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Abstract

Non linear mixed effect models are classical tools to analyze non linear longitudinal data in
many fields such as population Pharmacokinetic. Groups of observations are usually compared
by introducing the group affiliations as binary covariates with a reference group that is stated
among the groups. This approach is relatively limited as it allows only the comparison of the
reference group to the others. In this work, we propose to compare the groups using a penalized
likelihood approach. Groups are described by the same structural model but with parameters that
are group specific. The likelihood is penalized with a fused lasso penalty that induces sparsity
on the differences between groups for both fixed effects and variances of random effects. A
penalized Stochastic Approximation EM algorithm is proposed that is coupled to Alternating
Direction Method Multipliers to solve the maximization step. An extensive simulation study
illustrates the performance of this algorithm when comparing more than two groups. Then the
approach is applied to real data from two pharmacokinetic drug-drug interaction trials.

Key words: Nonlinear mixed effect model, SAEM algorithm, fused lasso, group comparison,
pharmacokinetic

1. Introduction

Non Linear Mixed Effects Models (NLMEMs) are used to model and analyze longitudinal data
in several fields, especially in clinical trials and population Pharmacokinetic (PK). In clinical
research, observations may present a group structure corresponding to the different treatment
modalities. For example, a drug-drug interaction clinical trial between two compounds includes
two groups of observations, patients treated with the molecule of interest and patients treated
with the two compounds. When population PK data have been collected during the trial, PK
parameters are estimated through an NLMEM, and the interaction (existence and mechanism) is
assessed through the variation of the PK parameters across groups.

Statistical tests are classically used to identify significant influence of the group structure on
a (PK) parameter. The group affiliation is included as a categorical covariate and its influence
is studied with maximum likelihood tests [Samson et al., 2007]. Note that the likelihood of
Preprint submitted to Elsevier February 25, 2015



NLMEM being intractable, stochastic versions of the EM algorithm, among other methods, can
be used to estimate the parameters, especially the SAEM algorithm [Delyon et al., 1999, Kuhn
and Lavielle, 2005]. A stepwise procedure combined to a BIC criterion is then used to select
the best model among the collection of models with the group affiliation covariate on each pa-
rameter. A drawback of this approach is that a reference group has first to be stated, and then
only differences with this reference group are considered. When there are more than two groups,
this does not allow to select a model with no difference between two non reference groups. In
order to study the differences between non reference groups, combination of the group covariates
could be used, but their number increases rapidly with the number of groups. Indeed, the num-
ber of between group differences models is equal to (BG)p where BG is the Bell’s number [Bell,
1934] for G groups and p the number of studied parameters. Considering 5 groups and studying
between group differences on 3 parameters leads to 523 possible models.

Nevertheless, the relevance of group differences between all the groups can be directly studied
using a penalized joint modeling approach [Viallon et al., 2014, Gertheiss and Tutz, 2012, Ollier
and Viallon, 2014]. The same structural model is applied to each group with a structural sparsity-
inducing penalty [Bach et al., 2011] that encourages parameters to be similar in each group.
In this work, group parameters are estimated by maximizing the penalized likelihood with a
fused lasso penalty. This penalty was originally designed to penalize differences of coefficients
corresponding to successive features [Tibshirani et al., 2005] and has been generalized to account
for features with a network structure [Höfling et al., 2010].

Sparsity inducing penalties in linear mixed effects models (LMEMs) have been proposed for
selecting fixed effects only [Schelldorfer et al., 2011, Rohart et al., 2014] and both fixed effects
and random effects variances [Bondell et al., 2010]. Note that the joint selection of fixed effects
and random effects variances is complex because the likelihood is not convex with respect to
the variances. The difficulty increases with NLMEM as the likelihood is intractable (contrary
to LMEMs), and only a few papers deal with penalties in NLMEM. Arribas-Gil et al. [2014]
study selection of semi parametric NLMEM using a lasso penalty, the lasso selection step and
the parameter estimation being realized separately. Bertrand and Balding [2013] consider l1
penalized NLMEM for genetic variant selection. They propose a penalized version of the SAEM
algorithm, in which the maximization step corresponds to an l1 penalized weighted least square
problem. The optimal sparsity parameter is set using an asymptotic estimation. The recent
stochastic proximal gradient algorithm [Atchade et al., 2014] could offer an interesting solution
to optimize penalized intractable likelihood but it has not been applied to NLMEMs. Up to our
knowledge, no work investigates the use of a structured penalty in the context of NLMEM.

The objective of this paper is to incorporate the fused lasso penalty in the SAEM algorithm, in
order to jointly estimate NLMEMs on several groups, and detect relevant differences among both
fixed effects and variances of random effects. Penalties are introduced in the maximization step
of the SAEM algorithm. Fixed effects and variances of random effects are penalized through a
sum of absolute differences. The penalized differences correspond to edges of a graph in which
the vertices correspond to the groups. Solving this penalized optimization problem is not trivial
and we suggest to use an Alternating Direction Method of Multipliers (ADMM) [Boyd et al.,
2011]. The direct penalization of the variances yielding to a non convex optimization problem,
we propose to penalize the inverse variance-covariance matrix, assuming the matrix is diagonal.
An ADMM algorithm can be used to solve the penalized optimization problem, its proximal step
being explicit or not, depending on the number of groups. We also consider weighted penalties,
following the ideas of the adaptive Lasso [Zou, 2006]. The selection of the two tuning parameters
introduced in the two penalties is realized using the BIC criterion.
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The paper is organized as follows. Section 2 introduces NLMEM and the SAEM algorithm.
In Section 3 we introduce the fused lasso penalty, the penalized SAEM algorithm and the tuning
parameter selection. In Section 4, the penalized-SAEM algorithm is evaluated on simulated data
with 2 groups or more. Finally, it is applied to real data from a cross over clinical trials studying
drug-drug interaction between dabigatran etexilate and 3 other drugs in Section 5.

