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Université Montpellier 2, F-34095 Montpellier, France
2NHETC and Department of Physics and Astronomy,

Rutgers University, Piscataway, NJ 08855-0849, USA
3Department of Mathematics, University of Texas at Austin, Austin, TX 78712-1202, USA

4CERN Dep PH-TH, 1211 Geneva 23, Switzerland

on leave from CNRS, UMR 7589, LPTHE, F-75005, Paris, France

and Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris, France

In theories with N = 2 supersymmetry on R
3,1, BPS bound states can decay across walls of marginal

stability in the space of Coulomb branch parameters, leading to discontinuities in the BPS indices
Ω(γ, u). We consider a supersymmetric index I which receives contributions from 1/2-BPS states,
generalizing the familiar Witten index Tr (−1)F e−βH . We expect I to be smooth away from loci
where massless particles appear, thanks to contributions from the continuum of multi-particle states.
Taking inspiration from a similar phenomenon in the hypermultiplet moduli space of N = 2 string
vacua, we conjecture a formula expressing I in terms of the BPS indices Ω(γ, u), which is continuous
across the walls and exhibits the expected contributions from single particle states at large β. This
gives a universal prediction for the contributions of multi-particle states to the index I. This index is
naturally a function on the moduli space after reduction on a circle, closely related to the canonical
hyperkähler metric and hyperholomorphic connection on this space.

It has been clear since the work of Seiberg and Wit-
ten [1] that extended supersymmetry gives enough control
over four-dimensional quantum field theories to produce
exact results on the dynamics of the theories, even when
these theories are strongly interacting. Remarkably, such
results are deeply related to some of the most interest-
ing questions in the mathematics of algebraic geometry
and differential geometry. As a significant example, the
moduli space of a four-dimensional theory with N = 2
supersymmetry on a circle is a hyperkähler manifold (a
special class of manifolds satisfying Einstein’s equations),
whose metric encodes both instanton corrections to gauge
couplings and the spectrum of BPS states in the four-
dimensional theory [2]. In this Letter, we reinforce this
connection, and construct a canonical function on the
afore-mentioned moduli space, which on the one hand gen-
erates a solution to the self-dual Yang-Mills equations on
this manifold, and on the other hand, purportedly encodes
interactions of BPS states in four dimensions.

BPS INDICES AND WITTEN INDEX

In four-dimensional field theories on R3,1 with N = 2
supersymmetry, the spectrum of BPS states in general
strongly depends on the value of the Coulomb branch pa-
rameters. Part of this dependence can be removed by
considering the BPS index

Ω(γ, u) = − 1
2 TrH1(γ,u)(−1)2J3(2J3)

2, (1)

where H1(γ, u) is the Hilbert space of one-particle states
with electromagnetic charge γ ∈ Γ in the Coulomb vac-
uum u, J3 is a component of the rotation group along a
fixed axis, and (−1)2J3 is the fermionic parity by virtue of

the spin statistics theorem. The BPS index Ω(γ, u), be-
ing sensitive only to short multiplets saturating the BPS
bound [3], is a locally constant, integer valued function of
u, but it is discontinuous across certain walls in moduli
space, where some of the BPS bound states with charge
γ decay into multi-particle BPS states [1, 4]. The jump
of Ω(γ, u) across the walls is governed by a universal wall-
crossing formula [5], which can be derived by quantizing
the configurational degrees of freedom of multi-centered
BPS states near the wall [6–8] (see e.g. [9] for a review).
The present work addresses another apparently pro-

tected quantity, the Witten index

I(β, u, C) = − 1
2 TrH(u)(−1)2J3(2J3)

2σ e−βH−2πi〈γ,C〉,
(2)

where H(u) is the full Hilbert space of the four-
dimensional theory on R3. Here, β is the inverse temper-
ature, conjugate to the Hamiltonian H , C are chemical
potentials conjugate to the electromagnetic charge γ, and
σ is an operator on H(u) acting by a sign σγ in the sector

with charge γ, such that σγσγ′ = (−1)〈γ,γ
′〉σγ+γ′ , where

〈γ, γ′〉 is the usual Dirac-Schwinger-Zwanziger product —
this sign is crucial in ensuring the consistency of self-dual
field theories [10–14]. For simplicity, we restrict to the-
ories without flavor charges. The use of the canonical
ensemble with respect to the electromagnetic charges is
not essential, but facilitates the geometric interpretation
of the index.
Most importantly, unlike the well-studied case of the

index on S3, the spectrum of the Hamiltonian on R3 is
gapless, due to massless gauge bosons and their super-
partners, and continuous, as it includes all multi-particle
states made out of the discrete states in

⊕
γ∈ΓH1(γ, u).

