid sigma-pressure vertical layers extending up to 200 hPa (∼12 km above sea level (asl)). Previous
inverse modeling studies have focused on the retrieval of the emission profile with altitude, assuming a con-
stant volcanic flux emitted on a short time span [Eckhardt et al., 2008; Kristiansen et al., 2010]. In our study,
emission height is constrained by independent observations. SO2 emissions are released along a 1 km full
width at half maximum semi-Gaussian profile centered at a height of 6 km asl, in agreement with radar and
web camera observations of the Eyjafjallajökull plume [Petersen et al., 2012]. As shown by Boichu et al. [2013],
removal mechanisms of SO2 can be neglected in the early May period of the eruption.

SO2 column amount maps were retrieved from measurements of the polar-orbiting Infrared Atmospheric
Sounding Interferometer (IASI) sounder, which provides global coverage twice a day (mean overpass times
at 09:30 and 21:30 local time) with a pixel size of 12 km at nadir. For simplicity and in the absence of inde-
pendent observations, a constant altitude of the volcanic cloud is assumed and fixed to 7 km asl, close to
emission height, in the retrieval algorithm. For more details, the reader is referred to Boichu et al. [2013].

Two different emission terms are tested for initializing plume chemistry-transport modeling, consisting in
time series of the SO2 flux reconstructed until a chosen date t0 either by the standard mass-burden method
(Method 1) or by a multiple-image inversion scheme (Method 2), both procedures capitalizing on the series
of satellite observations acquired until t0. Method 1 consists in differentiating the SO2 burdens from two
consecutive images of the volcanic cloud to evaluate a mean SO2 flux, assuming negligible SO2 depletion in
the volcanic cloud [e.g., Surono et al., 2012; Lopez et al., 2013; Theys et al., 2013]. Method 2 is an inversion pro-
cedure that uses the satellite observations in combination with the chemistry-transport model as a forward
model [Boichu et al., 2013]. The inverse problem is solved by determining the time history of the SO2 flux
that minimizes (in the least squares sense) the misfit between observed and modeled spatial and temporal
distributions of SO2 within one or several images. Except for a nonnegative constraint, no a priori knowl-
edge on the SO2 flux is required in this inversion procedure. To tackle numerical diffusion biases, the set of
pixels corresponding to a mass load below the detection threshold (null detection) is decimated by a factor
10, and a weak smoothing of the SO2 flux solution is applied. Details on this inversion scheme are provided
in Boichu et al. [2013].

To demonstrate how the forecast can be progressively updated and improved during the course of the erup-
tion, we apply this assimilation procedure to either a single satellite image or sequentially to a set of several
successive freshly acquired images, hereafter referred to as “progressive assimilation.” Given a revisit time
of IASI less than or equal to ΔT = 12 h at any specific location, forecasts are consequently computed with
the same periodicity. In the absence of observations constraining the emissions between t0 and the forecast
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time t0 +Δt, we assume that the volcano flux Φ(t) proceeds at a constant rate Φt0 ,𝜏
equal to the mean of the

reconstructed flux values over a period 𝜏 preceding the last detection of the volcanic cloud in the t0 image:

∀t ∈ [t0; t0 + Δt], Φ(t) = Φt0 ,𝜏
= 1

𝜏 ∫
t0

t0−𝜏
Φ(t′)dt′ (1)

Here 𝜏 has been arbitrarily set to 6 h.

So far, there is no consensus on the choice of a standard metric to quantitatively estimate the agreement
between modeled and observed volcanic cloud dispersion. Here the improvement of forecasts achieved by
progressive assimilation of satellite observations is assessed using the Earth Mover’s Distance (EMD) metric,
which is commonly used in many applications of computer vision including image retrieval and detection
of similar features [Rubner et al., 2000; Pele and Werman, 2009; Collins and Ge, 2008]. The EMD quantifies
the minimal cost that must be paid to transform one distribution (here the SO2 mass loading value for
each pixel) into the other. Compared to the simpler root-mean-square error, the EMD is not dominated by
biases induced by numerical diffusion issues, which makes it more adapted to rank the similarity between a
reference image (the observation) and two candidate images (the output of two different forecasts).