2. Joint estimation of multiple non linear mixed effects models

2.1. Group structured NLMEMs

Let yg
i, j be the observation at time tg

i, j ( j ∈ {1, . . . , ng
i }) for the i-th patient (i ∈ {1, . . . ,Ng}) in

the g-th group (g ∈ {1, . . . ,G}). We consider models of the form:

yg
i, j = f (tg

i, j, φ
g
i ) + d(tg

i, j, φ
g
i )εg

i, j

ε
g
i, j ∼ N(0, 1) (iid)

where f and d are two given non linear functions. The function d corresponds to the error model
and is assumed to be d = a f + b with a and b two real constants. Measurement errors εg

i, j are
further assumed to be independent and identically distributed. Individual parameters φg

i for the
i-th subject in group g is a p-dimensional random vector, independent of εg

i, j and assumed to be
decomposable (up to a transformation h) as:

h(φg
i ) = µg + bg

i

bg
i ∼ N(0,Ωg) (iid)

where µg ∈ Rp is the mean parameter vector for the group g and bg
i ∈ R

p the random effects
of the i-th patient. Different transformations h can be used. Here we use the common one
h(x) = log(x), that yields log-normally distributed φg

i . In this work, Ωg is supposed diagonal as
explained in section 3.1.2.

The log-likelihood then takes the form:

LL(θ) = log p(y; θ) = log

 G∑
g=1

∫
p(yg, φg; θg)dφg

 (1)

where p(yg, φg; θg) is the likelihood of the complete data in group g:

log p(yg, φg; θg) = −
∑
i, j

log(d(tg
i, j, φ

g
i )) −

1
2

∑
i, j

yi j − f (tg
i, j, φ

g
i )

d(tg
i, j, φ

g
i )

2

−
Ng

2
log(|Ωg|)

−
1
2

∑
i

(φg
i − µ

g)tΩg−1
(φg

i − µ
g) −

∑
i ng

i + Ng p
2

log(2π)

with θ = (θ1, . . . , θG) and θg = (µg,Ωg, a, b) the parameters to be estimated. Note that the log-
likelihood LL(θ) as defined in Equation (1) has generally no closed form expression because of
the non linearity of f with respect to φ.
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2.2. SAEM algorithm for the joint estimation problem

In this section, we present a standard version of the SAEM algorithm in the context of joint
estimation that will be the base of the penalized version that we introduce later. Here, we do not
account for potential similarities of the parameters across groups.

The SAEM algorithm is a classical tool for parameter estimation of NLMEMs [Delyon et al.,
1999]. It iteratively maximizes the conditional expectation of the complete data log-likelihood.
At iteration k given the current estimates θk−1, the problem reduces to the optimization of the
following criterion:

Qk(θ) =

G∑
g=1

Qk(θg) =

G∑
g=1

E
(

log p(yg, φg; θg) | yg, θ
g
k−1

)
.

As this conditional expectation has no closed form for NLMEMs, it is approximated using a
stochastic approximation scheme. The E-step of the classical EM algorithm is then divided in
two parts, a simulation step where individual parameters are simulated using a Markov Chain
Monte Carlo method (MCMC) and a stochastic approximation step [Kuhn and Lavielle, 2005].
At iteration k of the SAEM algorithm we have:

1. Estimation step (E-step):
(a) Simulation step: draw φ

g
k using an MCMC procedure targeting p(.|yg, θ

g
k−1).

(b) Stochastic approximation step of Qk(θ): update Q̃k(θ) using the following scheme

Q̃g
k(θg) = Q̃g

k−1(θg) + γk(log p(yg, φ
g
k ; θg) − Q̃g

k−1(θg))

where γk is a decreasing sequence of positive numbers. When the complete data like-
lihood belongs to the exponential family, this step simply reduces to the stochastic
approximation of its sufficient statistics sg

1,i,k, sg
2,k and sg

3,k:

sg
1,i,k = sg

1,i,k−1 + γk

 Ng∑
i=1

φ
g
i,k − sg

1,i,k−1


sg

2,k = sg
2,k−1 + γk

 Ng∑
i=1

φ
g
i,kφ

gt

i,k − sg
2,k−1


sg

3,k =


sg

3,k−1 + γk

(∑
i, j

(
yg

i, j − f (tg
i, j, φ

g
i,k)

)2
− sg

3,k−1

)
if b = 0

sg
3,k−1 + γk

(∑
i, j

(
yg

i, j− f (tg
i, j,φ

g
i,k)

d(tg
i, j,φ

g
i,k)

)2
− sg

3,k−1

)
if a = 0

2. Maximisation step (M-step): update of population parameters:

θk = ArgMax
θ

Q̃k(θ).

Within the exponential family, the solution is explicit for µg and Ωg:

µ
g
k =

1
Ng

Ng∑
i=1

sg
1,i,k , Ω

g
k =

1
Ng

sg
2,k −

Ng∑
i=1

µ
g
k sgt

1,i,k −

Ng∑
i=1

sg
1,i,kµ

gt

k

 + µ
g
kµ

gt

k .
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For parameters a and b, they are updated using the whole data set because they are common
to all the groups. An explicit solution exists when a = 0 or b = 0:

a = 0⇒ bk =

√√ ∑G
g=1 sg

3,k∑G
g=1

∑
i ni

b = 0⇒ ak =

√√ ∑G
g=1 sg

3,k∑G
g=1

∑
i ni

.

When a , 0 and b , 0, the maximization problem has to be solved numerically.

Thus, except for a and b, SAEM algorithm for the joint estimation problem is implemented as if
the G groups were analyzed separately.

3. Penalized joint estimation of group structured NLMEM

The previous SAEM algorithm corresponds to parameters estimated within each group. But
groups can be expected to share common characteristics, so that theoretical parameters are ex-
pected to exhibit similarities. Therefore, we introduce a penalty within the SAEM algorithm that
encourages parameters to be equal. We first detail the fused penalties, then the penalized SAEM
algorithm and finally the selection of the two tuning parameters introduced in the penalties.