The contribution of the point spectrum to the index (2)
is controlled by the BPS indices Ω(γ, u), and is therefore

http://arxiv.org/abs/1406.2360v2
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discontinuous across walls of marginal stability. Multi-
particle states, on the other hand, can also contribute de-
spite the fact that they do not saturate the BPS bound,
due to a possible spectral asymmetry between bosonic and
fermionic states [15]. Our main assumption is that the
Witten index (2) is continuous across walls of marginal
stability, as a result of cancellations between discontinu-
ities from single and multi-particle state contributions.
This assumption is physically reasonable, since the path
integral defining (2) suffers no phase transition across the
wall. Under this assumption, we propose a formula for
expressing (2) in terms of the BPS indices Ω(γ, u).

Our assumption is further supported by analogy with
the case of framed BPS indices associated to line defects
in N = 2 theories of class S. These indices are defined by
a formula almost identical to (2) (without the insertion
of (2J3)

2), and are known to be smooth across BPS-walls
[16]. The Witten index (2) can be viewed as the extension
of the framed index to the case of a trivial line defect.

Another class of examples where a Witten-type index
is known to be a smooth function of the moduli arises in
N = 2 supersymmetric massive theories in 1+1 dimen-
sions: the BPS indices Ωab, which count single-particle
kinks interpolating between pairs ab of supersymmetric
vacua, exhibit similar wall-crossing phenomena as in 3+1
dimensions [17], while the CFIV index Tr ab(−1)FFe−βH

is continuous across the walls, as a result of cancellations
between single-particle and multi-particle contributions
[18][44].

Yet another way to support our assumption is the gen-
eral expectation that the Witten index controls quantum
corrections to BPS-saturated couplings in the low-energy
effective action. In the case of four-dimensional N = 2
theories, an appropriate coupling is the metric on the
moduli space of the theory reduced on a spatial circle
of radius R. In 2+1 dimensions, Abelian gauge fields
can be dualized into scalar fields, and the dynamics on
the Coulomb branch can be formulated as a non-linear
sigma model. Its target space M3(R) is a torus fibration
over the Coulomb branch moduli spaceM4 in 3+1 dimen-
sions, with the torus fiber parametrizing the holonomies
C of the electromagnetic gauge fields around the circle
[19]. Supersymmetry requires the metric on M3(R) to
be hyperkähler (HK). In the limit R → ∞ it is obtained
from the special Kähler metric on M4 via the so-called
‘rigid c-map’ procedure [20]. For finite radius, however,
the metric on M3(R) receives instanton corrections of or-
der e−R from BPS states in 3+1 dimensions, whose Eu-
clideanized worldline winds around the circle [2, 19] (a
supersymmetric version of a mechanism first envisaged in
[21]). Although corrections to the metric components in-
clude an infinite series of multi-instanton corrections, they
are entirely controlled by the BPS indices Ω(γ, u) count-
ing single-particle states. Furthermore, it is manifest from
the twistorial construction of M3(R) [2] that the quan-
tum corrected metric is regular across walls of marginal
stability, with multi-instanton contributions on one side
of the wall replacing the one-instanton correction on the

other side (alternatively, the smoothness of the metric on
M3(R) provides a physical rationale for the wall-crossing
formulae of [5]).