3. Forecast Initialization by Mass Burden Versus Inversion-Derived Flux

After a few days of relative quiescence, early May 2010 corresponds to a phase of renewal of the explosive
activity at Eyjafjallajökull volcano [Gudmundsson et al., 2012], which is accompanied by an intense degassing
of SO2 captured by ultraviolet and infrared satellite sensors [Thomas and Prata, 2011; Carboni et al., 2012; Rix
et al., 2012; Boichu et al., 2013]. Figure 1 illustrates the comparison of simulation maps (centered at the date
t0 = 7 May 12:00 UTC) and forecast maps (centered at t0+ΔT = 8 May 00:00 UTC) of the Eyjafjallajökull SO2

cloud dispersal. Forecasts are initialized using source terms obtained from Methods 1 and 2 (Figure 1d), both
using the IASI observations of the Eyjafjallajökull cloud available before the date t0.

Geographical location and spatial extent of the modeled SO2 cloud at t0 are in overall agreement with IASI
observations, whichever the method applied to determine the source term. The correct location of the
modeled SO2 cloud, mainly aligned toward Greenland at t0, then also extending toward Spain at t0+ΔT ,
indicates the robustness of the meteorological field that forces the chemistry-transport model. However,
only the forecast initialized using Method 2 is able to correctly reproduce the spatial variability of the SO2

cloud concentration (Figure 1c2). In agreement with IASI observations, three local peaks of SO2 are distin-
guished and the volcanic cloud is split into essentially two separated parts, whereas the forecast initialized
using Method 1 (Figure 1b2) misses completely the dense and elongated peak 2 and predicts a one-piece
SO2 cloud. The latter method also underestimates the elongation of peak 1 and the mass loading of peak 3.
The reason for this poor performance is that the mass-burden method only provides an average representa-
tion of the emissions, in the form of a step function (Figure 1d, red line), which smoothes any high-frequency
variation of the actual SO2 flux. As a consequence, the resulting simulation and forecast cannot reproduce
all of the heterogeneities of concentration within the SO2 cloud and, most importantly, may miss the parts
of the volcanic cloud with the richest SO2 mass loadings which are correctly captured by Method 2.

4. SO2 Cloud Dispersal Forecast Improvement by Progressive Assimilation
of Satellite Observations

Figures 2 and S1–S5 in the supporting information demonstrate, through the study of 20 forecast cases,
how the progressive assimilation of the satellite observations available during the course of an eruption
provides a refined (high temporal resolution) estimate of the source term which improves the robust-
ness of short-term forecasts. Considering that the first IASI satellite measurement of the Eyjafjallajökull
SO2 cloud is available at t0 (t0 = 8 May 00:00 UTC in Figure 2) and that the revisit time of IASI is anywhere
less than or equal to ΔT = 12 h, we compute a series of forecasts at t0+ΔT , t0+2ΔT , and t0+3ΔT , initial-
ized with the source term reconstructed from the inversion of the single t0 image (Figure 2b). This latter
single-image-based forecast at t0+3ΔT (Figure 2b4) is then compared with the forecasts initialized with the
source term derived from a two-image (i.e., using t0 and t0+ΔT images, Figure 2c4) or three-image inver-
sions (i.e., using t0, t0+ΔT , and t0+2ΔT images, Figure 2d4). The comparison of these forecasts with actual
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Figure 1. Forecasts initialized using source terms derived either from the standard mass-burden method (Method 1) or
from the multiple-image inversion scheme (Method 2). (a) IASI satellite retrievals (Dobson unit (DU)) of the Eyjafjallajökull
SO2 cloud. (b1) Simulation at t0 (7 May 12:00 UTC) and (b2) forecast at t0+ΔT (8 May 00:00 UTC) initialized by the (d) SO2
flux derived from the mass-burden method (red line). (c1) Simulation and (c2) forecast initialized by the SO2 flux derived
from the inversion scheme (Figure 1d, blue line). Modeled maps are collocated (in time and space) with IASI observations
acquired over a 12 h window centered at the time t0 or t0+ΔT . Regions in grey indicate column amounts less than 0.7 DU
(detection threshold in IASI processing). Black triangle indicates Eyjafjallajökull volcano. Note the change in vertical scale
in Figure 1d for flux > 2.5 kt h−1.
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Figure 2. Forecast improvement by progressive assimilation of SO2 cloud satellite observations. (a) IASI SO2 observations (green) acquired during the course of
the Eyjafjallajökull eruption. Simulation (blue) or forecast (red) maps of the SO2 cloud dispersal at (1) t0 (8 May 00:00 UTC), (2) t0+ΔT , (3) t0+2ΔT , and (4) t0+3ΔT
(ΔT = 12 h). Simulations and forecasts are initialized using SO2 flux time series derived from the inversion of (b) the single t0 image; (c) t0 and (t0+ΔT) images;
and (d) t0, (t0+ΔT), and (t0+2ΔT) images. Corresponding SO2 flux time series are shown on the right (note the change in vertical scaling above 2.5 kt h−1). Earth
Mover’s Distance (EMD) between forecast and satellite retrievals at a given date are indicated. For comparison, EMD between a map filled with zero values and
satellite data at t0+2ΔT and t0+3ΔT are drastically higher (equal to 690,000 and 498,000, respectively).