3.1. Fused lasso penalties for group comparison

The fused lasso penalty encourages parameters to have the same value between two groups.
This is particularly useful when theoretical parameters of (at least some of) the groups are ex-
pected to be similar and/or when the objective of the study is to assess potential differences
between groups. Depending on the context, differences between all the groups or only some
specific differences might be of interest. Likewise, similarity of some parameters does not nec-
essarily hold for all the groups. These differences and similarities of interest can be described
with a graph that links groups together. Two groups are related in the graph if the comparison of
these two groups is of interest, or if parameters are assumed to be similar in these two groups.
Of course, any graph structure can be put forward, but some of them are naturally appealing in
various contexts (see figure 1 with G = 4):

• Clique Graph: no assumptions on the hierarchical structure of the groups are made. All the
possible differences between group parameters are penalized.

• Star Graph: a reference group is stated and only the differences between the reference group
and the others are penalized. This is equivalent to the classical approach based on group
affiliation covariate.

• Chain Graph: when groups can be naturally ordered.

Given a specific graph described by its edge set E, we introduce the penalties for the fixed and
the variance parameters.
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CLIQUE CHAINSTAR

Figure 1: Examples of graphs for G = 4 groups

3.1.1. Fixed parameters
For fixed parameters (µ1, . . . , µG), the fused lasso penalty corresponds to:

PF(µ1, . . . , µG) =
∑

(g1,g2)∈E

‖µg1 − µg2‖1

where ‖x‖1 =
∑

i |xi| is the l1-norm. The fused lasso penalty encourages the fixed parameters to
be the same between two groups connected in the graph.

3.1.2. Variance parameters
Concerning random effect variances, components of the variance covariance matrix should be

penalized. However, the resulting optimization problem is not convex. Some algorithms have
been proposed to solve simple l1 penalty problems [Bien and Tibshirani, 2011, Wang, 2013]
but they are computationally demanding and their extension to the fused penalty context is not
straightforward. However under the assumptions that Ωg is diagonal, a simple alternative consists
in penalizing the inverse variance covariance matrix. Then the penalized optimization problem
becomes convex and can be solved efficiently. This corresponds to the following penalty:

PV (Ω1−1
, . . .ΩG−1

) =
∑

(g1,g2)∈E

‖Ωg−1
1 −Ωg−1

2 ‖1 =

p∑
i=1

∑
(g1,g2)∈E

|Ω
g−1

1
ii −Ω

g−1
2

ii |.

Penalizing differences between Ωg−1
is not equivalent to penalizing differences between Ωg as

|Ω
g−1

1
ii − Ω

g−1
2

ii | , |Ω
g1
ii − Ω

g2
ii |. Some issues could occur when considering parameters with very

different levels of variability: the penalty rapidly discards differences for parameters with low
variance. This issue is mitigated when working with log-normally distributed individual param-
eters, and adaptive weights can further help to prevent such a behavior (see section 4.2).

3.1.3. Matricial formulation and adaptive weights
Weights (π,ν) can be introduced in order to take into account some prior information:

PF(µ1, . . . , µG) =
∑

(g1,g2)∈E

p∑
i=1

π
g1g2
i |µ

g1
i − µ

g2
i |

PV (Ω1−1
, . . .ΩG−1

) =
∑

(g1,g2)∈E

p∑
i=1

ν
g1g2
i |Ω

g−1
1

ii −Ω
g−1

2
ii |.
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These weights can be based on initial maximum likelihood estimates within each group (µ̃g,Ω̃g)
following the idea of the adaptive fused lasso [Viallon et al., 2014]: πg1g2

i = |µ̃
g1
i − µ̃

g2
i |
−α and

ν
g1g2
i = |Ω̃

g−1
1

ii −Ω̃
g−1

2
ii |
−α for some α > 0 (typically α = 1). These weighted penalties are particularly

helpful to compute unpenalized re-estimation of the selected model (section 3.3).
Finally, the weighted penalties with weights π and ν can be written in a matricial form:

PF(µ1, . . . , µG) = ‖π • Pµ‖1

PV (Ω1−1
, . . .ΩG−1

) = ‖ν • Pdiag(Ω−1)‖1

where the matrix P ∈ {−1, 0, 1}|E|×Gp encodes the penalized values of µ = (µ1, . . . , µG)t and
diag(Ω−1) = (diag(Ω1−1

), . . . , diag(ΩG−1
))t and • stands for the Hadamard product.

3.2. Penalized version of SAEM algorithm

The penalized SAEM algorithm consists in iteratively maximizing the penalized stochastic
approximation of the conditional expectation Qk(θ):

Q̃k(θ) − λF PF(µ1, . . . , µG) − λV PV (Ω1−1
, . . .ΩG−1

)

where λF and λV are two tuning parameters that control the penalty strength and that have to be
calibrated. When λF = λV = 0, the estimates correspond to the classical maximum likelihood
estimates. For large enough values, the vector of penalized differences is set to zero (Pµ = 0
and/or Pdiag(Ω−1) = 0). The penalized SAEM is the standard SAEM except for the M-step:
a fused lasso penalized regression problem is solved for both fixed effects and random effects
variances updates, with fixed tuning parameters λF and λV . At iteration k, it corresponds to (Box
1):

Box 1: Maximization step of the penalized SAEM algorithm

1. Fixed effects update:

(
µ1

k , . . . , µ
G
k

)
= ArgMax

µ1,...,µG

 G∑
g=1

Q̃k(µg,Ω
g
k−1, ak−1, bk−1) − λF PF(µ1, . . . , µG)


2. Random effects variances update:

Ω1
k , . . . ,Ω

G
k ) = ArgMax

Ω1,...ΩG

 G∑
g=1

Q̃k(µg
k ,Ω

g, ak−1, bk−1) − λV PV (Ω1−1
, . . . ,ΩG−1

)