Since quantum corrections to the moduli space metric
in theories with 8 supercharges are generally saturated
by 1/2-BPS contributions, it is natural to expect a con-
nection between the metric on M3(R) and the Witten
index I(β, u, C) for β = 2πR. The goal of this paper
is to construct a natural function on the family of spaces
M3(R), continuous across the walls, which reproduces the
expected contributions of single-particle states to the Wit-
ten index in the limit R → ∞. We conjecture that these
two functions are equal, which allows us to predict the
contributions of the continuum of multi-particle states to
I(β, u, C).
The clue for our construction comes from an analogous

problem in superstring theory, namely the vector multi-
plet moduli space M̃3 in type IIA/B string vacua of the
form R3 × S1(R)×Y where Y is a Calabi-Yau threefold.
After T-duality on the circle and its decompactification,
the same moduli space describes the hypermultiplet sector
of the dual type IIB/A theory on R4×Y [22]. In contrast

to the gauge theory case, M̃3 is a quaternion-Kähler (QK)
manifold, where R appears as one of the coordinates. In
the limit R → ∞, the metric is obtained by the ‘local
c-map’ procedure from the vector multiplet moduli space
M̃4 in type IIA/B on R4×Y [23], whereas for finite radius
it receives O(e−R) corrections from four-dimensional BPS
states winding around the circle (T-dual to D-instantons).
These instanton corrections can be incorporated through
the twistor space construction [24, 25] (see [26, 27] for re-
views). However, unlike the gauge theory set-up, the in-
stanton series is divergent due to the exponential growth
of the BPS indices. Arguably, this is resolved by the ex-
istence of further gravitational (or NS5-brane) instanton

corrections of order e−R2

[28]. In the sector with zero
NUT charge, which is insensitive to these additional in-
stantons, the twistorial construction of [24, 25] is formally
isomorphic to the gauge-theoretic one [2], specialized to
the case of theories with a non-anomalous U(1)R sym-
metry, described by a homogeneous prepotential F (X) of
degree 2. This isomorphism was shown to be a particular
instance of a general correspondence between QK metrics
with quaternionic U(1) action and HK metrics with U(1)
isometry rotating the complex structures [29–31] (the cor-
respondence proceeds by lifting the U(1) action on the
QK manifold to the Swann bundle and then taking the
HK quotient). Through this correspondence, the family
of HK metrics M3(R) inherits a canonical function, the
moment map of the U(1)R action, which is smooth as long
as the metric on M3(R) is. On the QK side it appears
as the ‘contact potential’, which relates the O(2)-twisted
canonical one-form to the holomorphic contact one-form
[24, 32]. As we shall see, a ‘generalized contact potential’
can be defined even when the prepotential F is not ho-
mogeneous. Geometrically, it can be understood as the
ratio of two Hermitian metrics on the canonical line bun-
dle constructed in [33].
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A FAMILY OF SMOOTH FUNCTIONS ON M3(R)

To define our candidate for the Witten index I, let us
first recall the twistorial construction of the HK metric
on M3(R) [2] (see [34] for a review). The twistor space
Z = Pt×M3(R) carries a family of functions {Xγ(t)}γ∈Γ,
holomorphic in complex structure J(t), satisfying the in-
tegral equations [45]

Xγ

X sf
γ

= exp


∑

γ′

Ω(γ′)

4πi
〈γ, γ′〉

∫

ℓγ′

dt′

t′
t+ t′

t− t′
log (1−Xγ′(t′))


 ,

(3)
where ℓγ′ are the BPS rays {t′ ∈ C× : Zγ′/t′ ∈ iR−} and
X sf

γ provide the boundary conditions at R→ ∞,

X sf
γ = σγ e

−πiR(t−1Zγ−tZ̄γ)−2πi〈γ,C〉. (4)

Here Zγ = 〈γ,X〉 is the central charge and X = (XΛ, FΛ)
is the holomorphic symplectic section on the special
Kähler manifold M4 with FΛ = ∂XΛF in special coor-
dinates. In the limit R → ∞, the system (3) can be
solved iteratively, generating a sum of products of iter-
ated integrals of X sf

γ interpreted as multi-instanton con-
tributions. Given such a solution, the triplet of Kähler
forms on M3(R), which define the metric, is read off from
the O(2)-twisted holomorphic symplectic form on Z,

ω = it−1ω+ + ω3 + itω− =
ǫab

8π2

dXγa

Xγa

∧ dXγb

Xγb

, (5)

where γa is a basis of Γ, and ǫab is the inverse of 〈γa, γb〉.
With these notations in place, fix any smooth function

Fγ(t, u, C) on Γ×Z, linear in γ and define

Φ(R, u,C) =
∑

γ

Ω(γ)

∫

ℓγ

dt

t
Fγ log (1−Xγ) . (6)

