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Université de Strasbourg ∗

Martin Bordemann
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Abstract

In this paper we focus on a certain self-distributive multiplica-
tion on coalgebras, which leads to so-called rack bialgebra. Inspired
by semi-group theory (adapting the Suschkewitsch theorem), we do
some structure theory for rack bialgebras and cocommutative Hopf
dialgebras. We also construct canonical rack bialgebras (some kind
of enveloping algebras) for any Leibniz algebra and compare to the
existing constructions.

We are motivated by a differential geometric procedure which we
call the Serre functor: To a pointed differentible manifold with multi-
plication is associated its distribution space supported in the chosen
point. For Lie groups, it is well-known that this leads to the uni-
versal enveloping algebra of the Lie algebra. For Lie racks, we get
rack-bialgebras, for Lie digroups, we obtain cocommutative Hopf di-
algebras.

The canonical rack bialgebras we have constructed for any Leibniz
algebra lead then to a simple explicit formula of the rack-star-product
on the dual of a Leibniz algebra recently constructed by Dherin and
Wagemann in 2013. We clarify this framework doing some deforma-
tion theory.
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1 Introduction

All manifolds considered in this manuscript are assumed to be Hausdorff and
second countable.

Basic Lie theory relies heavily on the fundamental links between associa-
tive algebras, Lie algebras and groups. Some of these links are the passage
from an associative algebra A to its underlying Lie algebra ALie which is the
vector space A with the bracket [a, b] := ab− ba. On the other hand, to any
Lie algebra g one may associate its universal enveloping algebra U(g) which
is associative. Groups arise as groups of units in associative algebras. To
any group G, one may associate its group algebra KG which is associative.



The theme of the present article is to investigate links of this kind for more
general objects than groups, namely for racks and digroups.

Recall that a pointed rack is a pointed set (X, e) together with a binary
operation ✄ : X × X → X such that for all x ∈ X , the map y 7→ x ✄ y
is bijective and such that for all x, y, z ∈ X , the self-distributivity and unit
relations

x✄ (y ✄ z) = (x✄ y)✄ (x✄ z), e ⊲ x = x, and x ⊲ e = e

are satisfied. Observe that racks are not algebras over an operad, but the
correct algebraic structure is that of a properad. Therefore the standard
deformation theory of algebras over an operad does not apply. Imitating the
notion of a Lie group, the smooth version of a pointed rack is called Lie rack.

An important class of examples of racks are the so-called augmented racks,
see [11]. An augmented rack is the data of a group G, a G-set X and a map
p : X → G such that for all x ∈ X and all g ∈ G,

p(g · x) = gp(x)g−1.

The set X becomes then a rack by setting x ✄ y := p(x) · y. In fact,
augmented racks are the Drinfeld center (or the Yetter-Drinfeld modules) in
the monoidal category of G-sets over the (set-theoretical) Hopf algebra G,
see [16]. Any rack may be augmented in many ways, for example by using
the canonical morphism to its associated group (see [11]) or to its group of
bijections or to its group of automorphisms.

In order to formalize the notion of a rack, one needs the diagonal map
diagX : X → X×X given by x 7→ (x, x). Then the self-distributivity relation
reads in terms of maps

m ◦ (idM ×m)

= m ◦ (m×m) ◦ (idM × τM,M × idM) ◦ (diagM × idM × idM).

Axiomatizing this kind of structure, one may start with a coalgebra C and
look for rack operations on this fixed coalgebra, see [4] and [17].

A natural framework where this kind of structure arises (as we show in
Section 2) is by taking point-distributions (i.e. applying the Serre functor)
over (resp. to) the pointed manifold given by a Lie rack. We dub the arising
structure as rack bialgebra.

Lie racks are intimately related to Leibniz algebras h, i.e. a vector space
h with a bilinear bracket [, ] : h⊗ h → h such that for all X, Y, Z ∈ h, [X,−]
acts as a derivation:

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]]. (1.1)
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Indeed, Kinyon showed in [14] that the tangent space at e ∈ H of a Lie rack
H carries a natural structure of a Leibniz algebra, generalizing the relation
between a Lie group and its tangent Lie algebra. Conversely, every (finite
dimensional real or complex) Leibniz algebra h may be integrated into a Lie
rack Rh (with underlying manifold h) using the rack product

X ◮ Y := eadX (Y ), (1.2)

noting that the exponential of the inner derivation adX for each X ∈ h is an
automorphism.

Another closely related algebraic structure is that of dialgebras. A dialge-
bra is a vector space D with two (bilinear) associative operations ⊢: D×D →
D and ⊣: D×D → D which satisfy three compatibility relations, namely for
a, b, c ∈ D:

(a ⊢ b) ⊢ c = (a ⊣ b) ⊢ c, a ⊣ (b ⊢ c) = a ⊣ (b ⊣ c), (a ⊢ b) ⊣ c = a ⊢ (b ⊣ c).

A dialgebra D becomes a Leibniz algebras via the formula

[a, b] = a ⊢ b− b ⊣ a.

In this sense ⊢ and ⊣ are two halves of a Leibniz bracket. Loday and Goichot
have defined an enveloping dialgebra of a Leibniz algebra, see [12], [20].

One main point of the first part of this paper is the link between rack
bialgebras and cocommutative Hopf dialgebras. In Theorem 2.5, we adapt
Suschkewitsch’s Theorem in semi-group theory to the present context. The
classical result (see Appendix B) treats semi-groups with a left unit e and
right inverses (analoguous results in the left-context), called right groups.
Suschkewitsch shows that such a right group Γ decomposes as a product
Γ = Γe×E where E is the set of all idempotent elements.

Its incarnation here shows that a cocommutative right Hopf algebra H
decomposes as a tensor product H1⊗ EH where EH is the subspace of gen-
eralized idempotents.

Furthermore, we will show in Theorem 2.6 how to associate to any aug-
mented rack bialgebra an augmented cocommutative Hopf dialgebra. In
Theorem 2.7, we investigate what Suschkewitsch’s decomposition gives for a
cocommutative Hopf dialgebra A. It turns out that A decomposes as a tensor
product EA ⊗HA of EA with HA which may be identified to the associative
quotient Aass of A. This result permits to show that the Leibniz algebra of
primitives in A is a hemi-semi-direct product (see [14]), and thus always split.
In this way we arrive once again at the result that Lie digroups may serve
only to integrate split Leibniz algebras which has already been observed by
Covez in his master thesis [6].
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Given a finite-dimensional real Lie algebra (g, [, ]), its dual vector space g∗

is a smooth manifold which carries a Poisson bracket on its space of smooth
functions, defined for all f, g ∈ C∞(g∗) and all ξ ∈ g∗ by the Kostant-Kirillov-
Souriau formula

{f, g}(ξ) := 〈ξ, [df(ξ), dg(ξ)]〉.

Here df(ξ) and dg(ξ) are linear functionals on g∗, identified with elements of
g.

In the same way, a general finite dimensional Leibniz algebra h gives rise
to a smooth manifold h∗, which carries now some kind of generalized Poisson
bracket, namely

{f, g}(ξ) := −〈ξ, [df(0), dg(ξ)]〉,

see [9] for an explanation why we believe that this is the correct bracket to
consider. In particular, this generalized Poisson bracket need not be skew-
symmetric.

The quantization procedure of this generalized Poisson bracket proposed
in [9] proceeds as follows: The cotangent lift of the above rack product

X ◮ Y = eadX (Y )

is interpreted as a symplectic micromorphism. The generating function of
this micromorphism serves then as a phase function in a Fourier integral
operator, whose asymptotic expansion gives rise to a star-product.

One main goal of the present article is to set up a purely algebraic frame-
work in which one may deformation quantize the dual of a Leibniz algebra.
The main feature will be to recover –in a rather explicit algebraic manner–
the star-product which has been constructed in [9] by analytic methods.

Our main result in the present paper (Corollary 4.1) is the purely algebraic
construction of a star-product on h∗ based on formula (1.2), and the proof
that it is identical to the star-product of [9].

Closing the paper, we set up a general deformation theory framework in
which the above star-product appears as a formal deformation, its infinites-
imal term defining a cohomology class.

Let us comment on the content of the paper:

All our bialgebra notion are based on the standard theory of coalgebras,
some features of which as well as our notions are recalled in Appendix A.
Rack bialgebras and augmented rack bialgebras are studied in Section 2.
Connected, cocommutative Hopf algebras give rise to a special case of rack
bialgebras. In Section 2.2, we associate to any Leibniz algebra h an aug-
mented rack bialgebra UAR

∞(h) and study the functorial properties of this
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association. This rack bialgebra plays the role of an enveloping algebra in
our context. It turns out that a truncated, non-augmented version UR(h) is
a left adjoint of the functor of primitives Prim.

We also study the “group-algebra” functor associating to a rack X its
rack bialgebra K[X ]. Like in the classical framework, K[−] is left adjoint to
the functor Slike associating to a track bialgebra its rack of set-like elements.
The relation between rack bialgebras and the other algebraic notion discussed
in this paper is summarized in the diagram (see the end of Section 2.2) of
categories and functors:

Lie
U //

� _

i

��

Hopf
� _

j

��

Prim
oo

Slike //
Grp

K[−]
oo

� _

��

Leib
UAR

∞

//
RackBialg

Prim
oo

Slike //
Racks

K[−]
oo

In Section 2.3, we develop the structure theory for rack bialgebras and
cocommutative Hopf dialgebras, based on Suschkewitsch’s Theorem. Section
2.3 contains Theorem 2.5, Theorem 2.6 and Theorem 2.7 whose content we
have described above.

Recollecting basic knowledge about the Serre functor F is the subject of
Section 3. In particular, we show in Section 3.2 that F is a strong monoidal
functor from the category of pointed manifolds Mf∗ to the category of coal-
gebras, based on some standard material on coalgebras (Appendix A). In
Section 3.3, we apply F to Lie groups, Lie semi-groups, Lie digroups, and to
Lie racks and augmented Lie racks, and study the additional structure which
we obtain on the coalgebra. The case of Lie racks motivates the notion of
rack bialgebra.

Recall that for a Leibniz algebra h, the vector space h becomes a Lie rack
Rh with the rack product

X ◮ Y = eadX (Y ).

In Theorem 3.8, we show that the rack bialgebra UAR
∞(h) associated to h

coincides with the rack bialgebra F (Rh).
The quantization procedure in Section 4 relies on an explicit approach

in terms of coordinates on the (finite dimensional real) Leibniz algebra h.
The main theorem (Theorem 4.1) describes the induced rack structure on
exponentials from the rack structure which is based on formula (1.2). In Sec-
tion 4.2, we develop the basics of rack bialgebra deformation theory to show
that infinitesimal deformations are classified by H1 and that the star-product
gives a formal deformation of the trivial rack bialgebra.
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2 Several bialgebras

In the following, let K be an associative commutative unital ring containing
all the rational numbers. The symbol ⊗ will always denote the tensor prod-
uct of K-modules over K. For any coalgebra (C,∆) over K, we shall use
Sweedler’s notation ∆(a) =

∑
(a) a

(1) ⊗ a(2) for any a ∈ A. We will feel free
to suppress the sum-sign in Sweedler’s notation in complicated formulas for
typographical reasons. See also Appendix A for a survey on definitions and
notations in coalgebra theory.

The following Sections will all deal with the following type of nonasso-
ciative bialgebra: Let (B,∆, ǫ, 1, µ) be a K-module such that (B,∆, ǫ, 1) is
a coassociative counital coaugmented coalgebra (a C3-coalgebra), and such
that the linear map µ : B ⊗ B → B (the multiplication) is a morphism
of C3-coalgebras (it satisfies in particular µ(1 ⊗ 1) = 1). We shall call this
situation a nonassociative C3I-bialgebra (where I stands for 1 being an idem-
potent for the multiplication µ). For another nonassociative C3I-bialgebra
(B′,∆′, ǫ′, 1′, µ′) a K-linear map φ : B → B′ will be called a morphism
of nonassociative C3I-bialgebras iff it is a morphism of C3-coalgebras and
is multiplicative in the usual sense φ

(
µ(a ⊗ b)

)
= µ′

(
φ(a) ⊗ φ(b)

)
for all

a, b ∈ B. The nonassociative C3I-bialgebra (B,∆, ǫ, 1) is called left-unital
(resp. right-unital) iff for all a ∈ B µ(1⊗ a) = a (resp. µ(a⊗ 1) = a).
Moreover, consider the associative algebra A := HomK(B,B) equipped with
the composition of K-linear maps, and the identity map idB as the unit ele-
ment. There is an associative convolution multiplication ∗ in the K-module
HomK(B,A) of all K-linear maps B → HomK(B,B), see Appendix A, eqn
(A.3) for a definition with idBǫ as the unit element. For a given nonasso-
ciative C3I-bialgebra (B,∆, ǫ, 1, µ) we can consider the map µ as a map
B → HomK(B,B) in two ways: as left multiplication map Lµ : b 7→

(
b′ 7→

µ(b ⊗ b′)
)
or as right multiplication map Rµ : b 7→

(
b′ 7→ µ(b′ ⊗ b)

)
. We call

(B,∆, ǫ, 1, µ) a left-regular (resp. right-regular) nonassociative C3I-bialgebra
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iff the map Lµ (resp. the map Rµ) has a convolution inverse, i.e. iff there
is a K-linear map µ′ : B ⊗ B → B (resp. µ′′ : B ⊗ B → B) such that
Lµ ∗Lµ

′

= idBǫ = Lµ
′

∗Lµ (resp. Rµ∗Rµ′′ = idBǫ = Rµ′′ ∗Rµ), or on elements
a, b ∈ B for the left regular case

∑

(a)

µ
(
a(1) ⊗ µ′(a(2) ⊗ b)

)
= ǫ(a)b = µ′

(
a(1) ⊗ µ(a(2) ⊗ b)

)
. (2.1)

Note that every associative unital Hopf algebra (H,∆, ǫ, 1, µ, S) (where S
denotes the antipode, i.e. the convolution inverse of the identity map in
HomK(H,H)) is right- and left-regular by setting µ′ = µ ◦ (S ⊗ idH) and
µ′′ = µ ◦ (idH ⊗ S).

Lemma 2.1 Let (B,∆, ǫ, 1, µ) be a nonassociative C3I-bialgebra.

1. If B is left-regular (resp. right-regular), then the correspondingK-linear
map µ′ : B ⊗ B → B is unique, and in case ∆ is cocommutative, µ′ is
map of C3-coalgebras.

2. If (B,∆, ǫ, 1, µ) is left-unital (rep. right-unital) and its underlying C3-
coalgebra is connected, then (B,∆, ǫ, 1, µ) is always left-regular (resp. right-
regular).

Proof: 1. In any monoid (in particular in the convolution monoid) two-sided
inverses are always unique. Moreover, as can easily be checked, a K-linear map
φ : B ⊗B → B is a morphism of coalgebras iff for each b ∈ B

∑

(b)

(
Lφ(b(1))⊗ Lφ(b(2))

)
◦∆ = ∆ ◦ Lφ(b). (2.2)

(and analogously for right multiplications). Both sides of the preceding equation,
seen as maps of b, are in HomK

(
B,HomK(B,B ⊗B)

)
. Since HomK(B,B ⊗B) is

an obvious right HomK(B,B)-module, theK-module HomK

(
B,HomK(B,B⊗B)

)

is a right HomK

(
B,HomK(B,B)

)
-module with respect to the convolution. Define

the K-linear map Fµ
′

: B → HomK(B,B ⊗B) by

Fµ
′

(b) :=
∑

(b)

(
Lµ

′

(b(1))⊗ Lµ
′

(b(2))
)
◦∆−∆ ◦ Lµ

′

(b).

Using eqn (2.2), the fact that Lµ
′

is a convolution inverse of Lµ, and the cocom-
mutativity of ∆, we get

Fµ
′

∗ Lµ = 0, hence 0 = Fµ
′

∗ Lµ ∗ Lµ
′

= Fµ
′

∗ (idBǫ) = Fµ
′

and µ′ preserves comultiplications. A similar reasoning where B⊗B is replaced by

K shows that µ′ preserves counits. Finally, it is obvious that Lµ
′

(1) is the inverse
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of the K-linear map Lµ(1), and since the latter fixes 1 so does the former. The

reasoning for right-regular bialgebras is completely analogous.

2. For left-unital bialgebras we get Lµ(1) = idB , and the generalized Takeuchi-

Sweedler argument, see Appendix A, shows that Lµ has a convolution inverse.

Right-unital bialgebras are treated in an analogous manner. ✷

Note that any C3-coalgebra (C,∆, ǫ, 1) becomes a left-unital (resp. right-
unital) associative C3I-bialgebra by equipping with the left-trivial (resp. right-
trivial) multiplication

µ0(a⊗ b) := ǫ(a)b
(
resp. µ0(a⊗ b) := ǫ(b)a

)
. (2.3)

We shall call an element c ∈ B a generalized idempotent iff
∑

(c) c
(1)c(2) = c.

Moreover c ∈ B will be called a generalized left (resp. right) unit element iff
for all b ∈ B we have cb = ǫ(c)b (resp. bc = ǫ(c)b).

2.1 Rack bialgebras, (left) Leibniz algebras and struc-
ture theory

Definition 2.1 A rack bialgebra (B,∆, ǫ, 1, µ) is a nonassociative C3I-
bialgebra (where we write for all a, b ∈ B µ(a ⊗ b) =: a ⊲ b) such that the
following identities hold for all a, b, c ∈ B

1 ⊲ a = a, (2.4)

a ⊲ 1 = ǫ(a)1, (2.5)

a ⊲ (b ⊲ c) =
∑

(a)

(a(1) ⊲ b) ⊲ (a(2) ⊲ c). (2.6)

The last condition (2.6) is called the self-distributivity condition.

Note that we do not demand that the C3-coalgebra B should be cocommu-
tative nor connected.

Remark 2.1
It is shown in Theorem 4.3 of [4] that for a C4-coalgebra B with a self-
distributive map ✁ = q : B⊗B → B which is a morphism of coalgebras, the
map

Rq = (idB ⊗ q) ◦ (τ ⊗ idB) ◦ (idB ⊗∆)

is a solution of the Yang-Baxter equation. We draw our reader’s attention
to the fact that Carter-Crans-Elhamdadi-Saito work in [4] with right racks,
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while we work here with left racks. The statement of their theorem works
also for left racks, but then one has to take

R̃q = (idB ⊗ q) ◦ (∆⊗ idB) ◦ τ.

In particular for any rack bialgebra, R̃q is a solution of the Yang-Baxter
equation. ✸

Example 2.1
Any C3 coalgebra (C,∆, ǫ, 1) carries a trivial rack bialgebra structure defined
by the left-trivial multiplicaton

a ⊲0 b := ǫ(a)b (2.7)

which in addition is easily seen to be associative and left-unital, but in general
not unital. ✸

Another method of constructing rack bialgebras is gauging : Let (B,∆, ǫ, 1, µ)
a rack bialgebra –where we write µ(a ⊗ b) = a ⊲ b for all a, b ∈ B–, and let
f : B → B a morphism of C3-coalgebras such that for all a, b ∈ B

f(a ⊲ b) = a ⊲
(
f(b)

)
, (2.8)

i.e. f is µ-equivariant. It is a routine check that (B,∆, ǫ, 1, µf) is a rack
bialgebra where for all a, b ∈ B the multiplication is defined by

µf(a⊗ b) := a ⊲f b :=
(
f(a)

)
⊲ b. (2.9)

We shall call (B,∆, ǫ, 1, µf) the f -gauge of (B,∆, ǫ, 1, µ).

Example 2.2
Let (H,∆H , ǫH , µH , 1H , S) be a cocommutative Hopf algebra over K. Then it
is easy to see (cf. also the particular case B = H and Φ = idH of Proposition
2.1 for a detailed proof) that the new multiplication µ : H⊗H → H , written
µ(h⊗ h′) = h ⊲ h′, defined by the usual adjoint representation

h ⊲ h′ := adh(h
′) :=

∑

(h)

h(1)h′
(
S(h(2))

)
, (2.10)

equips the C4-coalgebra (H,∆H , ǫH , 1H) with a rack bialgebra structure. ✸

In general, the adjoint representation does not seem to preserve the coal-
gebra structure if no cocommutativity is assumed.
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Example 2.3
Recall that a pointed set (X, e) is a pointed rack in case there is a binary
operation ✄ : X × X → X such that for all x ∈ X , the map y 7→ x ✄ y
is bijective and such that for all x, y, z ∈ X , the self-distributivity and unit
relations

x✄ (y ✄ z) = (x✄ y)✄ (x✄ z), e ⊲ x = x, and x ⊲ e = e

are satisfied. Then there is a natural rack bialgebra structure on the vector
space K[X ] which has the elements of X as a basis. K[X ] carries the usual
coalgebra structure such that all x ∈ X are set-like: △(x) = x ⊗ x for all
x ∈ X . The product µ is then induced by the rack product. By functoriality,
µ is compatible with △ and e.

Observe that this construction differs slightly from the construction in
[4], Section 3.1. ✸

More generally there is the following structure:

Definition 2.2 An augmented rack bialgebra over K is a quadruple
(B,Φ, H, ℓ) consisting of a C3-coalgebra (B,∆, ǫ, 1), of a cocommutative (!)
Hopf algebra (H,∆H , ǫH , 1H , µH, S), of a morphism of C3-coalgebras Φ : B →
H, and of a left action ℓ : H ⊗ B → B of H on B which is a morphism of
C3-coalgebras (i.e. B is a H-module-coalgebra) such that for all h ∈ H and
a ∈ B

h.1 = ǫH(h)1 (2.11)

Φ(h.a) = adh
(
Φ(a)

)
. (2.12)

where ad denotes the usual adjoint representation for Hopf algebras, see e.g.
eqn (2.10).
We shall define a morphism (B,Φ, H, ℓ) → (B′,Φ′, H ′, ℓ′) of augmented
rack bialgebras to be a pair (φ, ψ) of K-linear maps where φ : (B,∆, ǫ, 1) →
(B′,∆′, ǫ′, 1′) is a morphism of C3-coalgebras, and ψ : H → H ′ is a morphism
of Hopf algebras such that the obvious diagrams commute:

Φ′ ◦ φ = ψ ◦ Φ, and ℓ′ ◦ (ψ ⊗ φ) = φ ◦ ℓ (2.13)

An immediate consequence of this definition is the following

Proposition 2.1 Let (B,Φ, H, ℓ) be an augmented rack bialgebra. Then the
C3-coalgebra (B, ǫ, 1) will become a left-regular rack bialgebra by means of
the multiplication

a ⊲ b := Φ(a).b (2.14)
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for all a, b ∈ B. In particular, each Hopf algebra H becomes an augmented
rack bialgebra via (H, idH , H, ad). In general, for each augmented rack bial-
gebra the map Φ : B → H is a morphism of rack bialgebras.