3. Error model parameters update: usual update.

We now turn to the description of the two update steps for the fixed effects and the random
effects variances.
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3.2.1. Fixed effects update
For fixed effects update, the conditional expectation of the complete likelihood reduces to the

following weighted least square function:

Q̃k(µ) =

G∑
g=1

Q̃k(µg,Ω
g
k−1, ak−1, bk−1) = C −

1
2

G∑
g=1

Ng∑
i=1

(
−µgt

Ω
g−1

k−1sg
1,i,k − sgt

1,i,kΩ
g−1

k−1µ
g + µgt

Ω
g−1

k−1µ
g
)

where C is a constant not depending on µg. The matricial form of the problem to be solved is:(
µ1

k , . . . , µ
G
k

)
= ArgMax

µ
Q̃k(µ) − λF‖Pµ‖1. (2)

This optimization problem corresponds to an extension of the generalized fused lasso of Höfling
et al. [2010] where the least-squares is replaced by weighted least-squares. It can be solved with
the Alternating Direction Method of Multipliers (ADMM) [Boyd et al., 2011], that breaks the
convex optimization problem into small pieces. More precisely, problem (2) can be rewritten as
an equality constraints optimization problem, where µ is split in two parts µ and z:

µ̂ = ArgMin
µ,z

− Q̃k(µ) + λF‖z‖1.

s.t Pµ − z = 0

The ADMM algorithm solves (2) by iteratively solving smaller (and easier) problems for each
primal (µ, z) and dual (u) variables separately using the augmented Lagrangian formulation:

ArgMin
µ,z

ArgMax
u

− Q̃k(µ) + λF‖z‖1 + 〈u, Pµ − z〉 +
ρ

2
‖Pµ − z + u‖22..

Here ρ is the augmented lagrangian parameter (generally set to 1) and ‖ · ‖2 the l2-norm. This
corresponds to applying the steps presented in Box 2 at each iteration q until convergence. When
adaptive weights are included in the penalty, the same algorithm can be used except that the
tuning parameter λF is replaced by the vector λF • π.

3.2.2. Variance Covariance matrix of random effects update
The conditional expectation of the complete likelihood for group g is:

Q̃k(µg
k ,Ω

g, ak−1, bk−1) = C − log |Ωg| − Trace
[
Ωg−1

Σ̃
g
k

]
where C is a constant not depending on Ωg and Σ̃

g
k corresponds to the solution of the non penal-

ized problem:

Σ̃
g
k =

1
Ng

sg
2,k −

Ng∑
i=1

µ
g
k sgt

1,i,k −

Ng∑
i=1

sg
1,i,kµ

gt

k

 + µ
g
kµ

gt

k .

Then the problem to be solved is:

(Ω1
k , . . .Ω

G
k ) = ArgMax

Ω1,...ΩG

− G∑
g=1

(
log |Ωg| + Trace

[
Ωg−1

Σ̃
g
k

])
− λV PV (Ω1−1

, . . . ,ΩG−1
)

 . (3)
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Box 2: ADMM algorithm for fixed effects update

1. Initialization: µ0 = µk−1, z0 = 0, u0 = 0
2. For q = 0, 1, 2, ... until convergence:

(a) µ update:

µq+1 = ArgMin
µ

(
−Q̃k(µ) +

ρ

2
‖Pµ − zq + uq‖

2
2

)
= (∆ + ρPtP)−1(Γ + ρPt(zq − uq))

with Γ = diag(
∑N1

i=1 Ω1−1

k−1s1
1,i,k, . . . ,

∑NG
i=1 ΩG−1

k−1sG
1,i,k)

and ∆ = diag(N1Ω1−1

k−1, . . . ,NGΩG−1

k−1)
(b) z update:

zq+1 = ArgMin
z

(
ρ

2
‖Pµq+1 + uq − z‖22 + λF‖z‖1

)
= S λF

ρ
(Pµq+1 + uq)

with the soft thresholding operator Sλ(x) = sgn(x)(|x| − λ)+

(c) dual update:

uq+1 = uq + Pµq+1 − zq+1

Danaher et al. [2013] consider a similar optimization problem (for joint graphical models) and
propose an ADMM algorithm to solve it. We apply the same methodology here: problem (3) has
the following scaled augmented Lagrangian:

ArgMin
Ωg−1

,Zg

ArgMax
Ug


∑G

g=1

(
log |Ωg| + Trace

[
Ωg−1

Σ̃
g
k

])
+ λV PV (Z1, . . . ,ZG)

+
∑G

g=1
ρ
2 ‖Ω

g−1
− Zg + Ug‖2F

where (Ωg−1
)g=1,...,G,(Zg)g=1,...,G are the primal variables, (Ug)g=1,...,G the dual variables and ρ the

augmented lagrangian parameter (generally set to 1). The ADMM algorithm consists in applying
the steps presented in Box 3 at each iteration q until convergence. Step 1 has an explicit solution
[Witten and Tibshirani, 2009]. Step 2 is the evaluation of the PV ’s proximal operator. An explicit
formula is available when G = 2 [Danaher et al., 2013], but for G > 2 it has to be numerically
approximated. This extends the computing time significantly. As for fixed effects, when adap-
tive weights are included in the penalty, the same algorithm can be used except that the tuning
parameter λV is replaced by the vector λV • ν.