We claim that Φ is a smooth function onM3(R), provided
the BPS indices Ω(γ) jump across walls of marginal sta-
bility according to the standard wall-crossing formula [5].
Indeed, on a wall W (γ1, γ2), where the central charges
Zγ1 , Zγ2 associated to two primitive charge vectors be-
come aligned in the complex plane, the BPS rays ℓmγ1+nγ2

with m,n ≥ 0 all coalesce into one ray ℓ, across which the
potential discontinuity is given by

∆Φ =

∫

ℓ

dt

t

∑

γ

Fγ

[
Ω+(γ) log

(
1−X+

γ

)

−Ω−(γ) log
(
1−X−

γ

)]
,

(7)

where Ω±(γ) and X±
γ are the BPS indices and solutions of

the corresponding equations (3) on either side of the wall.
Now, recall that the semi-classical limit of the motivic
version of the wall-crossing formula implies the functional
identity [30]

∑

γ

Ω+(γ)Lσγ
(X+

γ ) =
∑

γ

Ω−(γ)Lσγ
(X−

γ ) (8)

where Lε(z) is a variant of the Rogers dilogarithm,

Lε(z) ≡ Li2(z) +
1

2
log(ε−1z) log(1− z). (9)

The invariance of (8) under monodromies Mγ : Xγ′ 7→
e2πi〈γ,γ

′〉Xγ′ leads to the Γ-valued identity

∑

γ

γ
[
Ω+(γ) log

(
1−X+

γ

)
− Ω−(γ) log

(
1−X−

γ

)]
= 0.

(10)
The vanishing of the discontinuity (7) then follows from
(10) and from the linearity of Fγ with respect to γ.

A CANDIDATE FOR THE WITTEN INDEX

Having constructed a family of smooth functions on
M3(R), we now aim for one that may plausibly be identi-
fied with the Witten index (2). For HK manifolds M3(R)

related to QK manifolds M̃3 by the QK/HK correspon-

dence, a natural candidate is the contact potential on M̃3

[24, 32], which translates on the HK side into

I =
R

16iπ2

∑

γ

Ω(γ)

∫

ℓγ

dt

t

(
t−1Zγ − tZ̄γ

)
log (1−Xγ(t)) .

(11)
This function is a member of the family (6) with Fγ(t) ∝
t−1 Zγ − tZ̄γ , so it is smooth across walls of marginal
stability. Its reality follows from the reality property

Xγ(−1/t̄) = X−γ(t) and the CPT relation Ω(−γ) = Ω(γ).

In order to assess whether (11) qualifies to represent the
Witten index, let us compute the formal multi-instanton
expansion of I, by substituting the iterated solution of (3)

into (11). Up to second order, I =
∑
γ
I(1)
γ +

∑
γ,γ′

I(2)
γ,γ′ + . . .

with

I(1)
γ =

R

4π2
σγ Ω(γ) |Zγ |K1(2πR|Zγ |) e−2πi〈γ,C〉,

I(2)
γ,γ′ = − R

64π3
Ω(γ)Ω(γ′) 〈γ, γ′〉

∫

ℓγ

dt

t

∫

ℓ′γ

dt′

t′
t+ t′

t− t′

×
(
t−1Zγ − tZ̄γ

)
X sf

γ (t)X sf
γ′ (t′) , (12)

where Ω(γ) =
∑

d|γ
1
d2Ω(γ/d) denotes the rational in-

dex. Remarkably, for primitive charge vector γ the one-

instanton contribution I(1)
γ agrees with the contribution

of a single-particle, relativistic BPS state of charge γ and
mass M = |Zγ | to the Witten index (2). To see this,
we use a Schwinger time parametrization to linearize the
relativistic Hamiltonian H =

√
−∆+M2, and introduce

a non-zero chemical potential θ conjugate to J3 and peri-
odic boundary conditions ψ(z) = ψ(z+L) along the z axis,
with L ≫ 1/M , to regulate infrared divergences. Denot-
ing by χspin(θ) the SU(2) character for the spin degrees
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of freedom, we have

Tr e−2πRH+iθJ3 = R

∫ ∞

0

dt

t3/2
Tr e−πR2

t
−π(−∆+M2)t+iθJ3

= R

∫ ∞

0

dt

t3/2
L

2π
√
t

χspin(θ)