Proof: We check first that ⊲ is a morphism of C3-coalgebras B ⊗ B → B: Let
a, b ∈ B, then –thanks to the fact that the action ℓ and the maps Φ are coalgebra
morphisms–

∆
(
µ(a⊗ b)

)
= ∆(a ⊲ b) = ∆

(
Φ(a).b

)
=

∑

(Φ(a)),(b)

((
Φ(a)(1)

)
.b(1)

)
⊗

((
Φ(a)(2)

)
.b(2)

)

=
∑

(a),(b)

((
Φ(a(1))

)
.b(1)

)
⊗
((

Φ(a(2))
)
.b(2)

)

=
∑

(a),(b)

(
a(1) ⊲ b(1)

)
⊗

(
a(2) ⊲ b(2)

)

whence µ is a morphism of coalgebras. Clearly

ǫ(a ⊲ b) = ǫ
(
Φ(a).b

)
= ǫH

(
Φ(a)

)
ǫ(b) = ǫ(a)ǫ(b)

whence µ preserves counits.
We shall next compute both sides of the self-distributivity identity (2.6) to get an
idea: For all a, b, c ∈ B

a ⊲ (b ⊲ c) = Φ(a).
(
Φ(b).c

)
=

(
Φ(a)Φ(b)

)
.c,

and
∑

(a)

(a(1) ⊲ b) ⊲ (a(2) ⊲ c) =
∑

(a)

(
Φ(a(1)).b

)
⊲
(
Φ(a(2)).c

)

=
∑

(a)

(
Φ
(
Φ(a(1)).b

))
.
(
Φ(a(2)).c

)

=
∑

(a)

(
Φ
(
Φ(a(1)).b

)
Φ(a(2))

)
.c,

and we compute, using the fact that Φ is a morphism of C3-coalgebras,
∑

(a)

Φ
(
Φ(a(1)).b

)
Φ(a(2)) =

∑

(a)

Φ
(
(Φ(a)(1))).b

)
(Φ(a)(2))

(2.12)
=

∑

(a)

(
adΦ(a)(1)

(
Φ(b)

))
(Φ(a)(2))

=
∑

(a)

(
Φ(a)(1)

)
Φ(b)

(
S
(
Φ(a)(2)

))
(Φ(a)(3))

=
∑

(a)

(
Φ(a)(1)

)
Φ(b)1HǫH

(
Φ(a)(2)

)

= Φ(a)Φ(b),

12



which proves the self-distributivity identity. Moreover we have

1B ⊲ a = Φ(1).a = 1H .a = a,

and

a ⊲ 1 = Φ(a).1
(2.11)
= ǫH

(
Φ(a)

)
1 = ǫB(a)1,

whence the C3-coalgebra becomes a rack bialgebra. Finally, if we set

µ′(a⊗ b) := ℓ
S
(
Φ(a)

)(b) = S
(
Φ(a)

)
.b

we get

∑

(a)

µ
(
a(1) ⊗ µ′(a(2) ⊗ b)

)
=

∑

(a)

(
Φ(a(1))S

(
Φ(a(2))

))
.b

=
∑

(
Φ(a)

)
(
Φ(a)(1)S

(
Φ(a)(2)

))
.b = ǫ(a)b

and the other equation of the left-regularity condition (2.1) is proved similarly. ✷

Example 2.4
Exactly in the same way as a pointed rack gives rise to a rack bialgebra
K[X ], an augmented pointed rack p : X → G gives rise to an augmented
rack bialgebra p : K[X ] → K[G]. ✸

Remark 2.2
Motivated by the fact that the augmented racks p : X → G are exactly the
Yetter-Drinfeld modules over the (set-theoretical) Hopf algebra G, we may
ask whether augmented rack bialgebras are Yetter-Drinfeld modules.

In fact, any cocommutative augmented rack bialgebra (B,Φ, H, ℓ) gives
rise to a Yetter-Drinfeld module over the Hopf algebra H . Indeed, B is a left
H-module via ℓ, and becomes a left H-comodule via

ρ : B
△B

→ B ⊗ B
Φ⊗idB→ H ⊗ B.

Now, in Sweedler notation, the coaction is denoted for all b ∈ B by

ρ(b) =
∑

(b)

b(−1) ⊗ b(0) ∈ H ⊗B.

Then the Yetter-Drinfeld compatibility relation reads
∑

(h.b)

(h.b)(−1) ⊗ (h.b)(0) =
∑

(b),(h)

h(1)b(−1)S(h
(3))⊗ h(2).b(0).
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This relation is true in our case, because ℓ is a morphism of coalgebras and
is sent to the adjoint action via Φ.

Conversely, given a Yetter-Drinfeld module C over a Hopf algebra H ,
together with a linear form ǫC : C → K satisfying ǫC(h.c) = ǫH(h)ǫC(c),
then define a map Φ : C → H by

Φ := (idH ⊗ ǫC) ◦ ρ.

The map Φ intertwines the left action on C and the adjoint action on H
thanks to the Yetter-Drinfeld condition.

Now define a rack product for all x, y ∈ C by

x✄ y = Φ(x).y,

then we obtain a Yetter-Drinfeld version of self-distributivity

x✄ (y ✄ z) =
∑

(x)

(x(−1).y)✄ (x(0) ✄ z),

as there is no comultiplication on C.
The fact that Φ is a morphism of coalgebras is then replaced by the

identity
(idH ⊗ Φ) ◦ ρ = ∆H ◦ Φ,

which one needs to demand.
Finally, one needs a unit 1C ∈ C such that for all h ∈ H , h.1C = ǫH(h)1C ,

ǫC(1C) = 1K , ρ(1C) = 1H⊗1C , and Φ(1C) = 1H . This is somehow the closest
one can get to a rack bialgebra without having a compatible C3 coalgebra
structure on C. ✸

The link to Leibniz algebras is contained in the following

Proposition 2.2 Let (B,∆, ǫ, 1, µ) be a rack bialgebra over K.

1. Then its K-submodule of all primitive elements, Prim(B) =: h, (see eqn
(A.1) of Appendix A) is a subalgebra with respect to µ (written a ⊲ b)
satisfying the (left) Leibniz identity

x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ z + y ⊲ (x ⊲ z) (2.15)

for all x, y, z ∈ h = Prim(B). Hence the pair (h, [ , ]) with [x, y] := x⊲y
for all x, y ∈ h is a Leibniz algebra over K. Moreover, every mor-
phism of rack bialgebras maps primitive elements to primitive elements
and thus induces a morphism of Leibniz algebras.
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2. More generally, h and each subcoalgebra of order k ∈ N, B(k), (see
eqn (A.2) of Appendix A) is stable by left ⊲-multiplications with every
a ∈ B. In particular, each B(k) is a rack subbialgebra of (B,∆, ǫ, 1, µ).

Proof: 2. Let x ∈ h and a ∈ B. Since µ is a morphism of C3-coalgebras and x
is primitive, we get

∆(a ⊲ x) =
∑

(a)

(a(1) ⊲ x)⊗ (a(2) ⊲ 1) +
∑

(a)

(a(1) ⊲ 1)⊗ (a(2) ⊲ x)

(2.5)
=

∑

(a)

(
(a(1)ǫ(a(2))) ⊲ x

)
⊗ 1+

∑

(a)

1⊗
(
(ǫ(a(1))a(2)) ⊲ x

)

= (a ⊲ x)⊗ 1 + 1⊗ (a ⊲ x),

whence a⊲x is primitive. For the statement on the B(k), we proceed by induction:
For k = 0, this is clear. Suppose the statement is true until k ∈ N, and let
x ∈ B(k+1). Then

∆(a ⊲ x)− (a ⊲ x)⊗ 1− 1⊗ (a ⊲ x)

=
∑

(a)(x)

(
(a(1) ⊲ x(1))⊗ (a(2) ⊲ x(2))− (a(1) ⊲ x)⊗ (a(2) ⊲ 1)

− (a(1) ⊲ 1)⊗ (a(2) ⊲ x)
)

=
(
∆(a)

)
⊲
(
∆(x)− x⊗ 1− 1⊗ x

)

=
∑

(a)(x)

(a(1) ⊲ x(1)
′

)⊗ (a(2) ⊲ x(2)
′

)

where we have used the extended multiplication (still denoted ✄) ✄ : (B ⊗ B) ⊗
(B ⊗B) → (B ⊗B) and set

∆(x)− x⊗ 1− 1⊗ x =:
∑

(x)

x(1)
′

⊗ x(2)
′

∈ B(k) ⊗B(k)

by the definition of B(k+1), see Appendix A. By the induction hypothesis, all the

terms a(1) ⊲x(1)
′

and a(2) ⊲x(2)
′

are in B(k), whence ∆(a⊲x)−(a⊲x)⊗1−1⊗(a⊲x)
is in B(k) ⊗B(k), implying that a ⊲ x is in B(k+1).
1. It follows from 2. that h is a subalgebra with respect to µ. Let x, y, z ∈ h. Then
since x is primitive, it follows from ∆(x) = x⊗1+1⊗x and the self-distributivity
identity (2.6) that

x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (1 ⊲ z) + (1 ⊲ y) ⊲ (x ⊲ z)
(2.4)
= (x ⊲ y) ⊲ z + y ⊲ (x ⊲ z).

proving the left Leibniz identity. The morphism statement is clear, since each mor-

phism of rack bialgebras is a morphism of C3-coalgebras and preserves primitives.
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✷

Leibniz algebras have been invented by A. M. Blokh [2] in 1965, and then
rediscovered by J.-L. Loday in 1992 in the search of an explanation for the
absence of periodicity in algebraic K-Theory [19, p.323, eqn (10.6.1.1)’].

As an immediate consequence, we get that the functor Prim induces a
functor from the category of all rack bialgebras over K to the category of all
Leibniz algebras over K.

Remark 2.3
Define set-like elements to be elements a in a rack bialgebra B such that
∆(a) = a ⊗ a. Thanks to the fact that ✄ is a morphism of coalgebras, the
set of set-like elements Slike(B) is closed under ✄. In fact, Slike(B) is a rack,
and one obtains in this way a functor Slike : RackBialg → Racks. ✸

Proposition 2.3 The functor of set-likes Slike : RackBialg → Racks has
the functor K[−] : Racks → RackBialg (see Example 2.3) as its left-adjoint.

Proof: This follows from the adjointness of the same functors, seen as functors

between the categories of pointed sets and of C4-coalgebras, observing that the

C4-coalgebra morphism induced by a morphism of racks respects the rack product.

✷

Observe that the restriction of Slike : RackBialg → Racks to the sub-
category of connected, cocommutative Hopf algebras Hopf (where the Hopf
algebra is given the rack product defined in eqn (2.10)) gives the usual functor
of group-like elements.

Remark 2.4
Compare the self-distributivity identity

a ⊲ (b ⊲ c) =
∑

(a)

(a(1) ⊲ b) ⊲ (a(2) ⊲ c)

to the braided Leibniz identity

a ⊲ (b ⊲ c) = (a ⊲ b) ⊲ c+ (b〈1〉 ⊲ (a〈2〉 ⊲ c),

discussed in [16] or [17]. While the first identity takes place in a coalgebra, the
second one takes place in a vector space V with a braiding τ , i.e. a bilinear
map τ : V ⊗V → V ⊗V whose components we denote by τ(a⊗b) = b〈1〉⊗a〈2〉
(in generalized Sweedler notation). The braided Leibniz identity gives back
the (left) Leibniz identity for the tensor flip τ(a⊗ b) = b⊗ a. ✸
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2.2 (Augmented) rack bialgebras for any Leibniz alge-
bra

Let (h, [ , ]) be a Leibniz algebra over K, i.e. h is a K-module equipped with
a K-linear map [ , ] : h⊗ h → h satisfying the (left) Leibniz identity (1.1).

Recall first that each Lie algebra over K is a Leibniz algebra giving rise to
a functor from the category of all Lie algebras to the category of all Leibniz
algebras.

Furthermore, recall that each Leibniz algebra has two canonicalK-submod-
ules

Q(h) :=
{
x ∈ h | ∃ N ∈ N \ {0}, ∃ λ1, . . . , λN ∈ K, ∃ x1, . . . , xN

such that x =
N∑

r=1

λr[xr, xr]
}
, (2.16)

z(h) :=
{
x ∈ h | ∀ y ∈ h : [x, y] = 0

}
. (2.17)

It is well-known and not hard to deduce from the Leibniz identity that both
Q(h) and z(h) are two-sided abelian ideals of (h, [ , ]), that Q(h) ⊂ z(h), and
that the quotient Leibniz algebras

h := h/Q(h) and g(h) := h/z(h) (2.18)

are Lie algebras. Since the ideal Q(h) is clearly mapped into the ideal Q(h′)
by any morphism of Leibniz algebras h → h′ (which is a priori not the case
for z(h) !), there is an obvious functor h → h from the category of all Leibniz
algebras to the category of all Lie algebras.

In order to perform the following constructions of rack bialgebras for any
given Leibniz algebra (h, [ , ]), choose first a two-sided ideal z ⊂ h such that

Q(h) ⊂ z ⊂ z(h), (2.19)

let g denote the quotient Lie algebra h/z, and let p : h → g be the natural
projection. The data of z ⊂ h, i.e. of a Leibniz algebra h together with an
ideal z such that Q(h) ⊂ z ⊂ z(h), could be called an augmented Leibniz
algebra. Thus we are actually associating an augmented rack bialgebra to
every augmented Leibniz algebra. In fact, we will see that this augmented
rack bialgebra does not depend on the choice of the ideal z and therefore
refrain from introducing augmented Leibniz algebras in a more formal way.

The Lie algebra g naturally acts as derivations on h by means of (for all
x, y ∈ h)

p(x).y := [x, y] =: adx(y) (2.20)
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because z ⊂ z(h). Note that

h/z(h) ∼=
{
adx ∈ HomK(h, h) | x ∈ h

}
. (2.21)

as Lie algebras.
Consider now the C5-coalgebra (B = S(h),∆, ǫ, 1) which is actually a

commutative cocommutative Hopf algebra over K with respect to the sym-
metric multiplication •. The linear map p : h → g induces a unique morphism
of Hopf algebras

Φ̃ = S(p) : S(h) → S(g) (2.22)

satisfying
Φ̃(x1 • · · · • xk) = p(x1) • · · · • p(xk) (2.23)

for any nonnegative integer k and x1, . . . , xk ∈ h. In other words, the asso-
ciation S : V → S(V ) is a functor from the category of all K-modules to the
category of all commutative unital C5-coalgebras. Consider now the univer-
sal enveloping algebra U(g) of the Lie algebra g. Since Q ⊂ K by assumption,
the Poincaré-Birkhoff-Witt Theorem (in short: PBW) holds (see e.g. [22, Ap-
pendix]). More precisely, the symmetrisation map ω : S(g) → U(g), defined
by

ω(1S(g)) = 1U(g), and ω(ξ1 • · · · • ξk) =
1

k!

∑

σ∈Sk

ξσ(1) · · · ξσ(k), (2.24)

see e.g. [10, p.80, eqn (3)], is an isomorphism of C5-coalgebras (in general
not of associative algebras). We now need an action of the Hopf algebra
H = U(g) on B, and an intertwining map Φ : B → U(g). In order to get
this, we first look at g-modules: The K-module h is a g-module by means of
eqn (2.20), the Lie algebra g is a g-module via its adjoint representation, and
the linear map p : h → g is a morphism of g-modules since p is a morphism
of Leibniz algebras. Now S(h) and S(g) are g-modules in the usual way, i.e.
for all k ∈ N \ {0}, ξ, ξ1, . . . , ξk ∈ g, and x1 . . . , xk ∈ h

ξ.(x1 • · · · • xk) :=
k∑

r=1

x1 • · · · • (ξ.xr) • · · · • xk, (2.25)

ξ.(ξ1 • · · · • ξk) :=

k∑

r=1

ξ1 • · · · • [ξ.ξr] • · · · • ξk, (2.26)

and of course ξ.1S(h) = 0 and ξ.1S(g) = 0. Recall that U(g) is a g-module
via the adjoint representation adξ(u) = ξ.u = ξu − uξ (for all ξ ∈ g and all
u ∈ U(g)).
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It is easy to see that the map Φ̃ (2.23) is a morphism of g-modules, and
it is well-known that the symmetrization map ω (2.24) is also a morphism
of g-modules, see e.g. [10, p.82, Prop. 2.4.10]. Define the K-linear map
Φ : S(h) → U(g) by the composition

Φ := ω ◦ Φ̃. (2.27)

Then Φ is a map of C5-coalgebras and a map of g-modules. Thanks to the
universal property of the universal enveloping algebra, it follows that S(h)
and U(g) are left U(g)-modules, via (for all ξ1, . . . , ξk ∈ g, and for all a ∈ S(h))

(ξ1 · · · ξk).a = ξ1.(ξ2.(· · · ξk.a) · · · ) (2.28)

and the usual adjoint representation (2.10) (for all u ∈ U(g))

adξ1···ξk(u) =
(
adξ1 ◦ · · · ◦ adξk

)
(u), (2.29)

and that Φ intertwines the U(g)-action on C = S(h) with the adjoint action
of U(g) on itself.
Finally it is a routine check using the above identities (2.25) and (2.10) that
S(h) becomes a module coalgebra.
We can resume the preceding considerations in the following

Theorem 2.1 Let (h, [ , ]) be a Leibniz algebra over K, let z be a two-sided
ideal of h such that Q(h) ⊂ z ⊂ z(h), let g denote the quotient Lie algebra
h/z by g, and let p : h → g be the canonical projection.

1. Then there is a canonical U(g)-action ℓ on the C5-coalgebra B := S(h)
(making it into a module coalgebra leaving invariant 1) and a canonical
lift of p to a map of C5-coalgebras, Φ : S(h) → U(g) such that eqn (2.12)
holds.
Hence the quadruple (S(h),Φ,U(g), ℓ) is an augmented rack bialgebra
whose associated Leibniz algebra is equal to (h, [ , ]) (independently of
the choice of z).
The resulting rack multiplication µ of S(h) (written µ(a ⊗ b) = a ⊲ b)
is also independent on the choice of z and is explicitly given as follows
for all positive integers k, l and x1, . . . , xk, y1, . . . , yl ∈ h:

(
x1 • · · · •xk)⊲

(
y1 • · · · •yl) =

1

k!

∑

σ∈Sk

(
adsxσ(1)

◦ · · · ◦adsxσ(k)

)(
y1 • · · · •yl)

(2.30)
where adsx denotes the action of the Lie algebra h/z(h) (see eqn (2.21))
on S(h) according to eqn (2.25).
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2. In case z = Q(h), the construction mentioned in 1. is a functor h →
UAR

∞(h) from the category of all Leibniz algebras to the category of all
augmented rack bialgebras associating to h the rack bialgebra

UAR∞(h) := (S(h),Φ,U(g), ℓ)

and to each morphism f of Leibniz algebras the pair
(
S(f),U(f)

)
where

f is the induced Lie algebra morphism.

3. For each nonnegative integer k, the above construction restricts to each
subcoalgebra of order k, S(h)(k) = ⊕k

r=0S
r(h), to define an augmented

rack bialgebra (S(h)(k),Φ(k),U(g), ℓ|U(g)⊗S(h)(k)) which in case z = Q(h)

defines a functor h → UAR(k)(h) :=
(
UAR

∞(h)
)
(k)

from the category of

all Leibniz algebras to the category of all augmented rack bialgebras.

Proof: 1. All the statements except the last two ones have already been proven.
Note that for all x, y ∈ h we have by definition

[x, y] = p(x).y = x ⊲ y,

independently of the chosen ideal z. Moreover we compute
(
x1 • · · · • xk) ⊲

(
y1 • · · · • yl)

=
(
(ω ◦ Φ̃)(x1 • · · · • xk)

)
.
(
y1 • · · · • yl)

=
1

k!

∑

σ∈Sk

(
p(xσ(1)) · · · p(xσ(k))

)
.
(
y1 • · · · • yl),

which gives the desired formula since for all x ∈ h and a ∈ S(h), we have

p(x).a = adsx(a).

2. Let f : h → h′ be a morphism of Leibniz algebras, and let f : h → h′ be the
induced morphism of Lie algebras. Hence we get

p′ ◦ f = f ◦ p (2.31)

where p′ : h′ → h′ denotes the corresponding projection modulo Q(h′). Let S(f) :
S(h) → S(h′), S(f) : S(h) → S(h′), and U(f) : U(h) → U(h′) the induced maps
of Hopf algebras, i.e. S(f) (resp. S(f)) satisfies eqn (2.23) (with p replaced by f
(resp. by f)), and U(f) satisfies

U(f)
(
ξ1 · · · ξk

)
= f(ξ1) · · · f(ξk)

for all positive integers k and ξ1, . . . , ξk ∈ h. If ω : S(h) → U(h) and ω′ : S(h′) →
U(h′) denote the corresponding symmetrisation maps (2.24) then it is easy to see
from the definitions that

ω′ ◦ S(f) = U(f) ◦ ω.
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Equation (2.31) implies

Φ̃′ ◦ S(f) = S(p′) ◦ S(f) = S(f) ◦ S(p) = S(f) ◦ Φ̃,

and composing from the left with ω′ yields the equation

Φ′ ◦ S(f) = U(f) ◦Φ. (2.32)

Moreover for all x, y ∈ h we have, since f is a morphism of Leibniz algebras,

f
(
p(x).y

)
= f

(
[x, y]

)
=

[
f(x), f(y)

]′
= p′

(
f(x)

)
.f(y) = f

(
p(x)

)
.f(y),

hence for all ξ ∈ h
f(ξ.y) =

(
f(ξ)

)
.
(
f(y)

)
,

and upon using eqn (2.25) we get for all a ∈ S(h)

S(f)
(
ξ.a

)
=

(
f(ξ)

)
.
(
S(f)

(
a
))
,

showing finally for all u ∈ U(h) and all a ∈ S(h)

S(f)
(
u.a

)
=

(
U(f)(u)

)
.
(
S(f)

(
a
))
. (2.33)

Associating to every Leibniz algebra (h, [ , ]) the above defined augmented rack

bialgebra (S(h),Φ,U(h), ℓ), and to every morphism ψ : h → h′ of Leibniz algebras

the pair of K-linear maps
(
Ψ = S(ψ),Ψ = U(ψ)

)
, we can easily check that Ψ is

a morphism of C5-coalgebras, Ψ is a morphism of Hopf algebras, such that the

two relevant diagrams (2.13) commute which easily follows from (2.32) and (2.33).