3.3. Selection of the tuning parameters

The described SAEM algorithm is applied with a fixed value of the tuning parameters Λ =

(λF , λV ). The value of these tuning parameters varying from zero to infinity, the SAEM algorithm
selects a collection of models with a decreasing number of between group differences (from the
full model to the model with no difference at all). The optimal Λ can be selected using the
Bayesian Information Criterion (BIC): the optimal Λ is defined as returning the model with the
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Box 3: ADMM algorithm for variances update

1. Initialization: Ω
g
0 = Σ̃

g
k , Zg

0 = 0, Ug
0 = 0

2. For q = 0, 1, 2, ... until convergence:
(a) Ω update: for g = 1, . . . ,G

Ω
g−1

q+1 = ArgMin
Ωg−1

(
log |Ωg| + Trace(Σ̃g

kΩg−1
)
)

+
ρ

2
‖Ωg−1

− Zq + Uq‖
2
2

(b) Z update:

Z1
q+1, . . . ,Z

G
q+1 = ArgMin

Z

 G∑
g=1

ρ

2
‖Ω

g−1

q+1 − Zg + Ug
q‖

2
F + λV PV (Z1, . . . ,ZG)


(c) dual update: for g = 1, . . . ,G

Ug
q+1 = Ug

q + Ω
g−1

q+1 − Zg
q+1

minimal BIC. In practice, we run the algorithm on a user-defined grid (Λ1, . . . ,ΛM). Then the
optimal value ΛBIC is:

ΛBIC = ArgMin
Λ∈{Λ1,...,ΛM }

BIC(Λ)

where BIC(Λ) is the criterion of the model corresponding to the value Λ. For a NLMEM with
random effects on all the parameters, the BIC criterion is defined as [Delattre et al., 2014]:

BIC = −2LL(θ) + log(N) × d f (θ),

where LL(θ) is the log likelihood (1), d f (θ), the degree of freedom, is the number of distinct fixed
effects and random effects variances in the selected model. For a given Λ, the penalized SAEM
algorithm estimates a model (θΛ) with a particular structure: some parameters have the same
estimated value (their difference is set to 0). Following the Lars-OLS-Hybrid algorithm [Efron
et al., 2004] (that corresponds to a relaxed lasso [Meinshausen, 2007] with relaxing parameter
set to 0), an unbiased estimation θ̃Λ of the parameters of this selected model is obtained by
reestimating θ with a constrained SAEM algorithm:

θ̃Λ = ArgMin
θ

− 2LL(θ)

s.t S
(

P µ
P diag Ω

)
= S

(
P µ̂Λ

P diag Ω̂Λ

)
where S (x) is the support of vector x. The constraint on the support ensures that the solution
of the constrained optimization problem has the same structure as the solution of the penalized
estimate. This constrained optimization problem can be solved by the penalized SAEM algo-
rithm with appropriate choices for the adaptive weights: non-null differences are attached to null
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weights (and are therefore not penalized) and null differences are attached to weights that are
high enough to force them to be null in the solution θ̃Λ. Finally, we take:

BIC(Λ) = −2LL(θ̃Λ) + log(N) × d f (θ̃Λ).

4. Simulated data analysis

Simulations are performed with the one compartment model with first order absorption:

f (t, ka,Cl,V) =
Dka

Vka −Cl
(e−

Cl
V t − e−kat) (4)

where ka (h−1), Cl (L.h−1) and V (L) correspond respectively to the absorption constant, the
clearance and the volume of distribution parameters. The administrated dose (D) is set to 6 mg.

First, the behavior of the penalized SAEM algorithm is illustrated with one dataset simulated
with 3 groups of subjects. Especially, regularization paths depending on the values of the spar-
sity parameter Λ is presented. Then the impact of high variances on the penalized estimation is
studied on one dataset simulated with 3 groups of subjects, and the benefit of adaptive weights
introduced in the penalty is shown. Next the influence of the penalty structure on selection per-
formance is studied on 100 simulated data sets with 5 groups of subjects. Finally, joint fixed and
variance parameters selection performance is compared between the penalized SAEM algorithm
and the standard stepwise forward approach, on 50 simulated data sets with 2 groups of subjects.

4.1. Behavior of the penalized SAEM algorithm
One dataset of 3 groups with Ng = 100 subjects per group has been simulated using model (4)

and fixed effects parameters:

µ1
V = µ2

V = 0.48 µ3
V = 0.58

µ1
Cl = µ2

Cl = 0.06 µ3
Cl = 0.042

µ1
ka

= µ3
ka

= 1.47 µ2
ka

= 2.18.

Random effects variances are:

(ω1
V )2 = (ω2

V )2 = (ω3
V )2 = 0.1

(ω1
Cl)

2 = (ω2
Cl)

2 = 0.1 (ω3
Cl)

2 = 0.2
(ω1

ka
)2 = 0.1 (ω2

ka
)2 = 0.3 (ω3

ka
)2 = 0.2.

Individual parameters are log-normally distributed (h(φ) = log(φ)). Error model parameters
are set to a = 0 and b = 0.1. The penalised SAEM algorithm is implemented with 400 iterations.
During the first 300 iterations, we use a constant step size equal to 1. Then, during the last 100
iterations, the stochastic approximation scheme is implemented with a step size equal to 1

iter−300
at iteration iter. The evolution of each SAEM parameter estimate is plotted along iterations
in Figure 2 for λF = 37 and λV = 0.015 using a clique graph as penalty structure. In this
example, the number of iterations has been chosen such that the convergence is clearly attained
for all the model parameters. For these values of λF and λV , the model selected by the algorithm
corresponds to the simulated one. Figure 3 represents the regularization path of the estimates
for both fixed effects and variances of random effects parameters. When increasing λF (or λV )
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Figure 2: Simulated data, 3 groups: evolution of SAEM estimates with λF = 25 and λV = 0.013. Red, blue and green
curves correspond to estimates of group 1, 2 and 3, respectively.
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Figure 3: Simulated data, 3 groups: regularization paths of SAEM estimates for fixed effects and random effect variances.
Red, blue and green curves correspond to estimates of group 1, 2 and 3, respectively. Solid black lines corresponds to
the lambda values used in Figure 2 (λF = 25, λV = 0.013).
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G = 2 G = 3 G = 5
Fixed 23 s 24 s 99 s
Fixed + Variances 32 s 210 s 411 s

Table 1: Simulated data, 2, 3 or 5 groups: computational time of the penalized SAEM algorithm (400 iterations) with
small tuning parameter values on a simulated data set of Ng = 100 subjects per group (G = 2, 3 or 5) with or without
penalty on variance parameters. A clique graph is used for the penalty.

values, differences between estimates get smaller and smaller until being null. The number of
null differences increases with the value of λ.