IASI observations made at t0+3ΔT (Figure 2a4) shows that the source derived from the three-image inver-
sion provides the best forecast, as illustrated by the lowest EMD value indicative of strongest similarity
(Figure 2d4). This best forecast is the only one that reproduces correctly the spatial variations of SO2 con-
centration in the Eyjafjallajökull cloud and, most importantly, that successfully identifies the location and
extent of the densest SO2 part of the volcanic cloud. This most SO2-concentrated zone is less well positioned
with the sources derived from the one- or two-image inversions (Figures 2b4 and 2c4). An improvement
of ∼ 40%, in terms of similarity or EMD decrease, is achieved relative to the single-image-based forecast.
Following the same rationale, the source derived from the two-image inversion provides the forecast
(Figure 2c3) which best matches observations at t0+2ΔT (Figure 2a3), as confirmed by an EMD value weaker
by ∼ 20% relative to the single-image-based forecast (Figure 2b3). Additional time series in Figures S1–S5
illustrate the systematic improvement of forecasts (one case excepted) by assimilation of the last acquired
image, which is corroborated by a consistent decrease of EMD between 5 and 43% relatively to forecasts
derived from single-image inversion.

5. Discussion

The inversion procedure introduces a feedback loop between satellite observations of the volcanic cloud
and the atmospheric chemistry-transport model. As demonstrated in the above analysis, this procedure
leads to a significant improvement of the temporal resolution on the source term and a consequent
improvement in the spatial accuracy of the SO2 cloud dispersal forecasts. Furthermore, this approach is more
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robust than the standard mass-burden procedure, in the sense that it has a lower tendency to map errors in
the observations or the modeling scheme into errors in the forecast.

For instance, forecasts initialized with both mass-burden and inversion-derived source methods suffer
from numerical diffusion issues that are inherent to Eulerian chemistry-transport models [Freitas et al.,
2012; Boichu et al., 2013]. This results in an overestimation of the SO2 dispersion that increases as the vol-
canic cloud gets older and travels farther from its source (Figure 1). This modeling bias inevitably leads
to an underestimation of the modeled SO2 cloud mass loading and an overestimation of the SO2 spread-
ing (Figure 1). Nevertheless, the image inversion procedure allows for partly counterbalancing this bias by
boosting the amplitude of the reconstructed SO2 flux, which therefore attenuates SO2 cloud mass loading
underestimation, in order to achieve a better fit to satellite retrievals.

Another advantage of the multiple-image inversion procedure is that it is robust against gaps in satellite
retrievals, which often occur due to interruptions in satellite data transmission (as illustrated in Figure 2a2)
or because of the presence of thick meteorological clouds absorbing infrared radiation and masking any
underlying SO2. Whereas such data gaps inevitably lead to a (potentially significant) underestimation of
emission rates with the mass-burden method, their impact is mitigated using the multiple-image inversion
procedure which incorporates redundant observations of the same parcel of SO2 at different ages, in cloudy
but also in noncloudy scenes.

Emission height impacts the volcanic cloud trajectory but also SO2 lifetime. When little wind shear is
recorded throughout the full plume, as during the May 2010 Eyjafjallajökull eruption, SO2 cloud dispersal
simulations are weakly dependent on the uncertainty on emission height [Boichu et al., 2013; Flemming
and Inness, 2013]. However, in case of significant wind shear, assuming an inaccurate plume top height may
lead to dramatic errors on SO2 cloud dispersal forecasts. Fortunately, in such cases, emission height can be
estimated from back trajectory analysis [Eckhardt et al., 2008; Kristiansen et al., 2010; Hughes et al., 2012].
Introducing the emission altitude as an additional source parameter to reconstruct in our inverse modeling
scheme would be straightforward. However, this would lead to a significant increase of the computational
time for two reasons. First, a supplementary degree of freedom has to be introduced in the inversion pro-
cedure, thereby increasing the number of linear equations involved in the inverse problem. Moreover, a
refinement of the vertical grid spacing in the chemistry-transport model would be required to fully capture
the vertical dynamics of the plume.

Applied to SO2 volcanic clouds, the assimilation scheme presented here could be extended to the moni-
toring of ash-rich clouds. This low-cost procedure, which strengthens feedback between observations and
model, could be automated for operational application, so as to provide better-resolved forecasts of volcanic
cloud dispersal.
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