The rest of the functorial properties is a routine check.

3. By definition, the U(g)-action on S(h) (cf. eqs (2.25) and (2.28)) leaves invariant

each K-submodule Sr(h) for each nonnegative integer r whence it leaves invariant

each subcoalgebra of order k, S(h)(k). It follows that the construction restricts

well. ✷

Remark 2.5
This theorem should be compared to Proposition 3.5 in [4]. In [4], the authors
work with the vector space N := K ⊕ h, while we work with the whole
symmetric algebra on the Leibniz algebra. In some sense, we extend their
Proposition 3.5 “to all orders”. However, as we shall see below, N is already
enough to obtain a left-adjoint to the functor of primitives. ✸

The above rack bialgebra associated to a Leibniz algebra h can be seen
as one version of an enveloping algebra of h.

21



Definition 2.3 Let h be a Leibniz algebra. We will call the augmented rack
bialgebra (S(h),Φ,U(g), ℓ) the enveloping algebra of infinite order of
h. As such, it will be denoted by UAR

∞(h).

This terminology is justified, for example, by the fact that h is identified
to the primitives in S(h) (cf Proposition 2.2). This is also justified by the
following theorem the goal of which is to show that the (functorial version
of the above) enveloping algebra UAR

∞(h) fits into the following diagram of
functors:

Lie
U //

i
��

Hopf

j

��

Leib UAR
∞

// RackBialg

Here, i is the embedding functor of Lie algebras into Leibniz algebras,
and j is the embedding functor of the category of connected, cocommutative
Hopf algebras into the category of rack bialgebras, using the adjoint action
(see eqn (2.10)) as a rack product.

Theorem 2.2 Let g be a Lie algebra. The PBW isomorphism U(g) ∼= S(g)
induces an isomorphism of functors

j ◦ U ∼= UAR
∞ ◦ i.

Proof: The enveloping algebra UAR
∞(h) is by definition the functorial version of

the rack bialgebra S(h), i.e. associated to the ideal Q(h). But in case h is a Lie alge-

bra, Q(h) = {0}. Then the map p is simply the identity, and UAR
∞(h) = j

(
U(h)

)
.

✷

As a relatively easy corollary we obtain from the preceding construction
the computation of universal rack bialgebras. More precisely, we look for a
left adjoint functor for the functor Prim, seen as a functor from the category of
all rack bialgebras to the category of all Leibniz algebras. For a given Leibniz
algebra

(
h, [ , ]

)
define the subcoalgebra of order 1 of the first component of

UAR(1)(h) (see the third statement of Theorem 2.1), i.e.

UR(h) := UAR
∞(h)(1) := K ⊕ h (2.34)

with 1 := 1 = 1K which is rack subbialgebra according to Proposition 2.2.
Its structure reads for all λ, λ′ ∈ K and for all x, y ∈ h

∆(λ1+ x) = λ1⊗ 1+ x⊗ 1 + 1⊗ x, (2.35)

ǫ(λ1+ x) = λ, (2.36)

µ
(
(λ1 + x)⊗ (λ′1+ x′)

)
= λλ′1 + λx′ + [x, x′]. (2.37)
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For the particular case of a Lie algebra
(
h, [ , ]

)
, the above construction can

be found in [4, Section 3.2]. Moreover, for any other Leibniz algebra
(
h′, [ , ]′

)

and any morphism of Leibniz algebras f : h → h′ define the K-linear map
UR(f) : UR(h) → UR(h′) as the first component of UAR(1)(f) (cf. the third
statement of Theorem 2.1) by

UR(f)
(
λ1+ x

)
= λ1+ f(x), (2.38)

which is clearly is a morphism of rack bialgebras. Hence UR is a functor
from the categry of all Leibniz algebras to the category of all rack bialgebras.
Now let (C,∆C , ǫC , 1C , µC) be a rack bialgebra, and let f : h → Prim(C) be
a morphism of Leibniz algebras. Define the K-linear map f̂ : UR(h) → C by

f̂(λ1+ x) = λ1C + f(x), (2.39)

and it is again a routine check that it defines a morphism of rack bialgebras.
Moreover, due to the almost trivial coalgebra structure of UR(h) it is clear
that any morphism of rack bialgebras UR(h) → C is of the above form and
is uniquely determined by Prim(f̂) = f . Hence we have shown the following

Theorem 2.3 There is a left adjoint functor, UR, for the functor Prim (as-
sociating to each Rack bialgebra its Leibniz algebra of all primitive elements).
For a given Leibniz algebra

(
h, [ , ]

)
, the object UR(h) –which we shall call

the Universal Rack Bialgebra of the Leibniz algebra
(
h, [ , ]

)
– has

the usual universal properties.

Next we can refine the above universal construction by taking into ac-
count the augmented rack bialgebra structure of UAR∞(h) to define another
universal object. Consider the more detailed category of all augmented rack
bialgebras. Again, the functor Prim applied to the coalgebra B (and not to
the Hopf algebra H) gives a functor from the first category to the category
of all Leibniz algebras, and we seek again a left adjoint of this functor, called
UAR. Hence, a natural candidate for a universal augmented rack bialgebra
associated to a given Leibniz algebra h is

UAR(h) := UAR(1)(h) =
(
K ⊕ h,Φ(1),U(h), ad

s|
U(h)⊗(K⊕h)

)
. (2.40)

The third statement of Theorem 2.1 tells us that this is a well-defined aug-
mented rack bialgebra, and that UAR is a functor from the category of all
Leibniz algebras to the category of all augmented rack bialgebras. Now let
(B′,Φ′, H ′, ℓ′) be an augmented rack bialgebra, and let f : h → Prim(B′)
be a morphism of Leibniz algebras. Clearly, as has been shown in Theorem
2.3, the map f̂ : UR(h) → B′ given by eqn (2.38) is a morphism of rack
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bialgebras. Observe that the morphism of C3-coalgebras Φ′ sends the Leib-
niz subalgebra Prim(B′) of B′ into K-submodule of all primitive elements of
the Hopf algebra H ′, Prim(H ′), which is known to be a Lie subalgebra of H ′

equipped with the commutator Lie bracket [ , ]H′ . Moreover this restriction
is a morphism of Leibniz algebras. Indeed, for any x′, y′ ∈ Prim(B′) we have

Φ′
(
[x′, y′]′

)
= Φ′(x′ ⊲ y′) = Φ′

(
(Φ′(x′)).y′

)
= adΦ′(x′)

(
Φ′(y′)

)

= Φ′(x′)Φ′(y′)− Φ′(y′)Φ′(x′) =
[
Φ′(x′),Φ′(y′)

]
H′
.

It folloys that the two-sided idealQ
(
Prim(B′)

)
of the Leibniz algebra Prim(B′)

is in the kernel of the restriction of Φ′ to Prim(B′), whence the map Φ′ induces
a well-defined K-linear morphism of Lie algebras Φ′| : Prim(B′) → Prim(H ′).
It follows that the composition Φ′| ◦f : h → Prim(H ′) ⊂ H ′ is a morphism of
Lie algebras, and by the universal property of universal envelopping algebras
there is a unique morphism of associative unital algebras ψ := U

(
Φ′| ◦ f

)
:

U(h) → H ′. But we have for all ξ1, . . . , ξk ∈ h

∆H′

(
ψ(ξ1 · · · ξk)

)
= ∆H′

(
ψ(ξ1) · · ·ψ(ξk)

)
= ∆H′

(
ψ(ξ1)

)
· · ·∆

(
ψ(ξk)

)

=
(
ψ(ξ1)⊗ 1H′ + 1H′ ⊗ ψ(ξ1)

)
· · ·

(
ψ(ξk)⊗ 1H′ + 1H′ ⊗ ψ(ξk)

)

=
(
ψ ⊗ ψ

)
(ξ1 ⊗ 1

U(h) + 1
U(h) ⊗ ξ1) · · ·

(
ψ ⊗ ψ

)
(ξk ⊗ 1

U(h) + 1
U(h) ⊗ ξk)

=
(
ψ ⊗ ψ

)(
∆

U(h)(ξ1)
)
· · ·

(
ψ ⊗ ψ

)(
∆

U(h)(ξk)
)

=
(
ψ ⊗ ψ

)(
∆

U(h)(ξ1 · · · ξk)
)

since ψ maps primitives to primitives whence ψ is a morphism of coalgebras.
It is easy to check that ψ preserves counits, whence ψ is a morphism of
C5-Hopf-algebras. For all λ ∈ K and x ∈ h we get

(
ψ ◦ Φ(1)

)
(λ1+ x) = ψ

(
λ1

U(h) + p(x)
)
= λ1H′ + (Φ′| ◦ f)

(
p(x)

)

= λ1H′ + Φ′
(
f(x)

)
= Φ′

(
f̂(λ1+ x)

)
,

showing the first equation ψ ◦Φ(1) = Φ′ ◦ f̂ of the morphism equation (2.13).

Moreover for all λ ∈ K, x ∈ h, and u ∈ U(h) we get

f̂
(
u.(λ1+ x)

)
= f̂

(
λǫ

U(h)(u)1+ u.x
)
= λǫ

U(h)(u)1C′ + f(u.x)

Let x1, . . . , xk ∈ h such that u = p(x1) · · ·p(xk). Then

f
(
u.x

)
= f

(
[x1, [x2, . . . [xk, x] · · · ]

)
= f(x1) ⊲

(
f(x2) ⊲ · · · ⊲

(
f(xk) ⊲ f(x)

)
· · ·

)

=
(
Φ′
(
f(x1)

)
· · ·Φ′

(
f(xk)

))
.
(
f(x)

)

=
(
ψ
(
p(x1)

)
· · ·ψ

(
p(xk)

))
.
(
f(x)

)
=

(
ψ(u)

)
.
(
f(x)

)
,
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and therefore
f̂
(
u.(λ1+ x)

)
=

(
ψ(u)

)
.
(
f̂(λ1+ x)

)

showing the second equation ψ◦Φ(1) = Φ′◦f̂ of the morphism equation (2.13).

It follows that the pair (f̂ , ψ) is a morphism of augmented rack bialgebras.
We therefore have the following

Theorem 2.4 There is a left adjoint functor, UAR, for the functor Prim (as-
sociating to each augmented rack bialgebra its Leibniz algebra of all primitive
elements). For a given Leibniz algebra

(
h, [ , ]

)
, the object UAR(h) –which we

shall call the Universal Augmented Rack Bialgebra of the Leibniz
algebra

(
h, [ , ]

)
– has the usual universal properties.

The relationship between the different notions (taking into account also
Remark (2.3)) is resumed in the following diagram:

Lie
U //

� _

i

��

Hopf
� _

j

��

Prim
oo

Slike //
Grp

K[−]
oo

� _

��

Leib
UAR

∞

//
RackBialg

Prim
oo

Slike //
Racks

K[−]
oo

where UAR∞ is not left-adjoint to Prim, while UR is, but does not render
the square commutative. There is a similar diagram for augmented notions.

2.3 Relation with bar-unital di(co)algebras

In the beginning of the nineties the ‘enveloping structure’ associated to Leib-
niz algebras has been the structure of dialgebras, see e.g. [20]. We shall
show in this section that rack bialgebras and certain cocommutative Hopf
dialgebras are strongly related.

2.3.1 Left-unital bialgebras and right Hopf algebras

Let (B,∆, ǫ, 1, µ) be a nonassociative left-unital C3-bialgebra. It will be
called left-unital C3-bialgebra iff µ is associative. In general, (B,∆, ǫ, 1, µ)
need not be unital, i.e. we do not have in general a1 = a. However, it is
easy to see that the sub-module B1 of B is a C3-subcoalgebra of (B,∆, ǫ, 1),
and a subalgebra of (B, µ) such that (B1,∆′, ǫ′, 1, µ′) is a unital (i.e. left-
unital and right-unital) bialgebra. Here ∆′, ǫ′, and µ′ denote the obvious
restrictions and corestrictions.
In a completely analogous way right-unital C3-bialgebras are defined.
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A left-unital (resp. right unital) cocommutative C3-bialgebra (B,∆, ǫ, 1, µ)
will be called a cocommutative right Hopf algebra (resp. a cocommutative left
Hopf algebra), (B,∆, ǫ, 1, µ, S), iff there is a right antipode S (resp. left an-
tipode S), i.e. there is a K-linear map S : B → B which is a morphism of
C3-coalgebras (B,∆, ǫ, 1) to itself such that

id ∗ S = 1ǫ
(
resp. S ∗ id = 1ǫ

)
(2.41)

where ∗ denotes the convolution product (see Appendix A for definitions). It
will become clear a posteriori that right or left antipodes are always unique,
see Lemma 2.2.
A first class of examples is of course the well-known class of all cocommutative
Hopf algebras (H,∆, ǫ, 1, µ, S) for which 1 is a unit element, and S is a right
and left antipode.
Secondly it is easy to check that every C4-coalgebra (C,∆, ǫ, 1) equipped
with the left-trivial multiplication (resp. right trivial multiplication) µ0 (see
eqn (2.3)) and trivial right antipode (resp. trivial left antipode) S0 defined by
S0(x) = ǫ(x)1 for all x ∈ C (in both cases) is a cocommutative right Hopf
algebra (resp. cocommutative left Hopf algebra) called the cocommutative
left-trivial right Hopf algebra (resp. right-trivial left Hopf algebra) defined
by the C4-coalgebra (C,∆, ǫ, 1).

We have the following elementary properties showing in particular that
each right (resp. left) antipode is unique:

Lemma 2.2 Let (H,∆, ǫ, 1, µ, S) be a cocommutative right Hopf algebra.

1. S ∗ (S ◦S) = 1ǫ, S ◦S = id ∗1ǫ, S ∗1ǫ = S, and S ◦S ◦S = S, which
for each a ∈ H implies

∑
(a) a

(1)S(a(2)) = 1ǫ(a) =
∑

(a) S(a
(1))a(2)1. It

follows that right antipodes are unique.

2. For all a, b ∈ H: S(ab) = S(b)S(a).

3. For any element c ∈ H, c is a generalized idempotent if and only if
c =

∑
(c) S(c

(1))c(2) iff there is x ∈ H with c =
∑

(x) S(x
(1))x(2), and all

these three statements imply that c is a generalized left unit element.

Proof: 1. Since S is a coalgebra morphism, it preserves convolutions when
composing from the right. This gives the first equation from statement 1. Hence
the elements id, S, and S ◦ S satisfy the hypotheses of the elements a, b, c of
Lemma B.1 in the left-unital convolution semigroup

(
HomK(H,H), ∗,1ǫ

)
, whence

the second and third equation of statement 1. are immediate, and the fourth
follows from composing the second from the right with S and using the third.
Clearly S is unique according to Lemma B.1.
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2. Again the elements µ, S ◦ µ and (id ∗ 1ǫ) ◦ µ satisfy the hypotheses on the
elements a, b, c of Lemma B.1 in the left-unital convolution semigroup

(
HomK(H⊗

H,H), ∗,1(ǫ⊗ ǫ)
)
(using the fact that µ is a morphism of coalgebras) whence S ◦µ

is the unique right inverse of µ. A computation shows that also µ ◦ τ ◦ (S ⊗ S) is
a right inverse of µ, whence we get statement 2. by uniqueness of right inverses
(Lemma B.1).
3. The second statement obviously implies the third, and it is easy to see by
straight-forward computations that the third statement implies the first and the
second. Conversely, if c ∈ H is a generalized idempotent, i.e. c = (µ ◦∆)(c), we
get –since µ ◦∆ is a morphism of C3-coalgebras– that

∑

(c)

S(c(1))c(2) =
∑

(c)

S(c(1))
(
(µ ◦∆)(c)

)(2)
=

∑

(c)

S(c(1))(µ ◦∆)
(
c(2)

)

=
∑

(c)

S(c(1))c(2)c(3) =
∑

(c)

S(c(1))c(2)1c(3)
Lemma 2.2,1.

= c,

and all the three statements are equivalent. In order to see that every such element
c is a generalized left unit element pick y ∈ H and

cy =
∑

(x)

S(x(1))x(2)y =
∑

(x)

S(x(1))x(2)1y
Lemma 2.2,1.

= ǫ(x)y = ǫ(c)y

since obviously ǫ(c) = ǫ(x), so c is a generalized left unit element. ✷

There is the following right Hopf algebra analogue of the Suschkewitsch
decomposition theorem for right groups (see Appendix B):

Theorem 2.5 Let (H,∆, ǫ, 1, µ, S) a cocommutative right Hopf algebra. Then
the following holds:

1. The K-submodule (H1,∆|H1, ǫ|H1, µH1⊗H1, S|H1) is a unital Hopf sub-
algebra of (H,∆, ǫ, 1, µ, S).

2. The K-submodule EH := {x ∈ H | x is a generalized idempotent} is
a right Hopf subalgebra of H equal to the left-trivial right Hopf algebra
defined by the C4-coalgebra (EH,∆|EH

, ǫ|EH
, 1ǫ|EH

).

3. The map

Ψ : H → H1⊗ EH : x 7→
∑

(x)

x(1)1⊗ S(x(2))x(3)

is an isomorphism of right Hopf algebras whose inverse Ψ−1 is the re-
striction of the multiplication map.
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Proof: 1. It is easy to see that H1 equipped with all the restrictions is a unital
bialgebra. Note that for all a ∈ H

(
S|H1 ∗ idH1)

)
(a1) =

((
S ∗ idH

)
(a)

)
1 =

(
S ∗ idH ∗ (1ǫ)

)
(a)

Lemma 2.2
= (1ǫ)(a) = (1ǫ)(a1) = (1ǫ|H1)(a1)

whence S|H1 is also a left antipode. It follows that H1 is a Hopf algebra.
2. Since the property of being an generalized idempotent is a K-linear condition,
it follows that EH is a K-submodule. Moreover since each c ∈ EH is of the general
form c =

∑
(x) S(x

(1))x(2), x ∈ H, and since the map ι : H → H defined by

ι(x) = S(x(1))x(2) is a idempotent morphism of C3-coalgebras, we get

∆(c) = ∆
(
ι(c)

)
= (ι⊗ ι)

(
∆(x)

)

showing that EH is a C3-subcoalgebra of H. Furthermore, since every element
of EH is a generalized left unit element (Lemma 2.2, 3.), the restriction of the
multiplication of µ of H to EH ⊗EH is left trivial. Finally,

S(c) = S
(
ι(c)

)
=

∑

(c)

S
(
S(c(1))c(2)

) Lemma 2.2, 2.
=

∑

(c)

S(c(1))S
(
S(c(2))

)

Lemma 2.2, 1.
=

∑

(c)

S(c(1))c(2)1
Lemma 2.2, 1.

= ǫ(c)1 = S0(c),

showing that the the restriction of S to EH is the trivial right antipode.
3. It is clear from the two preceding statements that Ψ is a well-defined linear
map into the tensor product of two cocommutative right Hopf algebras. We have
for all x ∈ H

(µ ◦Ψ)(x) =
∑

(x)

x(1)1S(x(2))x(3)
Lemma 2.2, 1.

=
∑

(x)

ǫ(x(1))x(2) = x

and for all a ∈ H, c ∈ EH the term (Ψ ◦ µ)(a1⊗ c) is equal to
∑

(a)(c)

(
a(1)c(1)1

)
⊗

(
S(c(2))S(a(2))a(3)c(3)

)

=
∑

(c)

(
ac(1)1

)
⊗

(
S(c(2))c(3)

)
=

∑

(c)

(a1)⊗
(
S(c(1))c(2)

)
= (a1)⊗ c

because all the terms S(a(2))a(3) and the components c(1), . . . of iterated comul-
tiplications of generalized idempotents can be chosen in EH (since the latter has
been shown to be a subcoalgebra), and are thus generalized left unit elements
(Lemma 2.2, 3.). Hence Ψ is a K-linear isomorphism. Moreover, it is easy to see
from its definition that Ψ is a morphism of C3-coalgebras.
Next we compute for all a, a′ ∈ H and c, c′ ∈ EH :

Ψ−1
((

(a1) ⊗ c
)(
(c′1)⊗ f ′

))
= Ψ−1

(
(a1a′1)⊗ ǫ(c)c′

)
= ǫ(c)aa′c′,

28



and -since c is a generalized left unit element–

Ψ−1
(
(a1)⊗ c

)
Ψ−1

(
(a′1)⊗ c′

)
= acac′ = ǫ(c)aa′c′,

showing that Ψ−1 and hence Ψ is a morphism of left-unital algebras. Finally we
obtain

(S|H1 ⊗ S0)
(
Ψ(x)

)
=

∑

(x)

(
S(x(1))1

)
⊗

(
ǫ
(
S(x(2))x(3)

)
1
)
= S(x)1⊗ 1,

Ψ
(
S(x)

)
=

∑

(x)

(
S(x(1))1

)
⊗

(
S(S(x(2)))S(x(3))

)
= S(x)1⊗ 1,

thanks to Lemma 2.2, and Ψ intertwines right antipodes. ✷

Note that the K-submodule of all generalized left unit elements of a right
Hopf algebra H is given by K1⊕

(
Φ−1(H1⊗E+

H)
)
and thus in general much

bigger than the submodule EH of all generalized idempotents.
As it is easy to see that every tensor product H⊗C of a unital cocommu-

tative Hopf algebra H and a C4-coalgebra C (equipped with the left-trivial
multiplication and the trivial right antipode) is a right Hopf algebra, it is a
fairly routine check –using the preceding Theorem 2.5– that the category of
all cocommutative right Hopf algebras is equivalent to the product category
of all cocommutative Hopf algebras and of all C4-coalgebras.
In the sequel, we shall need the dual left Hopf algebra version where all the
formulas have to be put in reverse order: Here every left Hopf algebra is
isomorphic to C ⊗H .