As we have seen in the algorithm description, when G > 2 the proximal operation of the vari-
ances penalty needs to be approximated numerically. The computational time is then increased
when variances are penalized. Table 1 presents the computational times for different numbers of
groups when variances are penalized or not. These computational times vary in function of the
values of λF and λV ; Table 1 corresponds to a worst-case scenario (small values of λF and λV ).

4.2. Effect of variances rescaling with adaptive weights

As discussed in Section 3.1.2, penalizing the inverse of covariance matrix is not equivalent to
penalizing directly the variances. It could favor differences from parameters with a high variance
and then select false models. This can be attenuated by rescaling the variances with adaptive
weights. We propose the following weighting strategy:

PV (Ω1−1
, . . . ,ΩG−1

) =
∑

(g1,g2)∈E

νi

p∑
i=1

|Ω
g−1

1
ii −Ω

g−1
2

ii |, νi =

√√√ G∑
g=1

(Ω̃g
ii)

2

where Ω̃g corresponds to the unpenalized estimation of Ωg. To illustrate this, a data set of 3
groups (100 subjects per group) is simulated using model (4) with larger ωV and smaller ωka:

(ω1
V )2 = (ω2

V )2 = (ω3
V )2 = 0.3

(ω1
Cl)

2 = (ω2
Cl)

2 = 0.1, (ω3
Cl)

2 = 0.2
(ω1

ka
)2 = 0.03, (ω2

ka
)2 = 0.075, (ω2

ka
)2 = 0.06.

Figure 4 presents the regularization path of estimates for (ωg
ka

)2, (ωg
V )2, (ωg

Cl)
2 using a clique

structure for the penalty. Because the (ωg
V )2 terms are all equal, we would hope estimates of

these terms to be fused before the (ωg
ka

)2 and (ωg
Cl)

2 terms. This is not the case without adaptive
weights, and as a consequence, the optimal model is not spanned in the regularization path.
Adaptive weights correct for this defect and the optimal model is spanned by the regularization
path (blue shaded areas in Figure 4 ).

4.3. Model Selection Performances

4.3.1. Influence of penalty structure and adaptive weights
We study the selection of fixed effects differences between groups on simulated data sets and

the impact of the penalty structure on the proportion of correctly selected models. One hundred
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Figure 4: Simulated data, 3 groups, large ωV , small ωka: regularisation paths of SAEM estimates for random effect
variances with (ADAPTIVE) or without (CRUDE) adaptive weights. Red, blue and green curves correspond respectively
to the estimates in group 1, 2 and 3. Blue shaded areas correspond to the values Λ that return the simulated differences
model.

datasets are simulated with 5 groups of subjects using model (4) (Ng = 20 or Ng = 100). Fixed
effects parameters are set to:

µ1
V = 0.48 µ2

V = µ3
V = 0.72 µ4

V = µ5
V = 0.96

µ1
Cl = µ2

Cl = 0.06 µ3
Cl = µ4

Cl = 0.03 µ5
Cl = 0.015

µ1
ka

= µ2
ka

= µ3
ka

= µ4
ka

= µ5
ka

= 1.47.

Random effects variances are set equal to 0.1 for all the parameters. Individual parameters are
log-normally distributed. Error model parameters are set to a = 0 and b = 0.1. For each data set,
a model is selected using the fused lasso approach on a grid of 100 λF values with 4 different
penalty structures:

• CH: chain graph (with adaptive weights or not)

• CL: clique graph (with adaptive weights or not)

• S 1: star graph with group 1 as reference (with adaptive weights or not)

• S 3: star graph with group 3 as reference (without adaptive weights)

Note that the optimal graph would penalize only the null differences that appear in the simulated
model. Thus none of these graphs is optimal for all the parameters. The optimal structure
for parameter µka is a clique structure because its value is the same for all the groups. The
most appropriate structure for parameters µCl and µV is the chain structure that penalizes all
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Ng = 20 subjects per group Ng = 100 subjects per group

CH CHA CL CLA CH CHA CL CLA

Whole 15% 39% 8% 32% 25% 59% 28% 55%

V 53% 71% 33% 56% 54% 80% 52% 81%

Cl 41% 86% 29% 69% 55% 78% 54% 70%

ka 61% 68% 64% 81% 77% 75% 77% 87%

Table 2: Simulated data, 5 groups: Proportion of correctly selected model over 100 simulations for the whole fixed effects
model and fixed effects model of V , Cl or ka. Different penalty structures: clique (CL), adaptive clique (CLA), chain
(CH) and adaptive chain (CHA).

theoretically null differences (unlike star graph) and less non null differences than the clique
graph. As previously suggested by [Viallon et al., 2014], adaptive weights should overcome the
errors due to graph misspecification. Thus the penalized SAEM algorithm is implemented with
the 4 different graphs with and without adaptive weights.

The performance of each penalty structure is evaluated by comparing the selected model (Pµ̃s)
to the true model (Pµ) for each parameter, on each simulated data set (s = 1, ..., 100) with µ̃s the
final estimate obtained by the fused lasso procedure and P a penalty matrix that encodes the
differences under study. For example, when P = PCH , P corresponds to the (G − 1) ×G matrix
with Pi,i = 1, Pi,i+1 = −1 and 0 elsewhere. When considering the whole fixed effect model, the
number of correctly selected model is:

1
100

100∑
s=1

1Pµ̃V,s=PµV × 1Pµ̃Cl,s=PµCl × 1Pµ̃ka ,s=Pµka
.

Table 2 shows the results with P = PCH for CH and CL as they are the only two penalties
that could select exactly the true model. When Ng = 20, the chain graph has better performance.
When Ng is large, performances of chain and clique graphs are very close. In addition, using
adaptive weights clearly improves performance: in particular, the clique-based approach per-
forms similarly to the chain-based one with adaptive weighs, even for Ng = 20. Thus clique
graph is a good candidate when there is no prior information on data structure. This results tends
to confirm the asymptotic optimality result of the clique-based strategy with adaptive weights
that was obtained for generalized linear models [Viallon et al., 2014].

