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A particular integral equation is considered for magnetostatic problems. A comparison of the adaptive cross approximation and
the hybrid cross approximation, and the fast multipole method is done. The relevancy and the versatility of the HCA is assessed
on magnetostatic examples.
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I. INTRODUCTION

INACTIVE regions, like the air, have to be taken into
account in modeling electromagnetic devices. The integral

equations enable us to avoid the discretization of these regions,
but keeping the possibility to compute the magnetic field at any
point in these inactive regions. However an integral equation
leads to a dense matrix G ∈ Rn×n of the form

Gij =

∫
Ω

∫
Ω

ϕi(x)g(x,y)ψj(y)dxdy (1)

with n the number of Degrees Of Freedom (DOF), ϕi and ψj

respectively test and trial functions and g a kernel function.
Matrix G a priori requires a storage and a matrix-vector
product complexity proportional to n2.

To avoid this n2 complexity, solutions have been proposed
for integral equations. Most of these solutions approximate the
kernel g by a degenerate kernel g̃. The multipole method is
such a solution but requiring an explicit expansion of g. This
expansion is known for the kernel considered here, but we
prefer an algebraic approach that adaptively controls the error.

We have retained the H-matrix format that enables the
compression of the matrix G block-wise: the blocks of G that
correspond to distant interactions are approximated by low-
rank matrices. This method constrains the storage and com-
plexity to scale as n log n, and permits in particular to compute
efficient preconditioners. The Adaptive Cross Approximation
(ACA) [1] is the most classical technique to build the low-rank
approximations. Many articles show great compression results
for classical kernels, as the Single Layer Potential (SLP) or
the Double Layer Potential (DLP). However some limitations
of the ACA are pointed out with simple examples (see [2]
for instance): it is shown that we do not have a reliable error
estimation for geometries with edges and kernels that contain
a differential operator. The solution we promote instead is the
Hybrid Cross Approximation (HCA) [3].

The purpose of this paper is to compare the well-known
ACA to the HCA on a simple example, and to show how HCA
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can be straightforwardly implemented on a more complicated
kernel. Section II introduces the clustering method and the
two cross approximation techniques. Then, in Section III
a comparison between the HCA and the Multi-Level Fast
Multipole Method (MLFMM) is performed for the solution
of an electrostatic problem on a thick sphere. A magnetostatic
formulation is presented in Section IV and the ACA and HCA
are considered for tackling this formulation: first on a spherical
shell and finally on a more complicated geometry.

II. H-MATRIX

The H-matrix representation is a data-sparse matrix format
that enables the memory storage and the complexity of the
arithmetic operations, as the matrix-vector product, to scale
as n log(n). Thus, it allows solving large-scale problems
efficiently using integral equation methods.

A. Clustering and low-rank approximation

TheH-matrices, like the FMM, use a clustering technique to
define which DOF can be grouped in a cluster. This clustering
is mainly obtained by a recursive bisection of a bounding box
containing the computational domain; it then leads to define a
binary tree, see Fig. 1a. The FMM are based on an oct-tree,
thus the clustering is different.

Once the hierarchical clustering is performed, we compress
the interactions between distant clusters of DOF; see green
blocks in Fig. 1b. Let us denote by t̂ and ŝ the set of DOF
indices in two such distant clusters t and s. The compression
can be done by replacing the kernel g by a degenerate g̃ or
by approximating directly G|t̂×ŝ, the submatrix of G for the
indices in t̂× ŝ, by a low-rank matrix with a prescribed error
ε. Both approaches lead to a low-rank approximation

G|t̂×ŝ ≈ AB
T (2)

with G|t̂×ŝ ∈ Rm×n, A ∈ Rm×k, B ∈ Rn×k and k the rank of
the approximation. This format requires a storage of k(m+n)
instead of mn and the complexity of the matrix-vector product
is proportional to k(m+n) instead of mn. The rank k weakly
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Fig. 1. (a) Domain bisection and corresponding binary tree. (b) Two levels
of the matrix partition induced. Green and red blocks are “far” and “near”
interaction. Clusters in interaction are identified in each block.

depends on ε usually as k ≈ − log ε, thus k � m,n, and
storage and complexity of arithmetic operations are reduced
significantly.