4 sin2(θ/2)
e−πR2

t
−πM2t

=
L

2π

χspin(θ)

4 sin2(θ/2)
2MK1(2πMR) . (13)

For a BPS multiplet of spin j, the spin character is

χspin(θ) =

(
2 + 2 cos

θ

2

)
sin

[
(j + 1

2 )θ
]

sin(θ/2)
, (14)

corresponding to a BPS index Ω(γ) = 2∂2θχspin(θ)|θ=2π =
(−1)2j(2j + 1). Comparing with the first line in (12) we
find

I(1)
γ = 2R lim

θ→2π
L→∞

∂2θ

[
sin2(θ/2)

πL
Tr

(
σ e−2πRH+iθJ3−2πi〈γ,C〉

)]
.

(15)
The factor sin2 θ

2/(2πL) can be understood as dividing by
the regularized volume of R3.
Based on this agreement, and smoothness across walls

of marginal stability, we conjecture that (11) in fact com-
putes the Witten index (2), with the specific prescrip-
tion given in (15) for regulating infrared divergences. If

true, this implies that the two-instanton term I(2)
γ,γ′ in (12)

should be identified with the contribution of the contin-
uum of two-particle states, and similarly for higher I(n)’s.

GEOMETRIC NATURE OF I

While the Ansatz (11) was suggested by the QK/HK
correspondence, we now wish to elucidate its nature from
the viewpoint of the HK geometry of M3(R), without as-
suming that the prepotential F (X) is homogeneous. For
this purpose, we need to recall an additional construct on
the HK space M3(R), namely the canonical hyperholo-
morphic line bundle L introduced in [33], generalizing
the one afforded by the QK/HK correspondence in the
homogeneous case [29, 30]. In twistorial terms, L de-
scends from a line bundle LZ on Z determined by the
local holomorphic section Υ̂ = ΥsfΥinst, given in unitary
gauge by

Υsf = e
−iπ

[

R2

4

(

2F−XΛFΛ
t2

+t2(2F̄−X̄ΛF̄Λ)

)

+R
2 〈t−1X−tX̄,C〉

]

,

Υinst = exp

[
1

8π2

∑

γ

Ω(γ)

∫

ℓγ

dt′

t′
t+ t′

t− t′

(
Lσγ

(Xγ(t
′))

−1

2
log

X sf
γ (t)

X sf
γ (t′)

log (1−Xγ(t
′))

)]
. (16)

The line bundle LZ is equipped with a family of connec-
tions, represented by the one-forms

λ̂(t) =
εab

8π2
logXγa

d logXγb
− 1

2πi
d log Υ̂, (17)

whose curvature is given by the holomorphic symplectic
form (5). We define the “generalized contact potential”

as the contraction of λ̂(t) with the vector field κ = t∂t on
Z = Pt ×M generating the C× action on the first factor
and leaving the second factor invariant,

µ̂(t) = −i
(
ικλ̂(t)

)
. (18)

This is a function on Z, meromorphic on each fiber. A
computation shows that, upon adding a suitable “classi-
cal” term,

Itot ≡ I − R2

2
Im (X̄ΛFΛ) (19)

the completed (purported) Witten index Itot is equal to
the constant term in the Laurent expansion of µ̂(t) around
t = 0, or equivalently, t = ∞.
By the twistor correspondence [35], the complex line

bundle LZ on Z descends to a line bundle with a hyper-
holomorphic connection on M3(R). In the same unitary
trivialization as above, it can be represented by the one-
form λ̂(t) + λ̌(t) where

λ̌(t) =
R

8π2

[
2πi ǫab

(
t−1Zγa

− tZ̄γa

)
d logXγb

(20)

+
∑

γ

Ω(γ)

∫

ℓγ

dt′

t′

(Zγ

t′
− t′Z̄γ

) t′∂(0) + t∂̄(0)

t′ − t
log (1−Xγ(t

′))

]

is a (1,0)-form in complex structure J(t), smooth across

BPS rays, such that λ̂(t) + λ̌(t) is independent of t [46].