Table 3 shows the results when P is a star graph (P = PS 1 for S 1, S 1,A and P = PS 3 for S 3) that
does not correspond to the real structure of the data: here only differences based on a star graph
can be selected while theoretical parameters do not follow a star graph. When using a star graph
penalty, the group of reference has a non negligible influence on the results. It is particularly true
for µCl. Indeed when group 1 is set as reference, theoretical values of µ2

Cl, µ
3
Cl, µ

4
Cl and µ5

Cl are
distributed in an unbalanced way around µ1

Cl (µ3
Cl, µ

4
Cl and µ5

Cl are lower than µ1
Cl). The penalty

unexpectedly tends first to fused µ1
Cl with µ3

Cl, µ
4
Cl and µ5

Cl. The adaptive version of the penalties
seems to mitigate this phenomenon when sample size is large (Ng = 100). This behavior is not
observed when group 3 is set as reference, probably because theoretical parameters value of non
reference groups are distributed in a more balanced way around µ3

Cl.
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Ng = 20 subjects per group Ng = 100 subjects per group

S 1 S 1,A S 3 S 1 S 1,A S 3

Whole 1% 6% 26% 8% 56% 49%

V 69% 72% 57% 100% 100% 90%

Cl 36% 87% 83% 29% 77% 93%

ka 12% 23% 58% 28% 63% 60%

Table 3: Simulated data, 5 groups: Proportion of correctly selected model over 100 simulations when edges under study
corresponds to a star graph. Results are given for the whole fixed effects model, fixed effects of V , Cl or ka. Different
penalty structures are considered: star with group 1 as reference (S 1), star with group 3 as reference (S 3) and adaptive
star with group 1 as reference (S 1).

4.3.2. Fixed and variance parameters selection
Joint selection of fixed effects and random effects variances is evaluated through 50 simulated

datasets using model (4) with only two groups for computational time reasons. Individual pa-
rameters are log-normally distributed. Error model parameters are set to a = 0.2 and b = 0.02.
Fixed effects parameters are:

µ1
V = 0.48 µ2

V = 0.58
µ1

Cl = 0.060 µ2
Cl = 0.042

µ1
ka

= µ2
ka

= 1.47.

Random effects variances are:

ω12

V = ω22

V = 0.1

ω12

Cl = 0.1 ω22

Cl = 0.21

ω12

ka
= 0.1 ω22

ka
= 0.21.

For each data set, the best model is selected using BIC based on the penalized SAEM algorithm
estimation. For comparison purpose, the selection approach based on a BIC forward stepwise
method is also implemented. This stepwise method includes 2 steps: i) assuming the variances
of random effects to be different between the groups, the fixed effect model is selected by BIC
comparison, ii) using the selected fixed effects model, the variance model is selected by BIC
comparison. The performance of the two methods is evaluated by comparing the selected model
to the true model. Table 4 presents the proportion of correctly selected models for the fixed
effects model, the variances model and the whole model. Table 5 presents the proportion on
the 50 simulated data sets where a non null difference is detected for each parameters. On this
synthetic example, our approach enjoys better selection performance than the stepwise approach.
This is particularly true for variance parameters. However, Table 5 shows that the fused lasso
approach tends also to select more complex models especially for small sample sizes. Indeed
µka and (ωV )2 are theoretically equal in the 2 groups, but the fused lasso estimates a non null
difference on these two parameters. When the fused lasso approach does not select the true
model, it generally includes differences that are null in the true model. This is especially true
when Ng = 25.
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Fixed effects Variances Both
Ng 25 50 100 25 50 100 25 50 100

Stepwise Forward 30% 76% 68% 10% 30% 52% 6% 24% 42%
Fused LASSO 40% 74% 76% 38% 56% 78% 14% 40% 60%

Table 4: Simulated data, 2 groups: proportion of correctly selected models on 50 simulated datasets for the fixed ef-
fects model, the variances model and the whole model. Results are given for the fused lasso and the stepwise forward
approaches.

Ng = 25 Ng = 50 Ng = 100
Fused Forward Fused Forward Fused Forward

µV 76% 56% 94% 88% 100% 94%
µCl 100% 74% 100% 96% 100% 88%
µka 40% 20% 20% 10% 24% 16%
ω2

V 20% 14% 14% 6% 12% 20%
ω2

Cl 64% 32% 88% 68% 96% 88%
ω2

ka
72% 32% 78% 50% 92% 70%

Table 5: Simulated data, 2 groups: proportion of the 50 simulated datasets with a non null difference detected for each
parameter of the model, respectively. Results are given for the fused lasso and the stepwise forward approaches.

5. Real data analysis

We now illustrate our approach on a real data example. DE is an orally anticoagulant drug
used for the prevention of venous thromboembolism after orthopedic surgery and stroke in pa-
tients with atrial fibrillation. Its has a low bioavailability (fraction of administrated dose that
reaches the systemic circulation) typically below 7%. It is mainly due to a solubility problem
and to the P-glycoprotein (P-gp) efflux that has an ”anti-absorption” function. P-gp inhibitors can
increase Dabigatran bioavailability by improving its absorption [Delavenne et al., 2013]. Then,
the addition of P-gp inhibitors could also lead to overdosing and adverse event like hemorrhage.

Data from two cross over clinical trials are considered. The two studies were conducted with
two different dosing regimens for DE. The first trial, a two way crossover trial with 10 subjects,
evaluated the interaction between DE (dosing regiment A) and P-Gp inhibithor 1 (PgpI1). The
second trial, an incomplete three way crossover trial with 9 subjects, evaluated the interaction

DEA+PgpI1* DEA* DEB*

DEB+PgpI2*

DEB+PgpI3*

Figure 5: Graph used for the penalty of DE pooled data.
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between DE (dosing regiment B), P-Gp inhibithor 2 (PgpI2) and P-Gp inhibithor 3 (PgpI3).
Data from the two trials are pooled and five groups of subjects are defined:

• DEA: DE with dosing regimen A alone (10 subjects).