2.3.2 Dialgebras and Rack Bialgebras

Recall (cf. e.g. [20]) that a dialgebra over K is a K-module D equipped with
two associative multiplications ⊢,⊣: A⊗ A → A (written a⊗ b 7→ a ⊢ b and
a⊗ b 7→ a ⊣ b) satisfying for all a, b, c ∈ A:

(a ⊢ b) ⊢ c = (a ⊣ b) ⊢ c, (2.42)

a ⊣ (b ⊣ c) = a ⊣ (b ⊢ c), (2.43)

(a ⊢ b) ⊣ c = a ⊢ (b ⊣ c). (2.44)

An element 1 of A is called a bar-unit element of the dialgebra (A,⊢,⊣) and
(A, 1,⊢,⊣) is called a bar-unital dialgebra iff in addition the following holds

1 ⊢ a = a, (2.45)

a ⊣ 1 = a, (2.46)
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for all a ∈ A. Moreover, we shall call a bar-unital dialgebra (A, 1,⊢,⊣)
balanced iff in addition for all a ∈ A

a ⊢ 1 = 1 ⊣ a. (2.47)

Clearly each associative algebra is a dialgebra upon setting ⊢=⊣ equal to the
given multiplication. The class of all (bar-unital and balanced) dialgebras
forms a category where morphisms preserve both multiplications and map
the initial bar-unit to the target bar-unit.

These algebras had been introduced to have a sort of ‘associative ana-
logue’ for Leibniz algebras. More precisely, there is the following important
fact, which can easily be checked, see e.g. [20]:

Proposition 2.4 Let (A,⊢,⊣) be a dialgebra. Then the K-module A equipped
with the bracket [ , ] : A⊗A→ A, written [a, b],

[a, b] := a ⊢ b− b ⊣ a (2.48)

is a Leibniz algebra, denoted by A−.

In fact this construction is well-known to give rise to a functor A → A−

from the category of all dialgebras to the category of all Leibniz algebras in
complete analogy to the obvious functor from the category of all associative
algebras to the category of all Lie algebras.

An important construction of (bar-unital) dialgebras is the following:

Example 2.5
Let (B, 1B) be a unital associative algebra over K, and let A be a K-module
which is a B-bimodule, i.e. there are K-linear maps B⊗A→ A and A⊗B →
A (written (b ⊗ x) 7→ bx and (x ⊗ b) 7→ xb) equipping A with the structure
of a left B-module and a right B-module such that (bx)b′ = b(xb′) for all
b, b′ ∈ B and for all x ∈ A. Suppose in addition that there is a bimodule
map Φ : A → B, i.e. Φ(bxb′) = bΦ(x)b′ for all b, b′ ∈ B and for all x ∈ A.
Then it is not hard to check that the two multiplications ⊢,⊣: A ⊗ A → A
defined by

x ⊢ y := Φ(x)y and x ⊣ y := xΦ(y) (2.49)

equip A with the structure of a dialgebra. If in addition there is an element
1 ∈ A such that Φ(1) = 1B, then (A, 1,⊢,⊣) will be a bar-unital dialgebra.
We shall call this structure (A,Φ, B) an augmented dialgebra. ✸

In fact, every dialgebra (A,⊢,⊣) arises in that fashion: Consider the
K-submodule I ⊂ A whose elements are linear combinations of arbitrary
product expressions

p
(
a1, . . . , ar−1, (ar ⊢ br − ar ⊣ br), ar+1, . . . , an

)
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(where all reasonable parentheses and symbols ⊢ and ⊣ are allowed) for any
two strictly positive integer r ≤ n, and a, . . . , an, br ∈ A. It follows that the
quotient module A/I is equipped with an associative multiplication induced
by both ⊢ and ⊣. Let A1

ass be equal to A/I if A is bar-unital: In that case,
the bar-unit 1 of A projects on the unit element of A/I; and let A1

ass be equal
to A/I ⊕K (adjoining a unit element) in case A does not have a bar-unit.
Thanks to the defining equations (2.42), (2.43), (2.44), it can be shown by
induction that for any strictly positive integer n, any a1, . . . , an, a ∈ A, and
any product expression made of the preceding elements upon using ⊢ or ⊣

p(a1, . . . , an) ⊢ a = a1 ⊢ · · · ⊢ an ⊢ a = (a1 ⊣ · · · ⊣ an) ⊢ a,

a ⊣ p(a1, . . . , an) = a ⊣ a1 ⊣ · · · ⊣ an = a ⊣ (a1 ⊢ · · · ⊢ an),

proving in particular that I acts trivially from the left (via ⊢) and from the
right (via ⊣) on A such that there is a well-defined A1

ass-bimodule structure
on A such that the natural map ΦA : A → A1

ass is a bimodule morphism.
Hence (A,ΦA, A

1
ass) is always an augmented dialgebra, and the assignment

A→ (A,ΦA, A
1
ass) is known to be a faithful functor.

Note also that this construction allows to adjoin a bar-unit to a dialgebra
(A,⊢,⊣): Consider the K-module Ã := A ⊕ A1

ass with the obvious A1
ass-

bimodule structure α.(b + β) = α.b + αβ and (b + β).α = b.α + βα for all
α, β ∈ A1

ass and b ∈ A. Observe that the obvious map ΦÃ : Ã→ A1
ass defined

by ΦÃ(b + β) = ΦA(b) + β is an A1
ass-bimodule map, and that 1 = 1A1

ass
is

a bar-unit. The bar-unital augmented dialgebra (Ã,ΦÃ, A
1
ass) is easily seen

to be balanced. There are nonbalanced bar-unital dialgebras as can be seen
from the augmented bar-unital dialgebra example (B ⊗ B, 1B ⊗ 1B, µB, B)
where (B, 1, µB) is any unital associative algebra and the bimodule action is
defined by b.(b1 ⊗ b2).b

′ := (bb1)⊗ (b2b
′) for all b, b′, b1, b2 ∈ B.

Again, in case the dialgebra (A,⊢,⊣, 1) is bar-unital and balanced, note
that A ⊢ 1 = 1 ⊣ A is an associative unital subalgebra A′ of A whose
multiplication is induced by both ⊢ and ⊣, i.e. a′ ⊢ b′ = a′ ⊣ b′ for all
a′, b′ ∈ A′. Since the K-linear map πA : A → A : a 7→ a ⊢ 1 = 1 ⊣ a
descends to a surjective morphism of associative algebras A1

ass → A′ by the
above, it is clear that the ideal I contains the kernel of πA. On the other hand,
if a ∈ Ker(πA) then 0 = π(a) = 1 ⊢ a, and obviously a = 1 ⊢ a− 1 ⊣ a ∈ I,
thus inducing a useful isomorphism A1

ass
∼= A′, and thus a subalgebra injection

iA : A1
ass → A : ΦA(a) 7→ a ⊢ 1 which is a right inverse to the projection ΦA,

i.e. ΦA ◦ iA = idA1
ass
.

In this work, we also have to take into account coalgebra structures and
thus define the following:

Definition 2.4 Let (A,∆, ǫ, 1) be cocommutative C3-coalgebra (a C4-coalgebra)
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and two K-linear maps ⊢,⊣: A⊗A→ A. Then (A,∆, ǫ, 1,⊢,⊣) will be called
a cocommutative bar-unital di-coalgebra if and only if

1. (A, 1,⊢,⊣) is a bar-unital balanced dialgebra.

2. Both ⊢ and ⊣ are morphisms of C3-coalgebras.

If in addition there is a morphism of C3-coalgebras S : A → A such that
(A,∆, ǫ, 1,⊢, S) is a cocommutative right Hopf algebra and (A,∆, ǫ, 1,⊣, S)
is a cocommutative left Hopf algebra, then (A,∆, ǫ, 1,⊢,⊣, S) is called a co-
commutative Hopf dialgebra.

We have used a relatively simple notion of one single compatible coalgebra
structure motivated from differential geometry, see Section 3. In contrast
to that, F. Goichot uses two a priori different coalgebra structures, see [12].
Moreover, a slightly more general context would have been to demand the
existence of two different antipodes, a right antipode S for ⊢, and a left an-
tipode S ′ for ⊣. The theory –including the classification in terms of ordinary
Hopf algebras– could have been done as well, but we have refrained from
doing so since it is not hard to see that such a more general Hopf dialgebra
is balanced iff S = S ′. This fact is crucial in the following refinement of
Proposition 2.4:

Proposition 2.5 Let (A,∆, ǫ, 1,⊢,⊣, S) be cocommutative Hopf dialgebra.
Then the submodule of all primitive elements of A, Prim(A), is a Leibniz
subalgebra of A equipped with the bracket (2.48).

Proof: Let x, y ∈ A be primitive. Then, using that ⊢ and ⊣ are morphisms of
coalgebras, we get

∆(x ⊢ y − y ⊣ x) = 1⊗ (x ⊢ y − y ⊣ x) + (x ⊢ y − y ⊣ x)⊗ 1

+(x ⊢ 1)⊗ y + y ⊗ (x ⊢ 1)− y ⊗ (1 ⊣ x)− (1 ⊣ x)⊗ y

= 1⊗ (x ⊢ y − y ⊣ x) + (x ⊢ y − y ⊣ x)⊗ 1

because A is balanced, and therefore x ⊢ y − y ⊣ x is primitive. ✷

The first relationship with rack bialgebras is the following simple gener-
alization of a cocommutative Hopf algebra equipped with the adjoint repre-
sentation:

Proposition 2.6 Let (A,∆, ǫ, 1,⊢,⊣, S) be cocommutative Hopf dialgebra.
Define the following multiplication µ : A⊗ A→ A by

µ(a⊗ b) := a ⊲ b :=
∑

(a)

(a(1) ⊢ b) ⊣
(
S(a(2))

)
. (2.50)

Then we have the following:
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1. The map ✄ defines on the K-module A two left module structures, one
with respect to the algebra (A, 1,⊢), and one with respect to the algebra
(A, 1,⊣), making the Hopf-dialgebra (A,∆, ǫ, 1,⊢,⊣, S) a module-Hopf
dialgebra, i.e.

a ⊲ (b ⊲ c) = (a ⊢ b) ⊲ c = (a ⊣ b) ⊲ c (2.51)

∆(a ⊲ b) =
∑

(a),(b)

(a(1) ⊲ b(1))⊗ (a(2) ⊲ b(2)) (2.52)

a ⊲ (b ⊢ c) =
∑

(a)

(a(1) ⊲ b) ⊢ (a(2) ⊲ c) (2.53)

a ⊲ (b ⊣ c) =
∑

(a)

(a(1) ⊲ b) ⊣ (a(2) ⊲ c) (2.54)

(2.55)

2. (A,∆, ǫ, 1, µ) is a cocommutative rack bialgebra.

Proof: 1. First of all we have

µ = µ⊣ ◦ (µ⊢ ⊗ S) ◦ (idA ⊗ τA,A) ◦ (∆ ⊗ idA)

where µ⊢ and µ⊣ stand for the multiplication maps ⊢ and ⊣, and this is clearly
a composition of morphisms of C3-coalgebras whence µ is a morphism of C3-
coalgebras proving eqn (2.52). Next, there is clearly 1 ⊲ b = b for all b ∈ A, and,
since the dialgebra is balanced, we get for all a ∈ A

a ⊲ 1 =
∑

(a)

(a(1) ⊢ 1) ⊣
(
S(a(2))

)
=

∑

(a)

1 ⊣ a(1) ⊣
(
S(a(2))

)

=
∑

(a)

1 ⊣
(
a(1) ⊢

(
S(a(2))

))
= ǫ(a)1 ⊣ 1 = ǫ(a)1.

Next, let a, b, c ∈ A. Then

a ⊲ (b ⊲ c) =
∑

(a),(b)

(
a(1) ⊢

(
(b(1) ⊢ c) ⊣ S(b(2))

))
⊣ S(a(2))

=
∑

(a),(b)

((
(a(1) ⊢ b(1)) ⊢ c

)
⊣
(
S(b(2)) ⊣ S(a(2))

))

=
∑

(a),(b)

((
(a(1) ⊢ b(1)) ⊢ c

)
⊣
(
S(b(2)) ⊢ S(a(2))

))

=
∑

(a),(b)

((
(a(1) ⊣

⊢ b
(1)) ⊢ c

)
⊣
(
S(a(2) ⊣

⊢ b
(2))

))

= (a ⊣
⊢ b) ⊲ c, (2.56)
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proving eqs (2.51). Next, for all a, a′, a′′ ∈ A, we get

∑

(a)

(a(1) ⊲ a′) ⊣
⊢ (a(2) ⊲ a′′) =

∑

(a)

(
(a(1) ⊢ a′) ⊣ S(a(2))

)
⊣
⊢

(
(a(3) ⊢ a′′) ⊣ S(a(4))

)

=
∑

(a)

(a(1) ⊢ a′) ⊣
⊢

((
S(a(2)) ⊣

⊢ a
(3)

)
⊣
⊢

(
a′′ ⊣ S(a(4))

))

=
∑

(a)

(a(1) ⊢ a′) ⊣
⊢

((
ǫ(a(2))1

)
⊣
⊢

(
a′′ ⊣ S(a(3))

))

=
∑

(a)

(
a(1) ⊢ (a′ ⊣

⊢ a
′′)
)
⊣ S(a(2)) = a ⊲ (a′ ⊣

⊢ a
′′),

where –in the second to last equation– we have used the left antipode identity for
the case ⊣ and the fact that

∑
(a) S(a

(1)) ⊢ a(2) is a generalized left unit element

for the case ⊢. It follows that (A, ⊣
⊢ ) is an A-module-algebra proving eqs (2.53)

and (2.54).
2. It remains to prove self-distributivity: For all a, b, c ∈ A, we get

∑

(a)

(a(1) ⊲ b) ⊲ (a(2) ⊲ c)
(2.51)
=

∑

(a)

(
(a(1) ⊲ b) ⊣ a(2)

)
⊲ c,

and in the end

∑

(a)

(a(1) ⊲ b) ⊣ a(2) =
∑

(a)

(
(a(1) ⊢ b) ⊣ S(a(2))

)
⊣ a(3)

=
∑

(a)

(a(1) ⊢ b) ⊣
(
S(a(2)) ⊣ a(3)

)

=
∑

(a)

(a(1) ⊢ b) ⊣
(
ǫ(a(2))1

)
= a ⊢ b

proving the self-distributivity identity. ✷

The next theorem relates augmented cocommutative rack bialgebras with
cocommutative Hopf dialgebras:

Theorem 2.6 Let (B,ΦB, H, ℓ) be a cocommutative augmented rack bialge-
bra. Then the K-module (B ⊗H,∆B⊗H , ǫB ⊗ ǫH , 1B ⊗ 1H ,Φ, H) will be an
augmented cocommutative Hopf dialgebra by means of the following defini-
tions. Here we use Example 2.5 and take h, h′ ∈ H and b ∈ B:

1. Φ : B ⊗H → H : (b⊗ h) 7→ Φ(b⊗ h) := ΦB(b)h.

2. h′.(b⊗ h) :=
∑

(h′)((h
′)(1).b)⊗ ((h′)(2)h) and (b⊗ h).h′ := b⊗ (hh′).
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3. S(b⊗ h) := 1B ⊗ SH
(
ΦB(b)h

)
.

Moreover, the Leibniz bracket on the K-module of all primitive elements of
B⊗H, a := Prim(B)⊕Prim(H), is computed as follows for all x, y ∈ Prim(B)
and all ξ, η in the Lie algebra Prim(H) (writing x and ξ for the more precise
x⊗ 1H and 1B ⊗ ξ)

[x+ ξ, y + η] =
(
[x, y] + ξ.y

)
+
(
[ΦB(x), η] + [ξ, η]

)
(2.57)

where each bracket is of the form (2.48). Note that this Leibniz algebra is
split over the Lie subalgebra Prim(H), the complementary two-sided ideal
{x− ΦB(x) | x ∈ Prim(B)} being in the left center of a.

Proof: It is clear from the definitions that condition 2 defines a H-bimodule
structure on C⊗H making it into a module C3-coalgebra. Moreover, we compute
for all h, h′, h′′ ∈ H and b ∈ B

Φ
(
h′.(b⊗ h).h′′

)
=

∑

(h′)

Φ
(
((h′)(1).b)⊗ ((h′)(2)hh′′) =

∑

(h′)

ΦB((h
′)(1).b)(h′)(2)hh′′

=
∑

(h′)

ad(h′)(1)
(
ΦB(b)

)
(h′)(2)hh′′ =

∑

(h′)

(h′)(1)ΦB(b)SH((h
′)(2))(h′)(3)hh′′

=
∑

(h′)

(h′)(1)ΦB(b)ǫH((h
′)(2))hh′′ = h′ΦB(b)hh

′′ = h′Φ(b⊗ h)h′′,

whence Φ is a morphism of H-bimodules. Next, we get for all b ∈ B and h ∈ H:

(
idB⊗H ∗⊢ S

)
(b⊗ h) =

∑

(b)(h)

(b(1) ⊗ h(1)) ⊢ S(b(2) ⊗ h(2))

=
∑

(b)(h)

Φ(b(1) ⊗ h(1)).
(
1B ⊗ SH

(
ΦB(b

(2))h(2)
))

=
∑

(b)(h)

(
ΦB(b

(1))h(1)
)
.
(
1B ⊗ SH

(
ΦB(b

(2))h(2)
))

=
∑

(b)(h)

ǫH

(
ΦB(b

(1))h(1)
)
1B ⊗

(
ΦB(b

(2))h(2)SH
(
ΦB(b

(3))h(3)
))

= 1B ⊗
(
ǫB(b)ǫH(h)

)
1H =

(
ǫB ⊗ ǫH

)
(b⊗ h)

(
1B ⊗ 1H

)
,
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proving the right antipode identity, and

(
S ∗⊣ idB⊗H

)
(b⊗ h) =

∑

(b)(h)

S(b(1) ⊗ h(1)) ⊣ (b(2) ⊗ h(2))

=
∑

(b)(h)

(
1B ⊗ SH

(
ΦB(b

(1))h(1)
))
.Φ(b(2) ⊗ h(2))

=
∑

(b)(h)

(
1B ⊗ SH

(
ΦB(b

(1))h(1)
))
.
(
ΦB(b

(2))h(2)
)

=
∑

(b)(h)

1B ⊗
(
SH

(
ΦB(b

(1))h(1)
)
ΦB(b

(2))h(2)
)

= 1B ⊗
(
ǫB(b)ǫH(h)

)
1H =

(
ǫB ⊗ ǫH

)
(b⊗ h)

(
1B ⊗ 1H

)
,

proving the left antipode identity. Finally for all h ∈ H we get

h.(1B ⊗ 1H) =
∑

(h)

(ǫH(h
(1))1B)⊗ h(2) = 1B ⊗ h = (1B ⊗ 1H).h

implying that the bar-unital dialgebra is balanced.
Formula (2.57) is straight-forward:

[x⊗ 1H + 1B ⊗ ξ, y ⊗ 1H + 1B ⊗ η]

= (x⊗ 1H) ⊢ (y ⊗ 1H)− (y ⊗ 1H) ⊣ (x⊗ 1H)

+(x⊗ 1H) ⊢ (1B ⊗ η])− (1B ⊗ η]) ⊣ (x⊗ 1H)

+(1B ⊗ ξ) ⊢ (y ⊗ 1H)− (y ⊗ 1H) ⊣ (1B ⊗ ξ)

+(1B ⊗ ξ) ⊢ (1B ⊗ η)− (1B ⊗ η) ⊣ (1B ⊗ ξ)

= (ΦB(x).y)⊗ 1H + y ⊗ ΦB(x)− y ⊗ ΦB(x)

+ǫB(x)1B ⊗ η + 1B ⊗
(
ΦB(x)η

)
− 1B ⊗

(
ηΦB(x)

)

+(ξ.y)⊗ 1H + y ⊗ ξ − y ⊗ ξ

ǫH(ξ)1B ⊗ η + 1B ⊗ (ξη) − 1B ⊗ (ηξ)

= [x, y]⊗ 1H + 1B ⊗
[
ΦB(x), η

]
+ (ξ.y)⊗ 1H + 1B ⊗ [ξ, η],

because primitives are killed by counits, and the formula is proved.

✷

A lengthy, but straight-forward reasoning shows that the above construction
assigning (B,ΦB, H, ℓ) → (B⊗H,Φ, H) defines a covariant functor from the
category of all cocommutative rack bialgebras to the category of all cocom-
mutative Hopf dialgebras.
A particular case of the preceding theorem is obtained by picking any C4-
coalgebra (B,∆B, ǫB, 1B) such that there is any H-module coalgebra struc-
ture ℓ on B (such that h.1B = ǫH(h)1B) and by choosing the trivial map
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ΦB(b) = ǫB(b)1H : It follows that (B,ΦB, H, ℓ) is an augmented rack bial-
gebra with left-trivial multiplication. It turns out that the Hopf dialgebra
B⊗H formed out of this is already isomorphic to the general cocommutative
Hopf dialgebra:

Theorem 2.7 Let (A,∆, ǫ, 1,⊢,⊣, S) be a cocommutative Hopf dialgebra.
Let EA be the C3-subcoalgebra of all generalized idempotent elements with
respect to ⊣, and let HA = 1 ⊣ A be the Hopf subalgebra according to the
Suschkewitsch decomposition of the left Hopf algebra (A,∆, ǫ, 1,⊣, S), see
Theorem 2.5. Then we have:

1. By means of the Suschkewitsch isomorphism A → EA ⊗ HA for the
left Hopf algebra (A,∆, ǫ, 1,⊣, S), we can transfer the cocommutative
dialgebra structure of A to EA⊗HA: There is a well-defined left module-
coalgebra action ℓ of HA on EA defined by (for all c ∈ EH , h ∈ HA,
a ∈ A such that h = 1 ⊣ a)

ℓh(c) = h.c =
∑

(a)

(a(1) ⊢ c) ⊣ S(a(2)), (2.58)

and the transferred multiplications ⊢′ and ⊣′ and the antipode S ′ on
EA ⊗HA read (for all c, c′ ∈ EH , h, h

′ ∈ HA)

(c⊗ h) ⊢′ (c′ ⊗ h′) = ǫ(c)
∑

(h)

(h(1).c′)⊗ (h(2)h′), (2.59)

(c⊗ h) ⊣′ (c′ ⊗ h′) = ǫ(c′)c⊗ (hh′), (2.60)

S ′(c⊗ h) = ǫ(c)
(
1EA

⊗
(
SHA

(h)
)
. (2.61)

2. The K-linear map A→ 1 ⊣ A : a 7→ 1 ⊣ a descends to an isomorphism
of associative algebras A1

ass
∼= HA.

3. S.Covez, 2006: The Leibniz subalgebra Prim(A) of A (equipped with
the Leibniz bracket (2.48) is a split semidirect sum out of the two-
sided ideal Prim(EA) ⊂ z

(
Prim(A)

)
and the Lie subalgebra Prim(HA),

i.e. for all z, z′ ∈ Prim(EA) and ξ, ξ
′ ∈ Prim(HA), we have

[z + ξ, z′ + ξ′] = ξ.z + [ξ, ξ′]. (2.62)

4. Let (B,ΦB, H, ℓ) be a cocommutative augmented rack bialgebra. Then
for the Hopf dialgebra B ⊗ H of Theorem 2.6, we get that the Hopf
subalgebra HB⊗H equals 1B ⊗H ∼= H, and

EB⊗H =




∑

(b)

b(1) ⊗
(
SH

(
ΦB(b

(2))
))

∈ B ⊗H

∣∣∣∣∣∣
b ∈ B





37



which is isomorphic to B as a C4-coalgebra of B ⊗H.