The curvature F = d(λ̂ + λ̌) is then hyperholomorphic,
i.e. of type (1,1) in any complex structure J(t) [30, 33],
and is given by

F =
i

π
∂(t)∂̄(t)Re log Υ̂. (21)

Our second claim is that the constant term λ̌0 in the
Laurent expansion of λ̌(t) around t = 0 (or equivalently
t = ∞) satisfies

λ̌0 = i
(
∂(0) − ∂̄(0)

)
Itot. (22)

This implies that the completed Witten index determines
the difference between the hyperholomorphic curvature F

and the Kähler form for the instanton corrected HKmetric
on M3(R) in complex structure J(0) via

ω3 − F =2i∂(0)∂̄(0)Itot. (23)

This equation generalizes the well-known statement in the
homogeneous case that the moment map µ of the U(1)R
action with respect to ω3 (which coincides with the con-
tact potential on the QK side) is such that ω3−2i∂(0)∂̄(0)µ
is a hyperholomorphic two-form [29, 31]. One way to ex-
press (23) geometrically is to say that Itot is equal to the
logarithm of the ratio of two different Hermitian metrics
on the line bundle LZ , whose curvatures are equal to the
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Kähler form ω3 and the hyperholomorphic curvature F ,
respectively.
Another interesting consequence of (23) is that Itot is

a quasi-harmonic function on M3(R),

∆Itot = −4r, (24)

where ∆ is the Laplace-Beltrami operator for the HK met-
ric on M3(R) and the right-hand side is minus the real
dimension of M3(R). The condition (24) is reminiscent
of the second order differential equations which typically
constrain BPS saturated amplitudes.
In the Appendix we show that the geometrical objects

introduced in this section can be defined for a general class
of HK manifolds, and obtain a generalization of Eq. (23)
valid in any complex structure J(t).

DISCUSSION

In this article we conjectured a formula (11) for the
generalized Witten index (2) in four-dimensional N = 2
gauge theories. The formula is manifestly smooth across
walls of marginal stability, and correctly reproduces the
expected BPS bound states contributions. The evidence
for this conjecture is admittedly weak, since within the
class (6) of smooth functions on the Coulomb branch
M3(R) in three dimensions, one could easily find other
functions which would differ only at higher order in the
multi-particle expansion. Our proposal however is distin-
guished by the fact that a completed version (19) of I
is related to the Kähler form and hyperholomorphic cur-
vature on M3(R) via (23), in accordance with the gen-
eral slogan that corrections to the moduli space metric
in theories with 8 supercharges are saturated by 1/2-BPS
contributions. It would be interesting to derive the “clas-
sical term” in (19) from the contribution of massless gauge
bosons and supersymmetric partners, and extend our con-
struction to gauge theories with massive flavors [47]. We
note that the function I has already appeared in the con-
text of the analogy of the system (3) with TBA equations
[2], where it is identified with the free energy of the cor-
responding integrable system [36], and in the context of
minimal surfaces in AdS5 [37, 38].
If correct, our conjecture predicts that multi-particle

state contributions to the Witten index are universal func-
tions of the BPS indices Ω(γ) associated to the con-
stituents. The predicted contribution of the continuum
of two-particle states can be found in (12), while higher
orders can be easily obtained by combining (11) with the
iterated solution to the TBA-like system (3). It is a chal-
lenge to check these predictions from a direct computa-
tion of the difference of densities of bosonic and fermionic
states of a system of n dyons. While the result near a wall
of marginal stability can actually be deduced by analyz-
ing the non-relativistic electron-monopole system [39], the
result (12) should hold throughout moduli space, where
the constituents are relativistic.
Note also that our conjecture naturally extends to the

case of N = 2 string vacua, where the formula (11) com-

putes instanton corrections to the contact potential on
the QK moduli space M̃3 generated by multi-dyonic BPS
black holes. Therefore, another check would be to repro-
duce the smooth, duality invariant partition function for
two-centered D4-D2-D0 black holes constructed in [40],
extending the arguments in [41] beyond the one-instanton
level.

As we have mentioned, the generalized Witten index (2)
may be viewed as the analog of the framed BPS index for
a trivial line defect. One possible way to derive (2) would
then be to study the fusion of two line defects whose OPE
contain the trivial line defect. This analogy also suggests
the existence of a refined Witten index, which would arise
in the fusion of framed protected spin characters. It is
natural to conjecture that this refined index might be re-
lated to the CFIV index of the two-dimensional theory
obtained by placing the four-dimensional theory on an Ω-
background with ǫ1 6= 0, ǫ2 = 0 [48].