B. Adaptive cross approximation

The ACA only uses the knowledge of some matrix entries
to build a low-rank approximation of a matrix M . Briefly,
the ACA is an iterative method where at each iteration an
algorithm chooses a “well-suited” couple of pivot indices
(t∗, s∗) and computes the row t∗ and the column s∗ of M
in order to generate a rank-one update which is added to the
previous approximation. At the end of each iteration, the error
is estimated and the algorithm is stopped when the required
accuracy is reached. Details can be found in [4].

A problem is that the heuristics of the ACA may fail for
domain with edges and kernels with differential operators [2].
This problem can be avoided using the HCA.

C. Hybrid cross approximation

Let us assume that

g(x,y) = DxDyγ(x,y), ∀(x,y) ∈ Ωt × Ωs (3)

with Dx, Dy two differential operators, Ωt = ∪i∈t̂supp(ϕi)
and Ωs = ∪j∈ŝsupp(ψj), the supports of the distant clusters t
and s and γ a smooth generator function on Ωt×Ωs. The SLP
and DLP can easily be expressed using (3). We also define two
bounding boxes Bt and Bs such that Ωt ⊂ Bt and Ωs ⊂ Bs.

The HCA is an algorithm based on the cross approximation
of the function γ contrary to the ACA where the cross
approximation is applied at the matrix level. For this purpose,
we define a grid of points in Bt (resp. Bs) where γ can
be evaluated. Here, we consider a tensorization of order p
Chebyshev’s interpolation point (xi)

K
i=1 (resp. (yj)

K
j=1) with

K = (p+1)d but other choices could be considered. Then we
perform the ACA on the matrix S whose entries are

Si,j = γ(xi,yj), ∀i, j ∈ {1, . . . ,K} (4)

to find k pivots. The computation cost of this ACA is low,
because the rows and columns of S are easily assembled.

Once the pivots x̃il and ỹjl are chosen (x̃il ⊂ xi), the
functional cross approximation we consider is

γ̃(x,y) =

γ(x, ỹi1)
...

γ(x, ỹik)


T

Γ−1
k

γ(x̃j1 ,y)
...

γ(x̃jk ,y)

 , (5)

where Γk a k×k-matrix whose coefficient (q, l) is γ(x̃iq , ỹjl).
Γ−1
k is not practically used, but the LU-factorization of Γk can

be computed in the ACA subroutine [5]. Thus we replace Γ−1
k

by the solutions of systems with an upper Uk and a lower Lk

triangular matrices.
Finally, the degenerate kernel is

g̃ = DxDyγ̃, (6)

thus the approximation G̃|t̂×ŝ of G|t̂×ŝ is given by

G̃|t̂×ŝ = ABT = (ÃU−1
k )(L−1

k B̃T ), (7)

with Ã ∈ Rm×k and B̃ ∈ Rn×k define as follow

Ãiq =

∫
Ωt

ϕi(x)Dxγ(x, ỹjq )dx, (8)

B̃il =

∫
Ωs

ψj(y)Dyγ(x̃il ,y)dy. (9)

Note that we have to compute two simple integral instead of
a two-fold integral, leading to a lower complexity. It is also
easier to implement compared to the ACA: the ACA needs to
assemble a row/column at each iteration but it is not directly
provided by the usual mesh-element-loop approach.