Proof: 1. Note first that the right hand side of eqn (2.58) is just a ⊲ c of
Proposition 2.6 which had been shown to be a left module-Hopf dialgebra action
of (A,⊣) and of (A,⊢) on A. Observe that for all a, a′ ∈ A

(1 ⊣ a) ⊲ a′
(2.51)
= 1 ⊲ (a ⊲ a′) = a ⊲ a′

whence the HA-action ℓ is well-defined on A. Moreover we compute for all h ∈ HA

and all a, a′, a′′ ∈ A such that h = 1 ⊣ a:
∑

(h)

(h(1).a′) ⊣ (h(2).a′′) =
∑

(a)

(a(1) ⊲ a′) ⊣ (a(2) ⊲ a′′)

(2.54)
= a ⊲ (a′ ⊣ a′′) = h.(a′ ⊣ a′′)

whence (A,⊣) is also a HA-module-algebra. Now let c ∈ EH . By definition, c is
a generalized idempotent (w.r.t. ⊣), hence c =

∑
(c) c

(1) ⊣ c(2), and thus for all
h ∈ H

h.c = h.
∑

(c)

c(1) ⊣ c(2) =
∑

(h),(c)

(h(1).c(1)) ⊣ (h(2).c(2)) =
∑

(h.c)

(h.c)(1) ⊣ (h.c)(2)

whence h.c is also in EA, and EA is a HA-submodule of A.
Recall the Suschkewitsch decomposition of the left Hopf algebra (A,∆, ǫ,1,⊢, S)
where one can use Theorem 2.5 and dualize all the formulas:

Ψ : A→ EA ⊗HA → A : a 7→
∑

(a)

(
a(1) ⊣ S(a(2))

)
⊗ (1 ⊣ a(3)).

Ψ−1 : EA ⊗HA → A :
(
c⊗ (1 ⊣ a)

)
7→ x ⊣ a.

Formulas (2.60) and (2.61) consequences of Theorem 2.5. The only formula which
remains to be shown is eqn (2.59). Note first that every generalized idempotent
c ∈ EH (w.r.t. ⊣) is also a generalized idempotent with respect to ⊢. Indeed, since
all the components c(1) and c(2) in ∆(c) =

∑
(c) c

(1)⊗ c(2) can be chosen in EH, we
get

∑

(c)

c(1) ⊢ c(2) =
∑

(c)

(
c(1) ⊣ S(c(2))

)
⊢ c(3) =

∑

(c)

(
c(1) ⊢ S(c(2))

)
⊢ c(3)

=
∑

(c)

ǫ(c(1))1 ⊢ c(2) = c.

Next for all c, c′ ∈ EH, h, h
′ ∈ HH, and a, a′ ∈ a such that 1 ⊣ a = h and

1 ⊣ a′ = h′, we get –since c is a generalized left unit element (w.r.t. ⊢)–

(c⊗ h) ⊢′ (c′ ⊗ h′) = Ψ
(
Ψ−1(c⊗ h) ⊢ Ψ−1(c′ ⊗ h′)

)
= Ψ

(
(c ⊣ a) ⊢ (c′ ⊣ a′)

)

= Ψ
(
(c ⊢ a) ⊢ (c′ ⊣ a′)

)
= ǫ(c)Ψ

(
a ⊢ (c′ ⊣ a′)

)
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and this is equal to

ǫ(c)
∑

(a),(c′),(a′)

((
a(1) ⊢ ((c′)(1) ⊣ (a′)(1))

)
⊣
(
S
(
a(2) ⊢ ((c′)(2) ⊣ (a′)(2))

)))

⊗
(
1 ⊣

(
a(3) ⊢ ((c′)(3) ⊣ (a′)(3))

))

= ǫ(c)
∑

(a),(c′),(a′)

(
a(1) ⊢

(
(c′)(1) ⊣ ((a′)(1) ⊣ S((a′)(2))) ⊣ S((c′)(2)) ⊣ S(a(2))

))

⊗
(
1 ⊣

(
(a(3) ⊣ (c′)(3)) ⊣ (a′)(3)

))

= ǫ(c)
∑

(a),(c′)

(
a(1) ⊢

(
((c′)(1) ⊣ S((c′)(2))) ⊣ S(a(2))

))

⊗
(
1 ⊣

(
a(3) ⊣ a′

))

= ǫ(c)
∑

(a)

(
a(1) ⊢

(
c′ ⊣ S(a(2))

))
⊗

(
1 ⊣

(
a(3) ⊣ a′

))

= ǫ(c)
∑

(h)

(
h(1).c′

)
⊗

(
h(2)h′

)

proving eqn (2.59).
2. Clear for any bar-unital balanced dialgebra.
3. Straight-forward computation using Prim(H) = Prim(EH) ⊕ Prim(HH) where
the latter is well-known to be a Lie algebra and the former is abelian.
4. For each b ∈ b and h ∈ H, we get

(1B ⊗ 1H) ⊣ (b⊗ h) = (1B ⊗
(
ΦB(b)h

)
,

proving the first statement. Moreover

∑

(b),(h)

(b(1) ⊗ h(1)) ⊣
(
S(b(2) ⊗ h(2))

)
) =

∑

(b),(h)

b(1) ⊗ h(1)SH(h
(2))SH

(
ΦB(b

(2))
)

=
∑

(b)

b(1) ⊗ SH
(
ΦB(b

(2))
)
,

proving the form of the generalized idempotents, and since the K-linear map

B → B ⊗ H given by
(
idB ⊗ (SH ◦ ΦB)

)
◦ ∆ is an injective morphism of C3-

coalgebra, the statement is proved. ✷

The third statement had been proved by Simon Covez in his Master thesis
[6] in the differential geometric context of digroups, compare with Section 3.

Example 2.6
As an example, let us compute the Suschkewitsch decomposition for the aug-
mented rack bialgebra K[X ] where p : X → G is an augmented pointed rack,
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see Example 2.4. By the above theorem, part 4., its associated cocommuta-
tive augmented Hopf dialgebra decomposes as B⊗H , where the Hopf algebra
H = K[G] is the standard group algebra and B = K[X ]. The generalized
idempotents are in this case

EB⊗H = {b⊗ p(b)−1 | b ∈ B}.

✸

We finish this section with a formula relating universal algebras : The
functor associating to any dialgebra A its Leibniz algebra A− via eqn (2.48)
is well-known to have a left adjoint (see e.g. [20]) associating to any Leibniz
algebra (h, [ , ]) its (in general non bar-unital) universal enveloping dialgebra
Ud(h) associated to h defined by

Ud(h) = h⊗ U(h). (2.63)

But also in the category of bar-unital balanced dialgebras, there is such a left
adjoint: To any Leibniz algebra (h, [ , ]), we associate its universal balanced

bar-unital enveloping dialgebra Ũd(h)

Ũd(h) = UAR(h)⊗ U(h). (2.64)

Before proving the theorem, we note that Ũd(h) = Ud(h)⊕ U(h) is obtained
by adjoining a balanced bar-unit to Ud(h).

Theorem 2.8 For any Leibniz algebra (h, [ , ]), the assignment h → Ũd(h)
defines a left adjoint functor to the functor associating to any bar-unital
balanced dialgebra its commutator Leibniz algebra.

Proof: Clearly, Ũd(h) is the cocommutative Hopf dialgebra associated to the
universal augmented rack bialgebra (UAR(h),Φh,U(h), ℓ) (cf. Theorem 2.6) which
in turn is associated to the Leibniz algebra (h, [ , ]) (cf. Theorem 2.4). Since both

assignments are functorial, it follows that the assignment h → Ũd(h) is a functor.
It remains to prove the universal property: Let (h, [ , ]) be a Leibniz algebra, let
(A,1,⊢,⊣) a bar-unital balanced dialgebra, and let ϕ : h → A− be a morphism of
Leibniz algebras. It follows that the K-linear map ΦA ◦ ϕ : h → A1

ass vanishes on
the two-sided ideal Q(h) and descends to a morphism ϕ of the quotient Lie algebra
h to A1

ass with its commutator Lie bracket such that ϕ ◦ p = ΦA ◦ ϕ. Hence there
is a unique morphism U(ϕ) : U(h) → A1

ass of unital associative algebras extending

ϕ. Define the K-linear map ϕ̂ : Ũd(h) = U(h)⊕ Ud(h) → A by (for all u, v ∈ U(h)
and x ∈ h):

ϕ̂(u) = iA
(
U(ϕ)(u)

)
and ϕ̂(x⊗ v) = ϕ(x) ⊣ iA

(
U(ϕ)(v)

)
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where we recall the natural injection of unital algebras iA : A1
ass → A given by

iA
(
ΦA(a)

)
= 1 ⊣ a for all a ∈ A. We shall show that ϕ̂ is a morphism of

augmented dialgebras: We compute for all u, u′, u′′ ∈ U(h), using that iA and
U(ϕ) are morphisms of unital associative algebras and that in the image of iA, we
can use the multiplication symbols ⊢ and ⊣ arbitrarily:

ϕ̂(u′uu′′) = iA
(
U(ϕ)(u′)

)
⊢ iA

(
U(ϕ)(u)

)
⊣ iA

(
U(ϕ)(u′′)

)
= ϕ̂(u′) ⊢ ϕ̂(u) ⊣ ϕ̂(u′′)

showing the fact that ϕ̂ preserves the bimodule structures on the first component
of Ũd(h). Next we have for all x1, x ∈ h

ϕ
(
p(x1).x

)
= ϕ([x1, x]) = ϕ(x1) ⊢ ϕ(x)− ϕ(x) ⊣ ϕ(x1)

= iA
(
ϕ
(
p(x1)

))
⊢ ϕ(x)− ϕ(x) ⊣ iA

(
ϕ
(
p(x1)

))

and by induction on k in u′ = p(x1) · · · p(xk) ∈ U(h) and x1, . . . , xk ∈ h, we prove

ϕ(u′.x) =
∑

(u′)

iA
(
ϕ(u′(1))

)
⊢ ϕ(x) ⊣

(
ϕ
(
S(u′(2))

))
.

Now, for all u′, u′′, v ∈ U(h) and x ∈ h, we get:

ϕ̂(u′.(x⊗ v).u′′) =
∑

(u′)

ϕ̂
(
((u′)(1).x)⊗ ((u′)(2)vu′′)

)

=
∑

(u′)

ϕ((u′)(1).x) ⊣ iA
(
U(ϕ)((u′)(2)vu′′)

)

=
∑

(u′)

iA
(
U(ϕ)((u′)(1))

)
⊢ ϕ(x) ⊣ iA

(
U(ϕ)

(
S((u′)(2))(u′)(3)vu′′

))

= iA
(
U(ϕ)(u′)

)
⊢ ϕ(x) ⊣ iA

(
U(ϕ)(v)

)
⊣ iA

(
U(ϕ)(u′′)

)

= iA
(
U(ϕ)(u′)

)
⊢ ϕ̂(x⊗ v) ⊣ iA

(
U(ϕ)(u′′)

)

showing the fact that ϕ̂ preserves the bimodule structures on the second compo-

nent of Ũd(h). Hence ϕ̂ is a morphism of bar-unital (augmented) dialgebras. The

uniqueness of ϕ̂ follows from the universal property of U(h) ✷

3 Coalgebra Structures for pointed manifolds

with multiplication

In this section, the symbol K denotes either the field of all real numbers, R, or
the field of all complex numbers, C. We define here the monoidal category of
pointed manifolds, and exhibit the Serre functor sending a pointed manifold
to the coalgebra of point-distributions supported in the distiguished point.
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We recall further that this is a strong monoidal functor. Further down, we
will study Lie (semi) groups, Lie racks, and Lie digroups as examples of this
construction, motivating geometrically the notions of a rack bialgebra and of
a Hopf dialgebra.

3.1 Pointed manifolds with multiplication(s)

Recall first the category of all pointed manifolds Mf∗ whose objects consist
of pairs (M, e) where M is a non-empty differentiable manifold and e is an
element ofM and whose morphisms (M, e) → (M ′, e′) are given by all smooth
maps φ : M → M ′ of the underlying manifolds such that φ(e) = e′. Recall
that the cartesian product × makes Mf∗ into a monoidal category (see
e.g. [21, p.161-170; 251-257] for definitions) by setting (M, e1) × (N, e2) :=(
M × N, (e1, e2)

)
with the one-point set

(
{pt}, pt

)
as unit object and the

usual associators, left-unit and right-unit identifications borrowed from the
category of sets. This monoidal category is symmetric by means of the usual
(tensor) flip map τT = τT (M,N) : M × N → N ×M : (x, y) 7→ (y, x) where
the pair of distinguished points is also interchanged.
By simply forgetting about the differentiable structure we get the category
of pointed sets.

Recall that a pointed manifold with multiplication is a triple (M, e,m)
where (M, e) is a pointed manifold, and m : (M, e) × (M, e) → (M, e) is a
smooth map of pointed manifolds, i.e. is a smooth map M ×M → M such
that m(e, e) = e. Moreover, a pointed manifold with multiplication will be
called left-regular (resp. right-regular) if all the left (resp. right) multiplica-
tion maps y 7→ m(x, y) (resp. y 7→ m(y, x) are diffeomorphisms. Morphisms
of pointed manifolds with multiplication (M, e,m) → (M ′, e′,m′) are smooth
maps of pointed manifolds φ : (M, e) → (M ′, e′) such that

φ ◦m = m′ ◦ (φ× φ). (3.1)

The obvious generalization are a finite number of maps M×n → M with
n ≥ 1) arguments.
Again by forgetting about differentiable structures, we get the category of
pointed sets with multiplication.
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3.2 Coalgebra Structure for distributions supported in
one point

For any pointed manifold (M, e) recall the K-vector space

E ′
e(M) :={

T : C∞(M,K) → K | T is a continuous linear map and supp(T ) = {e}
}

(3.2)

of all distributions supported in the singleton {e}, see e.g. [24, Ch.6,7] for
definitions). Now let φ :M → M ′ be a smooth map such that φ(e) = e′. For
any distribution S ∈ E ′

e(M) and any smooth function f ′ ∈ C∞(M ′,K) the
well-known prescription

(φ∗S)(f
′) := S(f ′ ◦ φ) (3.3)

gives a well-defined distribution φ∗S on the target manifold M ′ supported in
e′ = φ(e), and the map φ∗ : E ′

e(M) → E ′
e′(M

′) is a K-linear map (which
is continuous). Clearly for three pointed manifolds (M, e), (M ′, e′), and
(M ′′, e′′) with smooth maps φ : (M, e) → (M ′, e′) and ψ : (M ′, e′) → (M ′′, e′′)
we get

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗ and
(
idM

)
∗
= idE ′

e(M). (3.4)

This defines a covariant functor F : Mf∗ → KVect to the category of all
K-vector spaces by associating to any pointed manifold (M, e) the K-vector
space F (M, e) := E ′

e(M), and to any smooth map (M, e) → (M, e′) the linear
map F (φ) := φ∗ : E ′

e(M) → E ′
e′(M

′). We call this functor Serre functor in
tribute to the predominant role it plays in [26]. It is one of the main objects
of this article.

There is, however, much more structure in this functor: First any distri-
bution space E ′

e(M) contains a canonical linear form ǫ = ǫe : E ′
e(M) → K

defined by
ǫe(T ) := T (1), (3.5)

where 1 denotes the constant function M → K whose only value is equal
to 1 ∈ K. Moreover each space E ′

e(M) contains a canonical element 1 = 1e
defined by the well-known delta distribution

1e = δe : f 7→ f(e), (3.6)

and we clearly have
ǫe(1e) = 1. (3.7)
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Moreover, both ǫe and 1e are natural in the following sense: let φ : (M, e) →
(M ′, e′) be a smooth map of pointed differentiable manifolds. Then it is
straight-forward to check that

ǫe′ ◦ φ∗ = ǫe and φ∗(1e) = 1e′. (3.8)

Recall the well-known tensor product or direct product of two distribu-
tions (cf. [30, p. 403]): More generally, let M and N be two differentiable
manifolds, and let S ∈ D′(M) and T ∈ D′(N) be two distributions (where
the symbol D′(M) denotes the continuous dual space of the test function
space D(M) of all smooth K-valued functions with compact support). Let
f : M × N → K be a smooth function with compact support K ⊂ M × N ,
and let K1 := prM(K) ⊂M , K2 = prN(K) ⊂ N , whence K is a subset of the
compact set K1 ×K2. Let T (2) : D(M × N) → Fun(M,K) be the following
map: For each x ∈ M , let fx ∈ D(N) be the partial function y 7→ f(x, y).
Then we set (

T (2)(f)
)
(x) = T (fx).

The superscript (2) means here that we see f as a function of its second
variable only, when applying the distribution T .

Upon using the approximation theorem of any distribution by a sequence
of regular distributions (see e.g. [24, p.157, Thm.6.32]), one can show that
T (2)(f) : M → K is a smooth function having compact support in K1. It
is clear that T (2) : D(M × N) → D(M) is linear, and it can be shown by
the same approximation theorem that T (2) is continuous, see [30, p.416]. It
follows that the map

(S, T ) 7→
(
f 7→ S

(
T (2)(f)

))

is a well-defined K-bilinear map D′(M)×D′(N) → D′(M ×N), and there is
thus a unique linear map (where ⊗ denotes the usual algebraic tensor product
over K)

F2 M,N : D′(M)⊗D′(N) → D′(M ×N) (3.9)

such that for all f ∈ D(M ×N) we have

(
F2 M,N(S ⊗ T )

)
(f) = S

(
T (2)(f)

)
.

Note also that it can be shown that the right hand side is equal to T
(
S(1)(f)

)

where the notation is self-explanatory. Furthermore, it is not hard to see that
for two distributions supported in one point, i.e. S ∈ E ′

e1
(M) and T ∈ E ′

e2
(N)

the distribution F2 M,N(S ⊗ T ) is supported in (e1, e2), i.e. is an element
of E ′

(e1,e2)
(M × N). We shall denote the restriction of the map F2 M,N to
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E ′
e1
(M) ⊗ E ′

e2
(N) by the same symbol F2 M,N . For three pointed manifolds

(M, e1), (N, e2), and (P, e3), let αM,N,P :M×(N×P ) → (M×N)×P be the
usual associator for the monoidal category of all sets (see [21]), and for three
vector spaces V,W,X over K, let βV,W,X : V ⊗ (W ⊗X) → (V ⊗W )⊗X be
the well-known associator for the monoidal category of all vector spaces. By
using the definitions, it is not hard to see that the following identity holds

F2 (M×N),P ◦
(
F2 M,N ⊗ idE ′

e3
(P )

)
◦ βE ′

e1
(M),E ′

e2
(N),E ′

e3
(P )

=
(
αM,N,P

)
∗
◦ F2 M,(N×P ) ◦

(
idE ′

e1
(M) ⊗ F2 N,P

)
(3.10)

hence eqn (3) of [21, p.255]. In the same vein, the two diagrams in eqn
(4) of [21, p.256] are satisfied upon setting F0 = ǫpt and λ : K ⊗ V → V
and ρ : V ⊗ K → V the usual left-unit and right-unit identifications in the
monoidal category of vector spaces.
Let (M ′, e′1) and (N ′, e′2) two other pointed differentiable manifolds, and let
φ : (M, e1) → (M ′, e′1) and ψ : (N, e2) → (N ′, e′2) two smooth maps of
pointed differentiable manifolds. It is a straight-forward check that the map
F2 M,N to is natural in the following sense

F2 M ′,N ′ ◦
(
φ∗ ⊗ ψ∗

)
= (φ× ψ)∗ ◦ F2 M,N . (3.11)

Moreover, note that the map F0 = ǫpt (see eqn (3.5)) defines an isomorphism
of E ′

pt({pt}) to K which had already been seen to be natural.
As a result, the functor F is amonoidal functor in the sense of [21, p.255-257].
Moreover, since the category Mf∗ is even a symmetric monoidal category by
means of the canonical flip map τM,N :M×N → N×M : (x, y) → (y, x), see
e.g. [21, p.252-253], and the monoidal category K-vect is also symmetric, it
is not hard to see that the monoidal functor is also symmetric, see e.g. [21,
p.257] for definitions.

We shall now show that the monoidal functor F is strong, i.e. that F0 =
ǫpt and F2 M,N are isomorphisms. This is clear for ǫpt. Recall that for each
distribution T in E ′

e(V ) (where V is a nonempty open set in Rm containing the
point e), there is nonnegative integer l (called the order of the distribution)
such that

T =

l∑

r=0

∑

k∈Nm,|k|=r

ck
∂k

∂xk

(
δe)

where ck ∈ K for each multi-index k, see e.g. [24, p.150, Thm. 6.25]. In
a slightly more algebraic manner we can express this as follows: let E be a
finite-dimensional real vector space, let V ⊂ E be an open set containing e ∈
E. Then we have the following linear isomorphism ΦS : S(E) → E ′

e(V ) given
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by ΦS(1) = δe and for any positive integer k and vectors w(1), . . . , w(k) ∈ E
and f ∈ C∞(V,K)

ΦS(w
(1) • . . . • w(k))(f)

=
∂k

(
f
(
e+ s1w

(1) + · · ·+ skw(k)

))

∂s1 · · ·∂sk

∣∣∣∣∣∣
s1=0,...,sk=0

(3.12)

where • denotes the commutative multiplication in the symmetric algebra,
see Appendix A. Using the fact that the inclusion map ιUα

: Uα → M of any
chart domain of M such that e ∈ Uα defines an isomorphism ιUα∗ : E

′
e(Uα) →

E ′
e(M), and that any chart ϕα : Uα → Vα ⊂ Rm defines an isomorphism
ϕα∗ : E

′
e(Uα) → E ′

ϕα(e)
(Vα), we can conclude that there is a linear isomorphism

Φα =: ιUα∗ ◦ ϕ
−1
α∗ ◦ ι−1

Vα∗
◦ ΦS : S(Rm) → E ′

e(M) (3.13)

with the symmetric coalgebra S(Rm) on Rm (see Appendix A) computed as
follows

w(1) • · · · • w(k) 7→
(
f 7→

m∑

i1,...,ik=1

∂k(f |Uα
◦ ϕ−1

α )

∂xi1 · · ·∂xik

(
ϕα(e)

)
w(1)i1 · · ·w(k)ik

)
.