Finally, our conjecture – if true – could reveal interest-
ing and nontrivial information on BPS spectra which is
not easily accessible by other means. For example, con-
sider a theory of class S where the ultraviolet curve C is
a compact Riemann surface with negative curvature. In
this case Itot is just the moment map for the natural U(1)
action on Hitchin data and hence proportional to the L2

norm-square of the Higgs field [31]. The expression (11)
is highly nontrivial already in the A1 case. In this case
one may be able to give a systematic large R expansion of
the norm-square of the Higgs field by solving the classical
sinh-Gordon theory on C. Using the parametrization of
[42, Eq. (13.14)], it is easy to show that, on a real slice of
moduli space one needs to expand

Itot =
iR2

4

∫

C

λλ̄ cosh(2h) (25)

at large R for solutions to the sinh-Gordon equation

∂∂̄h− 2R2λλ̄ sinh(2h) = 0 (26)

with boundary condition h ∼ − 1
2 log |z − za|+ · · · at the

first order zeros z = za of the quadratic differential λ
2. We

hope to return to this problem in a future publication.
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APPENDIX

In this section we elaborate on the geometric origin of
the function Itot and establish (23) as a special case of
a more general formula derived from the twistorial con-
struction of HK manifolds developed in [43].
For a HK manifold M, let us choose an atlas ∪Ui cov-

ering the twistor space Z = Pt×M and a set of Darboux

coordinate systems Ξ
[i]
a = (ξΛ[i], ξ̃

[i]
Λ ), Λ = 1 . . . n, regular

everywhere on Ui except for ξΛ[+] and ξΛ[−], which are al-
lowed to have simple poles at two special points t = 0

and t = ∞. The real structure is assumed to map Ξ
[i]
a (t)

to Ξ
[̄ı]
a (−1/t̄), where Uı̄ is the patch opposite to Ui under

the antipodal map. The holomorphic symplectic structure
on Z is specified by a set of local holomorphic functions
H [ij](ξ[i], ξ̃

[j], t) which generate symplectomorphisms on
overlaps Ui ∩ Uj of two patches,

ξΛ[j] = ξΛ[i] − ∂
ξ̃
[j]
Λ

H [ij], ξ̃
[j]
Λ = ξ̃

[i]
Λ + ∂ξΛ

[i]
H [ij], (27)

subject to the obvious reality and cocycle conditions
on triple overlaps Ui ∩ Uj ∩ Uk. The HK manifold M
parametrizes the space of solutions Ξ

[i]
a (t) to the gluing

conditions (27). Substituting Ξ
[i]
a (t) into ω[i] = dξ̃

[i]
Λ ∧dξΛ[i]

and equating with (5) gives access to the triplet of Kähler
forms, hence to the HK metric.
The set of transition functions H [ij] naturally defines a

holomorphic affine bundle LZ onZ, whose sections satisfy
the following gluing conditions

α[j] = α[i] +H [ij] − ξΛ[i]∂ξΛ[i]
H [ij]. (28)

The consistency of (28) on triple overlaps is ensured by the
cocycle condition on H [ij]. The affine bundle LZ carries
a connection which gives rise to a holomorphic one-form

λ[i] ≡ −dα[i] − ξΛ[i]dξ̃
[i]
Λ . (29)

We use it to define the “generalized contact potential” as
in (18)

µ[i](t) ≡ −i
(
ικλ

[i]
)
. (30)

Using the system of integral equations equivalent to the
gluing conditions (27), (28) (see [26, Eq.(2,11)]), one ob-
tains [49]

µ[i](t) =
1

4π

∑

j

∮

Cj

dt′

t′

[(
t′−1Y Λ − t′Ȳ Λ

)
∂ξΛH

[ij]

+
t′ + t

t′ − t
t′∂t′H

[ij]