III. ELECTROSTATIC EXAMPLE

Let us consider an electrostatic equation on a sphere with
a standard Galerkin discretization of the SLP

1

4π

∑
j

(∫
S

∫
S

ϕi(x)ϕj(y)

‖x− y‖
dydx

)
qj

=

∫
S

ϕi(x)V0(x)dx,

(10)

where ϕj are piece-wise constant functions, qj are the charge
density unknowns and V0 a real constant. To compare the
FMM and the H-matrices, in the assembly step we set εACA,
the relative error in Froebenius norm for each block, to 10−4

so that both methods gives an equivalent accuracy. The relative
norm of the residual in the iterative solver GMRes has to be
lower than 10−6. The histogram in Fig. 2 shows the assembly
and solution times for both methods.

We can see that theH-matrix is faster than the FMM, even if
it is slower to be assembled. In return, the FMM’s iterations are
about 10 times slower than the H-matrix’s, because the chosen
FMM variant consists in storing only the near-interactions.
This variant allows us to use little memory as shown in Fig. 3.
Note also that the H-matrix storage (here in kb/DOF) is close
to the theoretical logarithmic complexity.

For these results, we did not use the H-LU preconditioning
[4] of the H-matrices because it is a well-preconditioned
problem. However for a more general case, when we used the
general, efficient and light H-LU preconditioning we conclude
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that the H-matrices are expected to be faster than the FMM
in the solution step. It is especially relevant for problems with
multiple right-hand sides.

IV. MAGNETOSTATIC FORMULATION

A. Formulation

Let us consider the ferromagnetic behavior law

M(x) = χ(x,H)H(x), ∀x ∈ Ω, (11)

with M the magnetization, H the magnetic field, and Ω an
isotropic ferromagnetic material with χ its magnetic suscep-
tibility. We define χ as a constant for the next experiments.
The magnetic field can be written as H = Hred + H0 with
Hred the reduced magnetic field created by the ferromagnetic
material and H0 the magnetic source field created by current
flows.

We consider the following integral equation [6] using the
total scalar potential Φ

Φ(x) +
1

4π

∫
Ω

χ(y,H)
∇Φ(y) · (x− y)

‖x− y‖3
dy = Φ0(x) (12)

with Φ0 the scalar potential deriving from the magnetic field
H0. Using a P1 finite element approximation for Φ and the

Fig. 4. Isovalues of the solution on a Spherical shell.

Galerkin discretization leads to the linear system

([M ] + [G]) Φ = D (13)

with the mass matrix and the right-hand-side vector

Mij =

∫
Ω

ϕi(x)ϕj(x)dx, Di =

∫
Ω

ϕi(x)Φ0(x)dx, (14)

and the volume integral

Gij =
1

4π

∫
Ω

ϕi(x)

∫
Ω

χ∇ϕj(y) · ∇y
1

‖x− y‖
dydx. (15)

Solving (13) permits to compute the magnetic field H in the
air [7]. The mass matrix is a finite element matrix with a sparse
storage, so the limitation here is the dense matrix G.

B. Degenerate expansion

We use the HCA to compress the matrix G. In (15) the

kernel function g(x,y) = ∇y
1

‖x− y‖
enables to identify

γ(x,y) =
1

‖x− y‖
, Dx = Id, Dy = ∇y. (16)

The two single integrals to compute are then∫
Ω

ϕi(x)

‖x− ỹjl‖
dx and

∫
Ω

χ∇ϕj(y) · ∇y
1

‖x̃iq − y‖
dy. (17)

The computational cost of these integrals is proportional to
the number of quadrature points per element instead of the
quadratic cost of the twofold integral, allowing us to have a
lower complexity than the ACA for the same rank.

C. Numerical results

Two cases are considered in this section, the first consists in
solving (13) on a spherical shell meshed with tetrahedra; the
solution is shown in Fig. 4. The second consists of a numerical
study of the ACA and the HCA for the assembly of (15) on
the TEAM Problem 13 geometry [8].