(3.14)

where we write Rm ∋ w(j) =
∑m

i=1w(j)iei where all the w(j)i are real numbers
and e1, . . . , em is the canonical base of Rm. Note that for the particular case
of M being an open set V of Rm and the chart ϕα being the identity map
the map Φα (see eqs (3.13) and (3.14)) coincides with the canonical map ΦS,
see eqn (3.12).

For two pointed manifolds (M, e1) and (N, e2) and given charts (Uα, ϕα)
of M such that e1 ∈ Uα and (Ũβ, ϕ̃β) of N such that e2 ∈ Ũβ, we thus have
linear isomorphisms Φα : S(Rm) → E ′

e1
(M), Φ̃β : S(Rn) → E ′

e2
(N), and Φα,β :

S(Rm+n) → E ′
(e1,e2)

(M×N) (upon using the product chart (Uα×Ũβ , ϕα×ϕ̃β)).
Using the above definitions, one can compute that

F2 M,N ◦
(
Φα ⊗ Φ̃β

)
= Φα,β ◦Θm,n

where Θm,n : S(Rm) ⊗ S(Rn) → S(Rm+n) denotes the natural isomorphism
of commutative associative unital algebras induced by the obvious inclusions
Rm →֒ Rm+n (first m coordinates) and Rn →֒ Rm+n (last n coordinates). It
follows that the natural map F2 M,N is equal to Φα,β ◦ Θm,n ◦

(
Φ−1
α ⊗ Φ̃−1

β

)

and is thus a linear isomorphism, whence the functor F is a strong monoidal
functor.
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In order to define more structure, let us consider the well-known diagonal
map diagM :M → M ×M defined by

diagM(x) = (x, x)

for all x ∈ M . Clearly, diagM is a smooth map of pointed manifolds (M, e) →(
M ×M, (e, e)

)
. Moreover, the diagonal map is clearly natural in the sense

that
diagM ′ ◦ φ =

(
φ× φ

)
◦ diagM

for any smooth map φ : (M, e) → (M ′, e′) of pointed differentiable man-
ifolds. In other words, the class of diagonal maps diagM constitutes a
natural transformation from the identity functor to the diagonal functor
(M, e) →

(
M ×M, (e, e)

)
and φ 7→ φ × φ. Define the following linear map

∆ = ∆e = ∆(M,e) : E
′
e(M) → E ′

e(M)⊗ E ′
e(M) by

∆e := F−1
2 M,M ◦ diagM ∗. (3.15)

This definition has avatars with more than two tensor factors. Indeed, ob-
serve that the naturality relation (3.11) implies for φ = idM and ψ = diagM
that

(idM × diagM)∗

= F2 M,(M×M) ◦ (idE ′
e(M) × F2 M,M) ◦ (idE ′

e(M) ×∆e) ◦ F
−1
2 M,M .

Similarly, we have relations of this type for any number of tensor factors.
In the following, we invite the reader to look again at Appendix A for

definitions and notations about coalgebras.
We have the following

Theorem 3.1 With the above notations:

1. The K-vector space E ′
e(M) equipped with the linear maps ∆e (cf. eqn

(3.15)), ǫe (cf. eqn (3.5), and 1e (cf. eqn (3.6) is a C5-coalgebra which
is (non canonically) isomorphic to the standard symmetric coalgebra

(
S(Rm), ǫ,∆, 1

)
.

2. The above strong symmetric monoidal functor F extends to a functor
–also denoted by F– from Mf∗ to the symmetric monoidal category of
C5-coalgebras over K.
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3. The subspace of all primitive elements of the coaugmented coalgebra
E ′
e(M) is natural isomorphic to the tangent space TeM . Moreover

for each smooth map φ : (M, e) → (M ′, e′) of pointed manifolds the
coalgebra morphism φ∗ : E ′

e(M) → E ′
e′(M

′) induces the tangent map
Teφ : TeM → Te′M

′.

Proof:

(a) coassociativity of ∆e: This follows from the coassociativity-diagram of
diagM ∗ by first taking the induced diagram between distribution spaces
which reads then

(αM,M,M )∗ ◦ (idM × diagM )∗ ◦ diagM ∗ = (diagM × idM )∗ ◦ diagM ∗.

Starting for example on the left hand side, one replaces the map diagM ∗ by
F2 M,M ◦∆e, and also the map (idM × diagM )∗ by

F2 M,(M×M) ◦ (idE ′
e(M) × F2 M,M) ◦ (idE ′

e(M) ×∆e) ◦ F
−1
2 M,M .

Now one observes that one may apply the relation (3.10) on the left hand
side. One obtains

F2 (M×M),M ◦ (F2 M,M × idE ′
e(M)) ◦ β ◦ (idE ′

e(M) ×∆e) ◦∆e

= F2 (M×M),M ◦ (F2 M,M × idE ′
e(M)) ◦ (∆e × idE ′

e(M)) ◦∆e.

One deduces coassociativity.

(b) cocommutativity of ∆e: This follows from the symmetry of F (already
noted before) and the cocommutativity of diagM ∗.

(c) counitality of ∆e: This follows from the counitality of diagM ∗, i.e.

(proje × id) ◦ diagM = incl1e, and (id× proje) ◦ diagM = incl2e,

where proje : M → {e}, incl1e : M → {e} ×M and incl2e : M → M × {e}
are the canonical maps. Indeed, these equations induce the corresponding
equations between distribution spaces, and translating direct products into
tensor products (and thus (proje)∗ into ǫ and (diagM )∗ into ∆e), one obtains
counitality.

(d) connectedness of ∆e: The coalgebra E
′
e(M) is isomorphic to the symmetric

algebra S(Rn), and the latter is connected.

This shows part (1) of the statement, as the isomorphy to the standard symmetric
coalgebra has been shown above.

The only thing which has to be shown for the second statement is the preser-
vation of the coalgebra structure on the level of morphisms, which is clear.
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For the third part, consider the linear map TeM → Prim(E ′
e(M)) (see Appendix

A for the definition of the primitives Prim(C) of a coalgebra C) defined by

v 7→
(
f 7→ dfe(v)

)
:

Indeed the right hand side is clearly in E ′
e(M), and the Leibniz rule for the deriva-

tive shows that this is in Prim(E ′
e(M)). Moreover the above map is clearly injective,

and since Prim(S(Rn)) = Rn and dim(TeM) = n it follows that the above map

is an isomorphism of real vector spaces. The naturality is a simple computation. ✷

The last statement means that the composed functor Prim ◦ F of the
Serre functor F and the functor associating to any coalgebra C its space of
primitive elements, Prim(C), is naturally isomorphic to the tangent functor
T∗ associating to any pointed differentiable manifold (M, e) its tangent space
TeM .

Remark 3.1
There is neither a canonically defined (i.e. not depending on the choice of
a chart) projection from the coalgebra to its primitives, so the coalgebras
E ′
e(M) are isomorphic to the cofree S(Rm), but in general not naturally, nor

a canonically defined commutative multiplication (the classical convolution
of distributions of compact support which needs the additive vector space
structure). ✸

Remark 3.2
Note also the disjoint union

⋃
x∈M E ′

x(M)(k) carries the structure of a smooth
vector bundle over M : Its smooth sections coincide with the space of all
differential operators of order k. ✸

Remark 3.3
In case U ⊂ Rm and V ⊂ Rn are pointed open sets, the coalgebra morphism
φ∗ of a smooth map φ : U → V of pointed manifolds is isomorphic to the
coalgebra morphism S(Rm) → S(Rn) induced by the jet of infinite order of φ
at the distinguished point e of U , j∞(φ)e, see e.g. [15] for further information.
The functorial equation (φ ◦ ψ)∗ = φ∗ ◦ψ∗ can be computed out of the chain
rule for higher derivatives. ✸

3.3 Pointed manifolds with multiplication and their as-
sociated bialgebras

We can now apply the Serre functor defined in the preceding Section 3.2 to
pointed manifolds with multiplication:
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Theorem 3.2 Let (M, e,m) be a pointed manifold with multiplication. Then
the C5-coalgebra E ′

e(M) carries a multiplication, i.e. a linear map µ = m∗ ◦
F2 M,M : E ′

e(M)⊗ E ′
e(M) → E ′

e(M) which is a morphism of C5-coalgebras.
In case m is left-unital (resp. right unital), the nonassociative C3I-algebra
E ′
e(M) is left regular (resp. right regular)

Proof: The map µ exists and is linear by functoriality. We have trivially

diagM ◦m = (m×m) ◦ (idM × τM,M × idM ) ◦ (diagM × diagM ),

and this shows that µ is a morphism of coalgebras by translating diagM into ∆e

using as before the maps of type F2. The regularity statements are a consequence

of the connectedness of the C3-coalgebra E ′
e(M), see Lemma 2.1. ✷

In the following, we shall enumerate some important (sub)categories of
pointed differentiable manifolds with multiplications.

3.3.1 Lie groups and universal enveloping algebras

Let
(
G,m, e, ( )−1

)
a Lie group. The following theorem is well-known (see

[26]):

Theorem 3.3 The associated coalgebra with multiplication µ of the Lie group(
G,m, e, ( )−1

)
is an associative unital bialgebra (in fact, a Hopf algebra)

isomorphic to the universal enveloping algebra of the Lie algebra
g = TeG of G.

We just indicate the isomorphism: For any ξ ∈ g, let ξ+ denote the left
invariant vector field ξ+(g) := TeLg(ξ) generated by its value ξ ∈ g = TeG.
Then the map ΦU : U(g) → F (G) is given by (for all k ∈ N, ξ1, . . . , ξk ∈ g

and f ′ ∈ C∞(G,K))

ΦU(ξ1 · · · ξk)
(
f ′
)
=

((
Lξ+1

◦ · · · ◦ Lξ+
k

)
(f ′)

)
(e) (3.16)

where LX denotes the Lie derivative in the direction of the vector field X .
Note that the identities for the inverse map g 7→ g−1 can be written as

m ◦
(
( )−1 × idG

)
◦ diagG = (g 7→ e) = m ◦

(
idG × ( )−1

)
◦ diagG, (3.17)

and an application of the functor F gives the convolution identities for the
antipode, defined by S =

(
( )−1

)
∗
.
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3.3.2 Lie semigroups and Lie monoids

It is easy to see but presumably less known that the result of the preceding
subsection remains true for a Lie monoid

(
G,m, e

)
:

Theorem 3.4 1. The associated coalgebra with multiplication µ of the
Lie monoid

(
G,m, e

)
is an associative unital bialgebra (in fact a Hopf

algebra) isomorphic to the universal enveloping algebra of a Lie
algebra g ∼= TeG.

2. The associated coalgebra with multiplication µ of the right Lie group
(G,m, e, ( )−1) is a right Hopf algebra.

In order to see the first statement note that it is clear that the associated coal-
gebra C := F (G) carries an associative unital multiplication µ = m∗◦F2 G,G.
The fact that the coalgebra is always connected implies by the Takeuchi-
Sweedler argument (see Appendix A) that the identity map idC has a convo-
lution inverse, and is thus a Hopf algebra. Since the coalgebra C is connected
and cocommutative, it follows from the Cartier-Milnor-Moore Theorem (see
e.g. [22]) that the Hopf algebra F (G) is isomorphic to the universal envelop-
ing algebra over the Lie subalgebra g of its primitive elements which is equal
to TeG.
The second statement is an immediate consequence of the functorial proper-
ties of F .

3.3.3 (Lie) dimonoids and digroups

Recall that a Lie dimonoid (see e.g. [20]) is a pointed differentiable manifold
(D, e) equipped with two smooth associative multiplications D × D → D,
written (x, y) 7→ x ⊢ y and (x, y) 7→ x ⊣ y (and preserving points, i.e.
e ⊢ e = e = e ⊣ e), such that the dialgebra conditions eqs (2.42), (2.43),
(2.44), (2.45), and (2.46) hold for all x, y, z ∈ D and e (replacing 1): Hence
(D,⊢, e) is a left unital Lie semigroup and (D,⊣, e) is a right unital Lie
semigroup, and as for dialgebras, we shall say bar-unital dimonoid to stress
the fact that the bar-unit e is among the data for the dimonoid.
Let us call a Lie dimonoid (D, e,⊢,⊣) balanced iff in addition for all x ∈ D
the analogue of eqn (2.47) holds, i.e. x ⊢ e = e ⊣ x. Any Lie monoid
(G, e,m) is a Lie dimonoid by setting ⊢=⊣= m.
Another class of examples is obtained by the following important augmented
dimonoid construction (cf Example 2.5): Let G be a Lie group, let (D, eD) be
a pointed differentiable manifold, let G smoothly act on the left and on the
right of M (written (g, x) 7→ gx and (x, g) 7→ xg) such that (gx)g′ = g(xg′)
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for all g, g′ ∈ g and x ∈ D, and let f : (D, eD) → (G, e) be a smooth map of
pointed manifolds such that for all g, g′ ∈ G and x ∈ D

f(gxg′) = gf(x)g′. (3.18)

Then the pointed manifold
(
D, eD,⊢,⊣

)
will be a (bar-unital) dimonoid by

setting
x ⊢ y := f(x)y and x ⊣ y := xf(y). (3.19)

A general Lie digroup is defined (according to Liu, [18, Definition 1.1]) to
be a (bar-unital) dimonoid (D, e,⊢,⊣) such that the left unital Lie semigroup
(D, e,⊢) is a right group and the right unital Lie semigroup (D, e,⊣) is a left
group (see Appendix B for definitions): Here the right inverse of x with re-
spect to ⊢ does in general not coincide with the left inverse of x with respect
to ⊣. For an example, take any Lie groupG, set (D, eD) =

(
(G×G, (e, e)

)
, de-

fine the two canonicalG-actions g(g1, g2) := (gg1, g2) and (g1, g2)g := (g1, g2g)
(for all g, g1, g2 ∈ g), and let f : G × G → G be the group multiplication.
Then (D, eD,⊢,⊣) will be a general digroup with (g1, g2)

−1
⊢ = (g−1

2 g−1
1 , e) and

(g1, g2)
−1
⊣ = (e, g−1

2 g−1
1 ).

In [14, Definition 4.1] Kinyon defines a Lie digroup as a general Lie digroup
such that in addition for each x its right inverse (w.r.t. to ⊢) is equal to its
left inverse (w.r.t. ⊣). This can be shown to be equivalent to demanding
that the general Lie digroup (D, e,⊢,⊣) be balanced.
Again using the Suschkewitsch decomposition Theorem (which applies in
case the underlying manifold is connected), it is not hard to see that the
category of all connected Lie digroups (in the sense of Kinyon) is equivalent
to the category of all left G-spaces, i.e. whose objects are pairs (G,X) where
G is a connected Lie group and X is a pointed connected left G-space (i.e.
the distinguished point of X is a fixed point of the G-action) with obvious
morphisms. Recall that the Lie digroup is given by X × G equipped with
the point (eX , e) and the two multiplications (x1, g1) ⊢ (x2, g2) = (g1x2, g1g2)
and (x1, g1) ⊣ (x2, g2) = (x1, g1g2) for all x1, x1 ∈ X and g1, g2 ∈ G.

The following theorem is a direct consequence of the functorial properties
of the functor F :

Theorem 3.5 Let (D, e,⊢,⊣) be a (bar-unital) Lie dimonoid (D, e,⊢,⊣).

1. The underlying vector space of the associated coalgebra F (D) to the
(bar-unital) Lie dimonoid (D, e,⊢,⊣) equipped with 1 and the multipli-
cations µ⊢, µ⊣ is an associative bar-unital dialgebra.
In case D is balanced, F (D) is a cocommutative Hopf dialgebra.

2. In case (D, e,⊢,⊣) is a Lie digroup (in the sense of Kinyon), F (D) is
a cocommutative Hopf dialgebra.
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3.3.4 (Lie) racks

Recall that a Lie rack is a pointed manifold with multiplication (M, e,m)
satisfying the following identities for all x, y, z ∈ M where the standard
notation is m(x, y) = x ⊲ y

e ⊲ x = x, (3.20)

x ⊲ e = e, (3.21)

x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (3.22)

In addition, one demands that (M, e,m) be left-regular, i.e. for all x ∈ M
the left multiplication maps Lx : y 7→ x ⊲ y should be a diffeomorphism.
Note the following version of the self-distributivity identity (3.22) in terms
of maps:

m ◦ (idM ×m)

= m ◦ (m×m) ◦ (idM × τM,M × idM) ◦ (diagM × idM × idM)(3.23)

Example 3.1
Note that every pointed differentiable manifold (M, e) carries a trivial Lie
rack structure defined for all x, y ∈M by

x ⊲0 y := y, (3.24)

and this assignment is functorial. ✸

Example 3.2
Any Lie group G becomes a Lie rack upon setting for all g, g′ ∈ G

g ⊲ g′ := gg′g−1, (3.25)

again defining a functor from the category of Lie groups to the category of all
Lie racks. Examples of racks which are not the conjugation rack underlying
a group abound, for example, every conjugation class and every union of
conjugation classes in a group (defining an immersed submanifold) in a Lie
group is a Lie rack. ✸

Example 3.3
Let (D, e,⊢,⊣) be a (balanced) digroup. Then formula (13) of [14],

x ⊲ y := x ⊢ y ⊣ x−1

equips the pointed manifold (D, e, ⊲) with the structure of a Lie rack. ✸
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Any Lie rack (M, e, ⊲) can be gauged by any smooth map f : (M, e) →
(M, e) of pointed manifolds satisfying for all x, y ∈M

f(x ⊲ y) = x ⊲ f(y).

A straight-forward computation shows that the pointed manifold (M, e) equipped
with the gauged multiplication ⊲f defined by

x ⊲f y := f(x) ⊲ y

is a Lie rack (M, e, ⊲f).
Furthermore, recall that an augmented Lie rack (see [11]) (M,φ,G, ℓ)

consists of a pointed differentiable manifold (M, eM), of a Lie group G, of
a smooth map φ : M → G (of pointed manifolds), and of a smooth left
G-action ℓ : G×M → M (written (g, x) 7→ ℓ(g, x) = ℓg(x) = gx) such that
for all g ∈ G, x ∈M

geM = eM , (3.26)

φ(gx) = gφ(x)g−1. (3.27)

It is a routine check that the multiplication ⊲ on M defined for all x, y ∈M
by

x ⊲ y := ℓφ(x)(y) (3.28)

satisfies all the axioms (3.20), (3.21), and (3.22) of a Lie rack, thus making
(M, eM , ⊲) into a Lie rack such that the map φ is a morphism of Lie racks,
i.e. for all x, y ∈M

φ(x ⊲ y) = φ(x)φ(y)φ(x)−1. (3.29)

A morphism (Ψ, ψ) : (M,φ,G, ℓ) → (M ′, φ′, G′, ℓ′) of augmented Lie racks
is a pair of maps of pointed differentiable manifolds Ψ : M → M ′ and
ψ : G → G′ such that ψ is homomorphism of Lie groups and such that all
reasonable diagrams commute, viz: for all g ∈ G

φ′ ◦Ψ = ψ ◦ φ (3.30)

Ψ ◦ ℓg = ℓ′ψ(g) ◦Ψ (3.31)

Note that the trivial Lie rack structure of a pointed manifold (M, e) comes
from an augmented Lie rack over the trivial Lie group G = {e}.

Let (M, e, ⊲) be a Lie rack. Applying the functor F we get the following
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Theorem 3.6 The associated coalgebra F (M) with multiplication µ of the
Lie rack

(
M, e,m

)
is a rack bialgebra, i.e. satisfying for all a, b, c ∈ C, using

the same notation a ⊲ b for µ(a⊗ b):

1 ⊲ a = a, (3.32)

a ⊲ 1 = ǫ(a)1, (3.33)

a ⊲ (b ⊲ c) =
∑

(a)

(a(1) ⊲ b) ⊲ (a(2) ⊲ c). (3.34)

Proof:

(2.4) By definition, S⊗T ∈ E ′
e(M)⊗E ′

e(M) are sent by µ = ✄∗ to the distribution
f 7→ F2 M,M (S ⊗ T )(f ◦✄). We evaluate this formula for S = 1. This gives
the distribution f 7→ 1(T (2)(f ◦ ✄)). But T (2) means that the function is
seen as function of its second variable, i.e. T (2)(f ◦ ✄)(y) = T (f(y ✄ −)).
On the other hand, the delta distribution 1 evaluates a function in e, thus

1(T (2)(f ◦✄)) = T (f(e✄−)) = T (f),

because e✄ y = y for all y ∈M . This shows 1✄ T = T .

(2.5) Exchanging the roles of the two variables in the above computation, we
obtain for T ✄1 the distribution T (1(2)(f ◦✄)) or in other words 1(T (1)(f ◦
✄)), i.e. the above element y is now in the second place. We obtain

1(T (1)(f ◦✄)) = T (f(−✄ e)) = T (f(e)) = T (1) = ǫ(T ).

This shows T ✄ 1 = ǫ(T )1.

(2.6) As remarked before, the definition of ∆e, namely ∆e = F−1
2 M,M ◦ diagM ∗,

induces thanks to the naturality relation (3.11) relations like

(idM×diagM )∗ = F2 M,(M×M)◦(idE ′
e(M)×F2 M,M)◦(idE ′

e(M)×∆e)◦F
−1
2 M,M ,

and

∆e × idE ′
e(M) × idE ′

e(M)

=
(
F−1
2 M,M × idE ′

e(M) × idE ′
e(M)

)
◦
(
F−1
2 (M×M),M × idE ′

e(M)

)

◦F−1
2 (M×M)×M,M

◦
(
diagM × idM × idM

)
∗

◦F2 (M×M),M ◦
(
F2 M,M × idE ′

e(M)

)
.