]
,

(31)

where Cj surround the patches and Y Λ (Ȳ Λ) is the residue
of ξΛ[±] at t = 0 (∞). Moreover, using again the integral

expression for α[i], one can prove that

K [i](t) = 2Reµ[i](t)− 2
1− |t|2
1 + |t|2 Imα[i] (32)

provides a Kähler potential for the HK metric in complex
structure J(t). In the presence of a U(1)R isometric ac-
tion, the transition functions H [ij] are independent of t,
so the last term in (31) disappears and µ[i] becomes in-
dependent of t as well (and hence on the patch index i).
Under the QK/HK correspondence, µ is identified with
the contact potential on the dual QK manifold [30].
Let us now explain the relation between this construc-

tion and the one given in the main text as well as why
(32) generalizes (23) to arbitrary complex structure. For
this purpose, we need to specify the atlas and the transi-
tions functions H [ij] relevant for the HK manifold M3(R).
The atlas consists of the patches U± around the north and
south poles, and the patches Uγ lying in between two con-
secutive BPS rays, the one on the right being ℓγ (see [26,
Fig. 4.2]). Then we take

H [+γ] =
R2

4t2
F

(
2tξ

R

)
, H [−γ] =

(Rt)2

4
F̄

(
− 2ξ

tR

)
(33)

as transition functions from U± to Uγ , and

Hγ =Gγ(Xγ)−
1

2
pΛqΛ[G

′
γ(Xγ)]

2,

Gγ(X ) =
Ω(γ)

(2π)2
Li2(X ),

(34)

for transition functions across ℓγ . Here γ = (pΛ, qΛ) and
Xγ = σγ e

−2πi〈γ,Ξ〉. The generalized contact potential (31)
is then given in any patch Uγ by

µ[γ](t) = Itot+
R2

4i

(
t−2f − t2f̄

)
+
R

2i

(
t−1fΛv

Λ + tf̄Λv̄
Λ
)
,

(35)
where f = 2F − XΛFΛ and vΛ is the constant term in
the Laurent expansion of ξΛ[+]. Thus, like µ̂ in (18), the

constant term in the Laurent expansion µ[γ] generates the
(purported, completed) Witten index.
To understand the relation between µ[γ] and µ̂, and

between α[γ] and Υ̂, let us introduce a variant of α,

α̂[i] = α[i] +
1

2

∑

j

∮

Cj

dt′

2πit′
t′ + t

t′ − t

1− t′2

1 + t′2
t′∂t′H

[ij], (36)

which satisfies (compare with (28))

α̂[j] = α̂[i] +H [ij] − ξΛ[i]∂ξΛ[i]
H [ij] +

t−1 − t

t−1 + t
t∂tH

[ij]. (37)

Similarly we define λ̂[i] as in (29) with α[i] → α̂[i]. One can

check that Υ̂ in (16) and λ̂ in (17) are related to hatted
quantities in the patches Uγ via

Υ̂ = e
πi

(

2α̂[γ]+ξΛ[γ]ξ̃
[γ]
Λ

)

, λ̂ = λ̂[γ]. (38)

In particular, the relation λ[γ] − λ̂[γ] = d
(
α̂[γ] − α[γ]

)
ex-

plains why the constant terms in µ[γ] and µ̂ coincide. It
is worth noting that for a homogeneous prepotential, α̂[i]

coincides with α[i], and the construction of [30] is recov-
ered. If F is not homogeneous, the unhatted counterpart
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of (38) formally produces another hyperholomorphic cur-
vature on the universal cover of M3(R), albeit one which
is inconsistent with symplectic invariance and periodicity
under integral shifts of C.
Finally, let us derive (23) from the general property

(32). In the patch around the north pole, one obtains

µ[+](0) = Itot +
R2

4i
X̄ΛfΛ +

1

2i
FΛΣΞX

ΛvΣvΞ. (39)

α[+](0) = − i

2π
lim
t→0

[
log Υ̂ + hol.

]
(40)

+
i

2
Im

[
R2f +

R2

2
X̄ΛfΛ + FΛΣΞX

ΛvΣvΞ
]
,

where hol. denotes a holomorphic function needed to can-
cel the pole of log Υ̂ at t = 0. Substituting (39) and (40)
into (32) one finds

K(0) = 2 Itot +
1

π
Re lim

t→0

[
log Υ̂ + hol.

]
−R2 Im f. (41)

Eq. (32) then follows by applying the operator i∂(0)∂̄(0)

and taking into account (21).
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