For the first results, we keep the same parameters as for
the electrostatic example and we can compare the results with
those obtained with the full-storage. We can see in Table I
that the HCA is faster than the ACA to assemble an H-
matrix, but unfortunately the HCA requires more memory
compared to the ACA. These results match to these found in
the literature, which also treat spherical geometries for other
integral equations.

These memory requirements can be reduced using two
algebraic re-compression techniques, the SVD of the low-rank
matrices and the Agglomeration. Both methods are explicitly
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TABLE I
COMPUTING TIMES, STORAGE AND ERROR WITHOUT AGGLOMERATION.

NbDOF Assembly (s) Solver (s) Storage (kb/DOF) Error

A 3,846 718 0.5 15.4 1.53%
C 12,938 7321 10 24.3 0.85%
A 48,154 56,112 89 37.6 0.37%

H 3,846 278 0.6 18.3 5.23%
C 12,938 2,333 12 29.4 1.33%
A 48,154 18,154 109 44.9 1.42%

(a) (b)

Fig. 5. Example of a H-matrix agglomeration. (a) Initial H-matrix. (b)
Agglomerated H-matrix. The number in the green blocks indicates the rank.

TABLE II
COMPUTING TIMES, STORAGE AND ERROR WITH AGGLOMERATION.

NbDOF Assembly (s) Solver (s) Storage (kB/DOF) Error

A 3,846 952 0.5 7.0 1.66%
C 12,938 9,774 10 10.3 0.27%
A 48,154 74,604 95 14.9 0.45%

H 3,846 287 0.5 7.0 1.63%
C 12,938 2,586 12 10.4 0.54%
A 48,154 18,876 98 14.9 0.72%

described in [4]. These methods do not change the asymptotic
complexity of the assembly step, and they allow us to reduce
the complexity of the arithmetic operations with the matrices.
We do not detail these methods but we can see in Fig. 5 the
simplification of the structure and the reduced storage.

Table II is obtained using the agglomeration after the assem-
bly of the H-matrix. The assembly times have only slightly
increased compared to Table I, but the major improvement is
that both methods have an equivalent and reduced storage.

Finally, we compare the accuracy of both methods (without
using the agglomeration) applied to the TEAM Problem 13
geometry (see Fig. 6), meshed with 29, 362 tetrahedra. For a
matter of ease, the “Error” column is computed comparing
the matrix-vector products ‖Gx − G̃x‖/‖Gx‖, where x is a
random vector. It is not the conventional way to do, but since
we are using an iterative solver this information is relevant for
the solution quality.

The results of the assembly step are presented in Table III,
where we see that the ACA needs an unusually higher storage
than the HCA. However the HCA is less accurate than the
ACA, but still of the same order as εACA. On this realistic
problem, the HCA is more efficient comparing the storage
requirements and the assembly times.

Fig. 6. TEAM Problem 13 geometry.

TABLE III
ASSEMBLY TIME, STORAGE AND ERROR. TEAM PROBLEM 13.

εACA Assembly (s) Storage (kb/DOF) Error

A 1E-02 8,574 12.4 1.950E-3
C 1E-03 11,961 15.5 1.643E-4
A 1E-04 15,690 19.2 1.346E-5

H 1E-02 2,607 10.4 4.070E-2
C 1E-03 2,773 13.9 3.300E-3
A 1E-04 2,857 18.6 8.890E-4

V. CONCLUSION

This paper first demonstrates the efficiency of the H-
matrix to solve an electrostatic problem compared to the
FMM. Thanks to the general, efficient and light H-LU pre-
conditioning, we note that the H-matrices are generally more
efficient for other considered problems. Then we focus on the
construction of the low-rank approximations, and we compare
ACA and HCA considering two cases. The ACA does not fail
for this formulation and the considered examples. Comparing
ACA and HCA, we show that the HCA is faster but requires
a larger storage. Adding an agglomeration step, storage is
equivalent for both methods. At the end the HCA, seems more
efficient and reliable than the ACA for this formulation.
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