Therefore, starting from the relation induced on E ′
e(M) by relation (3.23),

one replaces (diagM × idM × idM )∗ by the above and obtains finally an
equation equivalent to equation (2.6).
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✷

Remark 3.4
This theorem should be compared to Proposition 3.1 in [4]. In [4], the au-
thors work with the vector space K[M ] generated by the rack M , while we
work with point-distributions on a Lie rack M . In some sense, we extend
their Proposition 3.1 “to all orders”. Observe however that their structure is
slightly different (motivated in their Remark 7.2). ✸

We get a similar theorem for an augmented Lie rack: Let g denote the
Lie algebra of the Lie group G, then we have the

Theorem 3.7 The associated coalgebra C with multiplication µ of an aug-
mented Lie rack (M,φ,G, ℓ) is a cocommutative augmented rack bialgebra
(C, φ∗,U(g), ℓ)

We shall close the subsection with a geometric explanation of some of
the structures appearing in Subsection 2.1: Let

(
h, [ , ]

)
be a real finite-

dimensional Leibniz algebra. Then for any real number ~, there is the fol-
lowing Lie rack structure on the manifold h defined by

x ◮~ y := e~adx(y) (3.35)

For later use we note that on the space h[[~]] of all formal power series the
above formula makes sense if x, y are also formal power series.
Moreover, pick a two-sided ideal z ⊂ h with Q(h) ⊂ z ⊂ z(h) so that the
quotient algebra g := h/z is a Lie algebra. Let p : h → g be the canoncial
projection. Let G be the connected simply connnected Lie group having Lie
algebra g. Since g acts on h as derivations, there is a unique Lie group action
ℓ of G on h by automorphisms of Leibniz algebras. Consider the smooth map

φ : h → G : x 7→ exp
(
p(x)

)
. (3.36)

Clearly φ(g.x) = gφ(x)g−1 for all x ∈ h and g ∈ G whence (h, φ, G, ℓ) is an
augmented Lie rack, and it is not hard to see that the Lie rack structure
coincides with (3.35) for ~ = 1.

Theorem 3.8 The C5-rack bialgebra associated to the augmented Lie rack
(h, φ, G, ℓ) by means of the Serre functor is isomorphic to the universal en-
velopping algebra of infinite order, UAR∞(h), see Definition 2.3 and Theorem
2.1.
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Proof: First we compute φ∗ = exp∗ ◦p∗. Since p : h → g is linear, it is easy to
see using formula (3.12) that for all k ∈ N and x1, . . . , xk ∈ h

p∗
(
ΦS(x1 • · · · • xk)

)
= ΦS

(
p(x1) • · · · • p(xk)

)
= ΦS

(
S(p)

(
x1 • · · · • xk

))
,

see (3.12) for a definition of ΦS. Next, for all k ∈ N and ξ1, . . . , ξk ∈ g, we shall
show the formula (for all f ′ ∈ C∞(G,K))

(
exp∗

(
ΦS(ξ1 • · · · • ξk)

))
(f ′) =

∑

σ∈Sk

1

k!

(
ΦU(ξσ(1) · · · ξσ(k))

)
(f ′)

=
(
ΦU

(
ω(ξ1 • · · · • ξk)

))
(f ′)

(see eqn (3.16 for a definition of ΦU). Both sides of this equation are symmetric
k-linear maps in the arguments ξ1, . . . , ξk, hence by the polarization Lemma (see
e.g. [29]), it suffices to check equality in case ξ1 = · · · = ξk = ξ. Since for each real

number t the map g 7→ F
ξ
t (g) := g exp(tξ) is the flow of the left invariant vector

field ξ+, we get

(
exp∗

(
ΦS(ξ • · · · • ξ)

))
(f ′) =

∂k

∂tk

(
f ′
(
exp(tξ)

))∣∣∣∣
t=0

=
∂k

∂tk

(
f ′
(
F
ξ
t (e))

))∣∣∣∣
t=0

=
∂k

∂tk

((
(F ξt )

∗f ′
)
(e))

))∣∣∣∣
t=0

=
(
(F ξt )

∗
((
Lξ+ ◦ · · · ◦ Lξ+

)
(f ′)

))
(e)

∣∣∣
t=0

=
((
Lξ+ ◦ · · · ◦ Lξ+

)
(f ′)

)
(e)

=
(
ΦU

(
ω(ξ • · · · • ξ)

))
(f ′)

proving the above formula. It follows that

φ∗ = exp∗ ◦p∗ = ΦU ◦ ω ◦ S(p) ◦ Φ−1
S
. (3.37)

Next, we compute ℓ∗. We get for positive integers k, l, ξ1, . . . , ξk ∈ g, x ∈ h, and
f ∈ C∞(h,K):

(
ℓ∗
(
ΦU(ξ1 · · · ξk)⊗ ΦS(x

•l)
))

(f)

=
∂k+l

∂s1 · · · ∂sk∂tl

(
f
((
ℓexp(s1ξ1) ◦ · · · ◦ ℓexp(skξk)

)
(tx)

))∣∣∣∣
s1=···=sk=0=t

=
∂k

∂s1 · · · ∂sk

dim(h)∑

j1···jl=1

(
∂lf

∂xj1 · · · ∂xjl
(0)ℓs(x)j1 · · · ℓs(x)jl

)∣∣∣∣∣∣
s1=···=sk=0

where in the last line we have used a basis of h, have written y1, . . . , yn (n = dim(h))
for the components of each vector y ∈ h, and used the notation ℓs for the linear
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map ℓexp(s1ξ1) ◦ · · · ◦ ℓexp(skξk). By induction on k it is easy to prove that

∂k

∂s1 · · · ∂sk

(
ℓs(x) • · · · • ℓs(x)

)∣∣∣∣
s1=···=sk=0

= adsξ1···ξk
(
x•l

)
,

and using again the Polarisation Lemma, we finally get for all u ∈ U(g) and
α ∈ S(h)

ℓ∗
(
ΦU(u)⊗ ΦS(α)

)
= ΦS

(
adsu(α)

)
= ΦS

(
u.α

)
, (3.38)

and the isomorphism with the augmented rack bialgebra UAR
∞(h) = S(h) is es-

tablished. ✷

Remark 3.5
Observe that the Serre functor can be rendered completely algebraic, i.e. for
example for an algebraic Lie rack R (meaning that the underlying pointed
manifold is a smooth algebraic variety and the rack product is algebraic), one
can take as its Serre functor image F (R) the space of derivations along the
evaluation map in the distinguished point. This gives a new and completely
algebraic way to associate to a Lie rack its tangent Leibniz algebra. ✸

4 Deformation quantization of rack bialge-

bras

4.1 Deformation quantization via an explicit formula

In this subsection, K denotes the field of real numbers R or the field of
complex numbers C.

Let (h, [ , ]) be a finite dimensional Leibniz algebra of dimension n, and
denote by h∗ its linear dual. In order to make computations more elementary
we shall use a fixed basis e1, . . . , en of h, but it is a routine check that all the
relevant formulas are invariant under a change of basis. Let e1, . . . , en be the
corresponding dual basis of h∗, i.e. by definition

ei(ej) = δij,

for all i, j = 1, . . . , n. Furthermore, let ckij for i, j, k = 1, . . . , n be the struc-
ture constants of the Leibniz algebra h with respect to the basis e1, . . . , en,
i.e.

ckij = ei([ej , ek])

for all i, j, k = 1, . . . , n. We will denote by x, y, z, . . . elements of h, while
α, β, γ, . . . will denote elements of h∗. Denote by α1, . . . , αn the coordinates
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of α ∈ h∗ with respect to the basis e1, . . . , en. For all x ∈ h, denote by
x̂ ∈ C∞(h∗, K) the linear function given by

x̂(α) := α(x),

for all α ∈ h∗. In the same vein, let ex̂ be the exponential function given by

ex̂(α) := eα(x) = ex̂(α),

for all α ∈ h∗. For all integers i = 1, . . . , n, define a first order differential
operator ãdi on smooth functions f : h∗ → K by

(ãdi(f))(α) :=
n∑

j,k=1

αk c
k
ij

∂f

∂αj
(α).

The following star-product formula, where ~ is a formal parameter (which
may be replaced by a real number in situations where the formula is conver-
gent), will render h∗ a quantum rack in the sense of [9].

Let f, g ∈ C∞(h∗, K).

(f✄~g)(α) :=
∞∑

r=0

~r

r!

n∑

i1,...,ir=1

∂rf

∂αi1 . . . ∂αir
(0)

(
(ãdi1◦. . .◦ãdir)(g)

)
(α). (4.1)

Theorem 4.1 For all x, y ∈ h, we have

ex̂ ✄~ e
ŷ = ex̂◮~y,

where ◮~: h× h → h is the Lie rack structure (3.35).

Proof: The proof of the theorem relies on the following Lemmas:

Lemma 4.1 The map “hat” ˆ: h → C∞(h∗,K) which sends x ∈ h to the linear
function x̂ extends to an injective morphism of commutative associative unital
algebras Ψ : S(h) → C∞(h∗,K) such that

Ψ(x1 • . . . • xk) = x̂1 . . . x̂k

for all integers k and all x1, . . . , xk ∈ h.

Proof: This follows immediately from the freeness property of the algebra S(h).
✷
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Lemma 4.2 The morphism Ψ intertwines the adjoint actions ãdi and adsei (see
eqn (2.30)), i.e. for all i = 1, . . . , n, we have

ãdi(Ψ(a)) = Ψ(adsei(a))

for all a ∈ S(h).

Proof: Indeed, it is enough to show this for x ∈ h ⊂ S(h) as both adjoint actions
are derivations. Now we have for α ∈ h∗:

Ψ(adsei(x))(α) = [̂ei, x](α) = α([ei, x]) =

n∑

j,k=1

αk e
k([ei, ej ])xj

=
n∑

j,k=1

ckij αk
∂x̂

∂αj
(α) = ãdi(Ψ(a))(α)

✷

Lemma 4.3 For all b ∈ S(h) and all x1, . . . , xr ∈ h, we have

Ψ(x1 • . . . • xr)✄~ Ψ(b) = ~rΨ((x1 • . . . • xr)✄ b),

where the left-hand ✄ is the rack multiplication in the rack bialgebra S(h).

Proof: First of all, note that by linearity it is enough to show this for x1, . . . , xr =
ei1 , . . . , eir with i1, . . . , ir ∈ {1, . . . , n}. By eqn (2.30), we have

(ei1 • . . . • eir)✄ b =
1

k!

∑

σ∈Sk

(adsiσ(1)
◦ . . . ◦ adsiσ(r)

)(b).

Applying Ψ gives then

Ψ((ei1 • . . . • eir)✄ b) =
1

k!

∑

σ∈Sk

Ψ((adsiσ(1)
◦ . . . ◦ adsiσ(r)

)(b))

=
1

k!

∑

σ∈Sk

ãdiσ(1)
◦ . . . ◦ ãdiσ(r)

(Ψ(b)),

by the previous lemma. Now compute

∂k
(
Ψ(ei1 • . . . • eir)

)

∂αj1 . . . ∂αjk
(0).

This expression is non zero only if k = r and {i1, . . . , ik} = {j1, . . . , jk}. In this
case, the result is 1. One deduces the asserted formula. ✷
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Now we come back to the proof of the theorem. The assertion of the theorem is
the equality:

ex̂ ✄~ e
ŷ = ex̂◮~y.

Summing up the assertion of the previous lemma (taking x1 = . . . = xr = x), we
obtain:

∞∑

r=0

1

r!
Ψ(x • . . . • x︸ ︷︷ ︸

r times

)✄~ Ψ(b) = Ψ



( ∞∑

r=0

~r

r!
(x • . . . • x︸ ︷︷ ︸

r times

)
)
✄ b


 ,

and thus (as the rack product in S(h) is given by the adjoint action, using also
that Ψ is multiplicative)

ex̂ ✄~ Ψ(b) = Ψ(e~ adx(b)). (4.2)

This extends then to the asserted formula using that e~ adx is an automorphism of

S(h) (because it is the exponential of a derivation). ✷

Corollary 4.1 The above defined star-product induces the structure of a rack
with respect to the product ✄~ on the set of exponential functions on h∗, and
this star-product is opposite to the star-product found in [9].

Proof: Via the formula of the theorem, the self-distributivity property of the

rack product ◮ in the rack bialgebra S(h) translates into the self-distributivity

property of ✄~ on the set of exponential functions. Since the star-product de-

fined in [9] is a series of bidifferential operators, and since such a series is uniquely

determined by its values on exponential functions, the present star-product coin-

cides with the one found in [9] thanks to the statement of the preceding theorem. ✷

4.2 General deformation theory for rack bialgebras

In this section, (R,∆, ǫ, µ, 1) is a cocommutative rack-bialgebra over a
general commutative ring K, and we use the notation r✄s to denote the rack
product µ(r⊗s) of two elements r and s of R. In this subsection, we will often
drop the symbol Σ in Sweedler’s notation of (iterated) comultiplications, so
that the n-iterated comultiplication of r in R reads

r(1) ⊗ · · · ⊗ r(n) := (∆⊗ Id⊗n−1) ◦ · · · ◦∆(r)

Let K~ = K[[~]] denote the K-algebra of formal power series in the inde-
terminate ~ with coefficients in K. If V is a vector space over K, V~ stands
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for V[[~]]. Recall that if W is a K-module, a K~-linear morphism from V~ to
W~ is the same as a power series in ~ with coefficients in HomK(V,W ) via
the canonical map

HomK~
(V~,W~) ∼= HomK(V,W )~.

This identification will be used without extra mention in the following.

Definition 4.1 A formal deformation of the rack product µ is a for-
mal power series µ~

µ~ :=
∑

n≥0

~nµn

in HomK(R ⊗R,R)~, such that

1. µ0 = µ,

2. (R~,∆, ǫ, µ~, 1) is a rack bialgebra over K~.

Example 4.1
For a Leibniz algebra h, we have introduced in Definition 2.3 a cocommutative
augmented rack bialgebra UAR

∞(h). Furthermore, the rack star product
defined in eqn (4.1), restricted to S(h)~, is a deformation of the trivial rack
product of S(h) given for all r, s ∈ S(h) by

r ✄ s := ǫ(r)s

The self-distributivity relation is shown in a way very similar to the proof of
Theorem 4.1, see eqn (4.2). ✸

As in the classical setting of deformation theory of associatice products,
we will relate our deformation theory of rack products to cohomology. For
this, let us first examine an introductory example:

Example 4.2
Let (R,✄) be a rack bialgebra, and suppose there exists a deformation ✄~ =
✄+ ~ω of ✄. The new rack product ✄~ should satisfy the self-distributivity
identity, i.e. for all a, b, c ∈ R

a✄~ (b✄~ c) = (a(1) ✄~ b)✄~ (a
(2)

✄~ c)

To the order ~0, this is only the self-distributivity relation for ✄. But to
order ~1 (neglecting order ~2 and higher), we obtain:

ω(a, b✄c)+a✄ω(b, c) = ω(a(1)✄b, a(2)✄c)+ω(a(1), b)✄(a(2)✄c)+(a(1)✄b)✄ω(a(2), c).

It will turn out that this is the cocycle condition for ω in the deformation
complex which we are going to define. More precisely, we will have
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1. d2,0ω(a, b, c) = ω(a, b✄ c),

2. d1,1ω(a, b, c) = a✄ ω(b, c),

3. d1,0ω(a, b, c) = ω(a(1) ✄ b, a(2) ✄ c),

4. d23ω(a, b, c) = ω(a(1), b)✄ (a(2) ✄ c),

5. d2,1ω(a, b, c) = (a(1) ✄ b)✄ ω((a(2), c).

This may perhaps help to understand the general definition of the operators
dni,µ for i = 1, . . . , n and µ ∈ {0, 1} further down.

On the other hand, the requirement that ✄~ should be a morphism of
coalgebras (with respect to the undeformed coproduct △ of R) means

△ ◦✄~ = (✄~ ⊗✄~) ◦ △
[2].

This reads for a, b ∈ R to the order ~ (neglecting higher powers of ~) as

ω(a, b)(1) ⊗ω(a, b)(2) = ω(a(1), b(1))⊗ (a(2) ✄ b(2))+ (a(1) ✄ b(1))⊗ω(a(2), b(2)).

This is exactly the requirement that ω is a coderivation along ✄ = µ, to be
defined below. ✸

Recall thatR being a rack bialgebra means in particular that µ : R⊗2 → R
is a morphism of coassociative coalgebras. For all positive integer n, let
µn : R⊗n → R be the linear map defined inductively by setting

• µ1 := Id : R→ R,

• µ2 := µ : R⊗2 → R,

• µn := µ ◦ (µ1 ⊗ µn−1), n ≥ 3,

so that
µn(r1, · · · , rn) = r1 ✄ (r2 ✄ (· · ·✄ (rn−1 ✄ rn) · · · ))

for all r1, . . . , rn in R.

Proposition 4.1 For all n ≥ 1, the map µn is a morphism of coalgebras
satisfying

µi(r
(1)
1 ,· · ·, r

(1)
i−1, ri)✄ µn−1(r

(2)
1 ,· · ·, r

(2)
i−1, ri+1,· · ·, rn) = µn(r1,· · ·, rn), (4.3)

µn(r1, · · · , ri−1, r
(1)
i ✄ ri+1, · · · , r

(n+1−i)
i ✄ rn+1) = µn+1(r1, · · · , rn+1)

(4.4)

for all positive integers i and n such that 1 ≤ i < n and for all r1, ..., rn in
R.
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Proof:

• eqn (4.3): Let us show that the assertion of eqn (4.3) is true for all n and i
with 1 ≤ i < n by induction over i. Suppose that the induction hypothesis
is true and compute

µi(r
(1)
1 ,· · ·, r

(1)
i , ri+1)✄ µn−1(r

(2)
1 ,· · ·, r

(2)
i , ri+2,· · ·, rn)(

r
(1)
1 ✄ µi(r

(1)
2 ,· · ·, r

(1)
i , ri+1)

)
✄

(
r
(2)
1 ✄ µn−2(r

(2)
2 ,· · ·, r

(2)
i , ri+2,· · ·, rn)

)
,

which gives, thanks to the self-distributivity relation in the rack algebra R,

r1 ✄
(
µi(r

(1)
2 ,· · ·, r

(1)
i , ri+1)✄ µn−2(r

(2)
2 ,· · ·, r

(2)
i , ri+2,· · ·, rn)

)

= r1 ✄ µn−1(r2,· · ·, rn) = µn(r1, · · · , rn),

where we have used the induction hypothesis. This proves the assertion.

• eqn (4.4): The assertion follows here again from an easy induction using the
self-distributivity relation.

✷

If (C,∆C) and (D,∆D) are two coassociative coalgebras and φ : C → D
is a morphism of coalgebras, we denote by Coder(C, V, φ) the vector space
of coderivations from C to V along φ, i.e. the vector space of linear maps
f : C → D such that

∆D ◦ f = (f ⊗ φ+ φ⊗ f) ◦∆C

Let us note the following permanence property of coderivations along
a map under partial convolution which will be useful in the proof of the
following theorem. For a coalgebra A, maps f : A⊗B → V and g : A⊗C →
V and some product ✄ : V ⊗ V → V , the partial convolution of f and g is
the map f ⋆part g : A⊗B⊗C → V defined for all a ∈ A, b ∈ B and c ∈ C by

(f ⋆part g)(a⊗ b⊗ c) := f(a(1) ⊗ b)✄ g(a(2) ⊗ c).

Lemma 4.4 Let A, B, C and V be coalgebras, V carrying a product ✄ which
is supposed to be a coalgebra morphism. Let f : A⊗B → V be a coderivation
along φ and g : A ⊗ C → V be a coalgebra morphism. Then the partial
convolution f ⋆part g is a coderivation along φ ⋆part g.
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Proof: We compute for all a ∈ A, b ∈ B and c ∈ C

△V ◦ (f ⋆part g)(a⊗ b⊗ c) = △V (f(a
(1) ⊗ b)✄ g(a(2) ⊗ c))

= (f(a(1) ⊗ b))(1) ✄ (g(a(2) ⊗ c))(1) ⊗ (f(a(1) ⊗ b))(2) ✄ (g(a(2) ⊗ c))(2)

= (f(a(1) ⊗ b))(1) ✄ g(a(2) ⊗ c(1))⊗ (f(a(1) ⊗ b))(2) ✄ g(a(3) ⊗ c(2))

= φ(a(1) ⊗ b(1))✄ g(a(2) ⊗ c(1))⊗ f(a(3) ⊗ b(2))✄ g(a(4) ⊗ c(2)) +

+f(a(1) ⊗ b(1))✄ g(a(2) ⊗ c(1))⊗ φ(a(3) ⊗ b(2))✄ g(a(4) ⊗ c(2))

= (φ ⋆part g)(a
(1) ⊗ b(1) ⊗ c(1))⊗ (f ⋆part g)(a

(2) ⊗ b(2) ⊗ c(2)) +

+(f ⋆part g)(a
(1) ⊗ b(1) ⊗ c(1))⊗ (φ ⋆part g)(a

(2) ⊗ b(2) ⊗ c(2))

=
(
(φ ⋆part g)⊗ (f ⋆part g) + (f ⋆part g)⊗ (φ ⋆part g)

)
◦ △A⊗B⊗C(a⊗ b⊗ c).

✷

Definition 4.2 The deformation complex of R is the graded vector
space C∗(R;R) defined in degree n by

Cn(R;R) := Coder(R⊗n, R, µn)

endowed with the differential dR : C∗(R;R) → C∗+1(R;R) defined in degree
n by

dnR :=

n∑

i=1

(−1)i+1(dni,1 − dni,0) + (−1)n+1dnn+1

where the maps dni,1 and dni,0 are defined respectively by

dni,1ω(r1, · · · , rn+1) :=
∑

(r1),··· ,(ri)

µi(r
(1)
1 , · · · , r

(1)
i−1, ri)✄ω(r

(2)
1 , · · · , r

(2)
i−1, ri+1, · · · , rn+1)

and

dni,0ω(r1, · · · , rn+1) :=
∑

(ri)

ω(r1, · · · , ri−1, r
(1)
i ✄ ri+1, · · · , r

(n+1−i)
i ✄ rn+1)

and dnn+1 by

dnn+1ω(r1, · · · , rn+1)

:=
∑

(r1),··· ,(rn−1)

ω(r
(1)
1 , · · · , r

(1)
n−1, rn)✄ µn(r

(2)
1 , · · · , r

(2)
n−1, rn+1)

for all ω in Cn(R;R) and r1, . . . , rn+1 in R.

Theorem 4.2 dR is a well defined differential.
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Proof: That dR is well defined means that it sends coderivations to coderivations.
It suffices to show that this is already true for all maps dni,1, d

n
i,0 and dnn+1, which

is the case. For this, we use Lemma 4.4. Indeed, a cochain ω ∈ Cn(R;R) is a
coderivation along µn. By Proposition 4.1, µn is a coalgebra morphism. On the
other hand, it is clear from the formula for dni,1 that dni,1 is a partial convolution

with respect to the first i − 1 tensor labels of µi and ω. Therefore the Lemma
applies to give that the result is a coderivation along the partial convolution of µi

and µn, which is just µn+1 again by Proposition 4.1. This shows that dni,1ω belongs

to Coder(R⊗n, R, µn+1) as expected. The maps dni,0 and dnn+1 can be treated in a
similar way.