• DEA + PgpI1: DE with dosing regimen A alone plus P-Gp inhibithor 1 (10 subjects).

• DEB: DE with dosing regimen B (DEB) alone (9 subjects).

• DEB + PgpI2: DE with dosing regimen B alone plus P-Gp inhibithor 2 (9 subjects).

• DEB + PgpI3: DE with dosing regimen B alone plus P-Gp inhibithor 3 (9 subjects).

In each group, dabigatran blood concentration (pharmacokinetic) is measured for each patient
at 10 sampling times after oral drug administration. The following pharmacokinetic model with
one compartment and an inverse gaussian absorption is used:

dAc

dt
= IG(t) −

Cl
Vc

Ac

IG(t) = Dose × F ×

√
MAT

2πCV2t3 × e
−(t−MAT )2

2CV2 MATt

where Ac corresponds to the amount of dabigatran in the blood, and the absorption parameters F,
MAT and CV correspond to bioavailability, mean absorption time and coefficient of variation of
the absorption rate respectively. Finally parameters Cl and Vc are the elimination clearance and
the volume of central compartment. Individual parameters are supposed log-normally distributed
(h(φ) = log(φ)).

Estimating the bioavailability with only data from orally administrated drug is an ill-posed
problem. Indeed, a decreased value for F could be balanced by smaller V and Cl values. In
order to regularize this problem, we add prior distributions on both V and Cl fixed parameters
[Weiss et al., 2012] based on previously published results [Blech et al., 2008]. In this case, fixed
parameters update is done by solving the following optimization problem:

(
µ1

k+1, . . . , µ
G
k+1

)
= ArgMax

µ

G∑
g=1

Q̃k(µg,Ω
g
k , ak, bk) −

1
2

G∑
g=1

(µg − µ
g
?)tVg−1

? (µg − µ
g
?) − λF‖Pµ‖1

with µg ∼ N(µg
?,V

g
?) as prior distribution.

Due to the small number of subjects per group, only differences between groups for the
bioavailability parameter F are analyzed. The penalized SAEM algorithm is applied to this
model penalizing fixed effect and random effects variance of bioavailability (F). Parameters Vc,
Cl, MATand CV are supposed equal between the groups. High values for the adaptive weights
were used for the corresponding differences to ensure they are null across groups. This as-
sumption seems reasonable as: i) subjects are highly comparable due to very stringent inclusion
criterions and ii) P-Gp inhibitors do not seem to influence MAT and CV [Delavenne et al., 2013].
The penalized SAEM algorithm is applied using the graph structure depicted in Figure 5 and a
grid composed of 400 pairs of λF and λV values.

The optimal model selected by the BIC is shown in Figure 6. Concerning fixed effects, the
bioavailability is different between the two dosing regimens. It is certainly the consequence of
the very low and pH-dependant solubility of DE. As the dosing regimen B was the lowest, then
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Figure 6: Model selected by the BIC and unpenalized reestimation of the bioavailability parameters from the real data.
Groups with same color share equal estimates.
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Figure 7: Regularization path for both fixed and variance bioavailability parameters from the pooled DE data set. Red,
bleu, green, purple and orange lines correspond to DEA, DEA +PgpI1, DEB, DEB +PgpI2 and DEB +PgpI3 respectively.

the smaller the dose, the lower the DE solubility is. Among the three P-Gp inhibitors, only
PgpI1 is associated to an increase in DE bioavailability. It is not surprising since PgpI1 is known
to be a strong P-Gp inhibitor. PgpI2 and PgpI3 inhibit P-Gp much less in in-vitro experiment.
Concerning random effects variances, a higher variance is estimated for dosing regimen B, which
again is certainly attributable to solubility. Finally, Figure 7 shows the regularization path of both
fixed effects and variances.

6. Discussion

In this paper, we present a fused lasso penalized version of the SAEM algorithm. It allows
the introduction of sparsity in the difference between group parameters for both fixed effects and
variances of random effects. This algorithm is designed to iteratively maximize the penalized
conditional expectation of the complete data likelihood. Simulation results show that this algo-

19



rithm has good empirical convergence properties. The theoretical study of this algorithm will be
the scope of future work.

Several extensions could be proposed. First, the hypothesis that the variance covariance matrix
is diagonal might be too strong. For example, in pharmacokinetics the clearance Cl and the
volume of distribution parameter may be strongly correlated. Neglecting this correlation could
have important consequences on the model prediction properties. Moreover, the penalty used in
this work does not allow for random effect selection. One way to tackle these two issues would
be to directly penalize the variance-covariance matrix (instead of its inverse), which could be
achieved by using the reparametrisation described by [Bondell et al., 2010].

In this work, group sizes are supposed equal or not too different, which is often the case in
pharmacokinetic. The algorithm could be easily modified by introducing the group size in the
sum of the group conditional expectation [Danaher et al., 2013]:

G∑
g=1

NgQ̃k(µg, βg,Ω
g
k , ak, bk).

Concerning the selection of tuning parameters, other criterions than BIC have been used for
generalized linear models. The cross-validated prediction error may be particularly useful espe-
cially for high dimensional data since the unpenalized re-estimation of the log-likelihood can not
always be done. For NLME, this criterion has already been studied by [Colby and Bair, 2013]
and could be easily implemented.

Finally a last improvement, subject of a future work, is the extension to NLMEMs including
more than one level of random effects [Panhard and Samson, 2009]. Indeed in this paper the
method is applied to data from a cross-over trial, where each subject receives the two treatment
modalities. This information was neglected and the five groups were considered as independent
which could lead to spurious association when inter occasion variability is high.
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