The fact that dR squares to zero is related to the so-called cubical identities
satisfied by the maps di,1 and the maps di,0, namely

dn+1
j,µ ◦ dni,ν = dn+1

i+1,ν ◦ d
n
j,µ for j ≤ i and µ, ν ∈ {0, 1},

and auxiliary identities which express the compatibility of the maps di,1 and di,0
with dnn+1, and an identity involving dnn+1 and dn+1

n+2. One could call this kind of
object an augmented cubical vector space.

We will not show the usual cubical relations, i.e. those which do not refer to
the auxiliary coboundary map dnn+1, because these are well-known to hold for rack
cohomology, see [8], Corollary 3.12, and our case is easily adapted from there. One
possibility of adaptation (in case one works over the real or complex numbers) is
to take a Lie rack, write its rack homology complex (with trivial coefficients in the
real or complex numbers), and to apply the Serre functor.

Let us show that the two following extra relations involving the extra face dnn+1

hold:
dn+1
i,µ ◦ dnn+1 = dn+1

n+2 ◦ d
n
i,µ (4.5)

for all 1 ≤ i ≤ n and µ in {0, 1} and

dn+1
n+1,0 ◦ d

n
n+1 = dn+1

n+2 ◦ d
n
n+1 + dn+1

n+1,1 ◦ d
n
n+1 (4.6)

Indeed, if ω is a n-cochain and r1, ..., rn+2 are elements in R, then

(dn+1
i,1 ◦ dnn+1ω)(r1,· · ·, rn+2)

=µi(r
(1)
1 ,· · ·, r

(1)
i−1, ri)✄ dnn+1ω(r

(2)
1 ,· · ·, r

(2)
i−1, ri+1, ,· · ·, rn+2)

=µi(r
(1)
1 ,· · ·, r

(1)
i−1, ri)✄

(
ω(r

(2)
1 ,· · ·, r

(2)
i−1, r

(1)
i+1, ,· · ·, r

(1)
n , rn+1)✄

✄ µn(r
(3)
1 ,· · ·, r

(3)
i−1, r

(2)
i+1, ,· · ·, r

(2)
n , rn+2)

)

By Proposition 4.1 and thanks to the self-distributivity of the rack product, this
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equality can be rewritten as

(dn+1
i,1 ◦ dnn+1ω)(r1,· · ·, rn+2)

=
(
µi(r

(1)
1 ,· · ·, r

(1)
i−1, r

(1)
i )✄ ω(r

(2)
1 ,· · ·, r

(2)
i−1, r

(1)
i+1, ,· · ·, r

(1)
n , rn+1)

)
✄

✄
(
µi(r

(3)
1 ,· · ·, r

(3)
i−1, r

(2)
i )✄ µn(r

(4)
1 ,· · ·, r

(4)
i−1, r

(2)
i+1, ,· · ·, r

(2)
n , rn+2)

)

= dni,1ω(r
(1)
1 ,· · ·, r(1)n , rn+1)✄ µn(r

(2)
1 ,· · ·, r(2)n , rn+2)

= (dn+1
n+2 ◦ d

n
i,1ω)(r1, · · · , rn+2),

which proves that Relation (4.5) holds when µ = 1. The case µ = 0 goes as follows:

(dn+1
i,0 ◦dnn+1ω)(r1, · · · , rn+2) = dnn+1ω(r1, · · · , ri−1, r

(1)
i ✄ ri+1, · · · , r

(n+2−i)
i ✄ rn+2)

= ω(r
(1)
1 ,· · ·, r

(1)
i−1, r

(1)
i ✄ r

(1)
i+1,· · ·, r

(n−i)
i ✄ r(1)n , r

(n+1−i)
i ✄ rn+1)✄

✄ µn(r
(2)
1 ,· · ·, r

(2)
i−1, r

(n+2−i)
i ✄ r

(2)
i+1,· · ·, r

(2n−2i+1)
i ✄ r(2)n , r

(2n−2i+2)
i ✄ rn+2)

where we have used that the rack product is a morphism of coalgebras. Recall the
following equation from Proposition 4.1:

µn(s1, · · · , si−1, s
(1)
i ✄ si+1, · · · , s

(n+1−i)
i ✄ sn+1) = µn+1(s1, · · · , sn+1)

for all s1, ..., sn+1 in R and 1 ≤ i ≤ n. This allows to rewrite the preceeding
equality as

(dn+1
i,0 ◦dnn+1ω)(r1, · · · , rn+2)

= ω(r
(1)
1 ,· · ·, r

(1)
i−1, r

(1)
i ✄ r

(1)
i+1,· · ·, r

(n−i)
i ✄ r(1)n , r

(n+1−i)
i ✄ rn+1)✄

✄ µn+1(r
(2)
1 ,· · ·, r

(2)
i−1, r

(n+2−i)
i , r

(2)
i+1,· · ·, r

(2)
n , rn+2)

= dni,0 ω(r
(1)
1 ,· · ·, r(1)n , rn+1) ✄ µn+1(r

(2)
1 ,· · ·, r(2)n , rn+2)

= (dn+1
n+2 ◦ d

n
i,0)(r1, · · · , rn+2)

which proves that (4.5) holds when µ = 0. Relation (4.6) relies on the fact that
cochains are coderivations. Indeed,

(dn+1
n+1,0◦d

n
n+1ω)(r1, · · · , rn+2) = dnn+1ω(r1, · · · , rn, rn+1 ✄ rn+2)

= ω(r
(1)
1 , · · · , r

(1)
n−1, rn)✄ µn(r

(2)
1 , · · · , r

(2)
n−1, rn+1 ✄ rn+2)

= ω(r
(1)
1 , · · · , r

(1)
n−1, rn)✄ µn+1(r

(2)
1 , · · · , r

(2)
n−1, rn+1, rn+2)

= ω(r
(1)
1 , · · · , r

(1)
n−1, rn)✄

(
µn(r

(2)
1 , · · · , r

(2)
n−1, rn+1)✄ µn(r

(3)
1 , · · · , r

(3)
n−1, rn+2)

)

where we have used Proposition 4.1 in the last equality. By self-distributivity of
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✄ and because ω is a coderivation, this gives

(dn+1
n+1,0◦ d

n
n+1ω)(r1,· · ·, rn+2) =

(
ω(r

(1)
1 ,· · ·, r

(1)
n−1, rn)

(1)
✄ µn(r

(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
✄

(
ω(r

(1)
1 ,· · ·, r

(1)
n−1, rn)

(2)
✄ µn(r

(3)
1 ,· · ·, r

(3)
n−1, rn+2)

)

=
(
ω(r

(1)
1 ,· · ·, r

(1)
n−1, r

(1)
n )✄ µn(r

(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
✄

(
µn(r

(3)
1 ,· · ·, r

(3)
n−1, r

(2)
n )✄ µn(r

(4)
1 ,· · ·, r

(4)
n−1, rn+2)

)

+
(
µn(r

(1)
1 ,· · ·, r

(1)
n−1, r

(1)
n )✄ µn(r

(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
✄

(
ω(r

(3)
1 ,· · ·, r

(3)
n−1, r

(2)
n )✄ µn(r

(4)
1 ,· · ·, r

(4)
n−1, rn+2)

)

Applying Proposition 4.1 again enables us to rewrite this last equality as

(dn+1
n+1,0◦ d

n
n+1ω)(r1,· · ·, rn+2)

=
(
ω(r

(1)
1 ,· · ·, r(1)n )✄ µn(r

(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
✄ µn+1(r

(3)
1 ,· · ·, r

(3)
n−1, r

(2)
n , rn+2)

+ µn+1(r
(1)
1 ,· · ·, r(1)n , rn+1)✄

(
ω(r

(2)
1 ,· · ·, r(2)n )✄ µn(r

(3)
1 ,· · ·, r

(3)
n−1, rn+2)

)

= dnn+1ω(r
(1)
1 , · · · , r(1)n , rn+1)✄ µn+1(r

(2)
1 ,· · ·, r(2)n , rn+2)

+ µn+1(r
(1)
1 ,· · ·, r(1)n , rn+1)✄ dnn+1ω(r

(2)
1 ,· · ·, r(2)n , rn+2)

=
(
(dn+1
n+2 ◦ d

n
n+1 + dn+1

n+1,1 ◦ d
n
n+1) ω

)
(r1, · · · , rn+2)

which proves (4.6).
Let us show now how dR ◦ dR = 0 can be deduced from (4.5), (4.6) and from

the cubical relations. In degree n, we have

dR ◦ dR =
( n+1∑

i=1

(−1)i+1(dn+1
i,1 − dn+1

i,0 ) + (−1)n+2dn+1
n+2

)
◦
( n∑

i=1

(−1)i+1(dni,1− dni,0)

+ (−1)n+1dnn+1

)

=

n+1∑

i=1

n∑

j=1

(−1)i+j(dn+1
i,1 ◦ dnj,1 − dn+1

i,1 ◦ dnj,0 − dn+1
i,0 ◦ dnj,1 + dn+1

i,0 ◦ dnj,0)

+

n∑

i=1

(−1)n+i+1(dn+1
n+2 ◦ d

n
i,1 − dn+1

n+2 ◦ d
n
i,0 − dn+1

i,1 ◦ dnn+1 + dn+1
i,0 ◦ dnn+1)

− dn+1
n+2 ◦ d

n
n+1 − dn+1

n+1,1 ◦ d
n
n+1 + dn+1

n+1,0 ◦ d
n
n+1

The first double sum is equal to zero thanks to the cubical relations, the second

sum is zero thanks to relation (4.5). Relation (4.6) implies that the last one van-

ishes. This shows that dR is indeed a differential and concludes the proof of the

proposition. ✷
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Definition 4.3 The cohomology of the deformation complex (C∗(R;R), dR)
is called the adjoint cohomology of the rack bialgebra R and is denoted by
H∗(R;R).

Definition 4.4 An infinitesimal deformation of the rack product is a
deformation of the rack product over the K-algebra of dual numbers K̄~ :=
K~/(~2), i.e. a linear map µ1 : R

⊗2 → R such that R̄~ := R ⊗ K̄~ is a rack

bialgebra over K̄~ when equipped with µ0 + ~µ1.
Two infinitesimal deformations µ0 + ~µ1 and µ0 + ~µ′

1 are said to be equiv-
alent if there exists an automorphism φ : R̄~ → R̄~ of the coalgebra of
(R̄~,∆, ǫ) of the form φ := idR + ~α such that

φ ◦ (µ0 + ~µ1) = (µ0 + ~µ′
1) ◦ φ.

As usual, being equivalent is an equivalence relation and one has the
following cohomological interpretation of the set of equivalence classes of
infinitesimal deformations, denoted Def(µ0, K̄~):

Proposition 4.2
Def(µ0, K̄~) = H2(R;R)

The identificaton is obtained by sending each equivalence class [µ0 + ~µ1] in
Def(µ0, K̄~) to the cohomology class [µ1] in H

2(R;R).

Proof: One checks easily that the correspondence is well defined (if µ0 + ~µ1 is

an infinitesimal deformation, then µ1 is a 2-cocycle, see Example 4.2) and that it

is bijective when restricted to equivalence classes. ✷

Remark 4.1

(a) The choice of taking coderivations in the deformation complex is ex-
plained as follows: The rack product µ is a morphism of coalgebras,
and we want to deform it as a morphism of coalgebras with respect to
the fixed coalgebra structure we started with. Tangent vectors to µ in
Homcoalg(C ⊗ C,C) are exactly coderivations along µ. This is the first
step: Deformations as morphisms of coalgebras. Then as a second step,
we look for 1-cocycles, meaning that we determine those morphisms of
coalgebras which give rise to rack bialgebra structures. The deforma-
tion complex in [4] takes into account also the possibility of deforming
the coalgebra structure, and we recover our complex by restriction.
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(b) Given a Leibniz algebra h, there is a natural restriction map from the
cohomology complex with adjoint coefficients of h to the deformation
complex of its augmented enveloping rack bialgebra UAR(h). The in-
duced map in cohomology is not necessarily an isomorphism, as the
abelian case shows. Observe that the deformation complex of the rack
bialgebra K[R] for a rack R does not contain the complex of rack co-
homology for two reasons: First, this latter complex is ill-defined for
adjoint coefficients, and second, there are not enough coderivations as
all elements are set-like. A way out for this last problem would be to
pass to completions.

✸

A Some definitions around coalgebras

Let C be a module over a commutative associative unital ring K (which we
shall assume to contain Q). Recall that a linear map ∆ : C → C⊗KC = C⊗
C is called a coassociative comultiplication iff

(
∆⊗ idC

)
◦∆ =

(
idC⊗∆

)
◦∆,

and the pair (C,∆) is called a (coassociative) coalgebra over K. Let (C ′,∆′)
be another coalgebra. Recall that a K-linear map Φ : C → C ′ is called a
homomorphism of coalgebras iff ∆′ ◦ φ = (φ⊗ φ) ◦∆. The coalgebra (C,∆)
is called cocommutative iff τ ◦ ∆ = ∆ where τ : C ⊗ C → C ⊗ C denotes
the canonical flip map. Recall furthermore that a linear map ǫ : C → K is
called a counit for the coalgebra (C,∆) iff

(
ǫ ⊗ idC

)
◦∆ =

(
idC ⊗ ǫ

)
◦∆ =

idC . The triple (C,∆, ǫ) is called a counital coalgebra. Moreover, a counital
coalgebra (C,∆, ǫ) equipped with an element 1 is called coaugmented iff
∆(1) = 1⊗ 1 and ǫ(1) = 1 ∈ K. Let C+ ⊂ C denote the kernel of ǫ. Recall
that a morphism φ : (C,∆, ǫ, 1) → (C ′,∆′, ǫ′, 1′) of counital coaugmented
coalgebras over K is a K-linear map satifying (φ⊗φ)◦∆ = ∆′ ◦φ, ǫ′ ◦φ = ǫ,
and φ(1) = 1′. Moreover, for any counital coaugmented coalgebra the K-
submodule of all primitive elements is defined by

Prim(C) := {x ∈ C | ∆(x) = x⊗ 1+ 1⊗ x}. (A.1)

Every morphism of counital coaugmented coalgebra clearly maps primitive
elements to primitive elements, thus defining a functor Prim from the category
of counital coaugmented coalgebras to the category of K-modules. Finally,
following Quillen [22], we shall call a counital coaugmented coalgebra con-
nected iff the following holds: The sequence of submodules (C(r))r∈N defined
by C(0) = K1 and recursively by

C(k+1) := {x ∈ C | ∆(x)− x⊗ 1− 1⊗ x ∈ C(k)} (A.2)
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is easily seen to be an ascending sequence of coaugmented counital subcoal-
gebras of (C,∆, ǫ, 1), and if the union of all the C(k) is equal to C, then
(C,∆, ǫ, 1) is called connected. We refer to each C(k) as the subcoalgebra
of order k. Clearly, each C(k) is connected, and C(1) = K1 ⊕ Prim(C).
Moreover, each morphism of counital coaugmented coalgebras maps each
subcoalgebra of order k to the subcoalgebra of order k of the target coal-
gebra thus defining a functor C → C(k) from the category of coaugmented
counital coalgebras to itself. We shall use the following acronyms:

Definition A.1 We call a coassociative, counital, coaugmented coalgebra a
C3-coalgebra. In case the C3-coalgebra is in addition cocommutative, we shall
speak of a C4-coalgebra. Finally, a connected C4-coalgebra will be coined a
C5-coalgebra.

Recall also that the tensor product of two counital coaugmented coalgebras
(C,∆, ǫ, 1) and (C ′,∆′, ǫ′, 1′) is given by (C ⊗ C ′, (idC ⊗ τ ⊗ idC′) ◦ (∆ ⊗
∆′), ǫ⊗ ǫ′, 1⊗ 1′). Tensor products of connected coalgebras are connected.

Recall the standard example: Let V be aK-module and S(V ) = ⊕∞
r=0S

r(V )
be the symmetric algebra generated by V , i.e. the free algebra T(V ) (for which
we denote the tensor multiplication by suppressing the symbol) modulo the
two-sided ideal I generated by xy − yx for all x, y ∈ V . Denoting the com-
mutative associative multiplication in S(V ) (which is induced by the free
multiplication) by •, i.e.

x1 • · · · • xk := x1 · · ·xk mod I,

we have ∆(x) = x⊗ 1+ 1⊗ x for all x ∈ V and ∆(x1 • · · · • xk) = (x1 ⊗ 1+
1⊗ x1) • · · · • (xk ⊗1+ 1⊗ xk) for all positive integers k and x1, . . . , xk ∈ V .
Recall that S0(V ) is the free K-module K1 and the counit is defined by
ǫ(λ1) = λ for all λ ∈ K and by declaring that ǫ vanishes on ⊕∞

r=1S
r(V ).

Moreover, the submodules
(
S(V )

)
(n)

are given by ⊕n
r=0S

r(V ), whence S(V )

is clearly connected, so it is a C5-coalgebra whose submodule of primitive
elements equals V .

Moreover, for a given coalgebra (C,∆) and a given nonassociative algebra
(A, µ) where µ : A⊗ A → A is a given K-linear map, recall the convolution
multiplication in the K-module HomK(C,A) defined in the usual way for any
two K-linear maps φ, ψ : c→ A by

φ ∗ ψ := µ ◦ (φ⊗ ψ) ◦∆. (A.3)

In case ∆ is coassociative and µ associative, ∗ will be associative. The fol-
lowing fact is rather important: If C is connected and if the K-linear map
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ϕ : C → A vanishes on 1C , then any convolution power series of ϕ con-
verges, i.e. the evaluation of some formal series

∑∞
r=0 λrϕ

∗r (with λr ∈ K
and ϕ∗0 := 1AǫC) on c ∈ C always reduces to a finite number of terms. In
particular, let ψ : C → A be a K-linear map such that ψ(1C) = 1A. Then
–as has been observed by Takeuchi and Sweedler (see [28, Lemma 14] or [27,
Lemma 9.2.3]– ψ has always a convolution inverse, i.e. there is a unique K-
linear map ψ′ : C → A such that ψ ∗ψ′ = 1AǫC = ψ′ ∗ψ, where ψ′ is defined
by the geometric series ψ′ =

∑∞
r=0(1AǫC − ψ)∗r.

B Semigroups

We collect some properties of semigroups which are very old, but a bit less
well-known than properties of groups. The standard reference to these topics
is the book [5] by A. H. Clifford and G. B. Preston.
Recall that a semigroup Γ is a set equipped with an associative multiplication
Γ×Γ → Γ, written (x, y) 7→ xy. An element e of Γ is called a left unit element
(resp. a right unit element resp. a unit element) iff for all x ∈ Γ we have
ex = x (resp. xe = x resp. iff e is both left and right unit element). A
pair (Γ, e) of a semigroup Γ and an element e is called left unital (resp. right
unital resp. unital) iff e is a left unit element (resp. a right unit element resp.
a unit element). A unital semigroup is also called a monoid. It is well-known
that the unit element of a monoid is the unique unit element (unlike left or
right unit elements in general). Let (Γ, e) be a right unital or a left unital
semigroup. Recall that for a given element x ∈ Γ an element y ∈ Γ is called
a left inverse of x (resp. a right inverse of x resp. an inverse of x) iff yx = e
(resp. xy = e resp. iff y is both a left and a right inverse of x). Clearly, a
unital semigroup (Γ, e) such that every element has an inverse is a group. In
that case it is well-known that for each x there is exactly one inverse element,
called x−1.
Note that by a Lemma by L. E. Dickson (1905, see [5, p.4] for the reference)
every left unital semigroup such that each element has at least one left inverse
is already a group which can be shown by just using the definitions. Dually,
every right unital semigroup such that each element has at least one right
inverse is also a group.
More interesting is the case of a left (resp. right) unital semigroup (Γ, e) such
that every element x has at least one right (resp. left) inverse element. In
that case (which is an equivalent formulation of a so-called right group (resp.
left group), see [5, p.37]), the conclusion of Dickson’s Lemma does no longer
hold. In order to see what is going on, there is first the following useful
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Lemma B.1 Let (Γ, e) be a left-unital semigroup, let a, b, c three elements
of Γ such that

ab = e and bc = e.

Then
c = ae, be = b,

and the left multiplications La : x 7→ ax and Lb : x 7→ bx are invertible. In
particular, given the element a, its right inverse b is unique under the above
hypotheses.

The proof is straight-forward.
The structure of right (resp.left) groups is completely settled in the Suschke-
witsch Decomposition Theorem, 1928: Given a right group (Γ, e), it can be
shown –using the above Lemma and elementary manipulations, see also [5,
p.38, Thm 1.27]– that all the left multiplications Lx : y 7→ xy (resp. right
multiplications Rx : y 7→ yx) are invertible, that for each element there is
exactly one right (resp. left) inverse (whence there is a map Γ → Γ assigning
to each element x its right (resp. left) inverse x−1), that the image of this
right (resp. left) inverse map is equal to Γe (resp. eΓ) (which turns out to be
a subgroup of (Γ, e)), and that (Γ, e) is isomorphic to the cartesian product(
Γe×E, (e, e)

)
(resp.

(
E×eΓ, (e, e)

)
where E is the set of all left (resp. right)

unit elements in (Γ, e) (coinciding with the set of all idempotent elements).
For right groups, the aforementioned isomorphism is given as follows:

φ : Γe×E → Γ : (a, f) 7→ af, (B.1)

φ−1 : Γ → Γe×E : x 7→ (xe, x−1x). (B.2)

Note that both components of φ−1 are idempotent maps. There is a com-
pletely analogous statement for left groups.

Recall that a Lie semigroup is a differentiable manifold Γ equipped with
a smooth associative multiplication m : Γ×Γ → Γ. All the other definitions
of semigroups mentioned above (such as left unital, right unital semigroups,
monoids, groups, right groups, left groups etc.) carry over to the Lie, i.e.
differentiable, case.
Moreover for right Lie groups, it is easy to see that all the left multiplications
are diffeomorphisms (since their inverse maps are left multiplications with
the inverse elements and therefore smooth). This fact and the regular value
theorem applied to the equation xy = e imply that the right inverse map is
smooth since its graph is a closed submanifold of Γ × Γ and the restriction
of the projection on the first factor of the graph is a diffeomorphism. As
the maps x 7→ xe = (x−1)−1 and x 7→ x−1x are smooth and idempotent, it
follows that their images, the subgroup Γe, and the semigroup of all left unit
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elements, E, are both smooth submanifolds of Γ and closed sets provided
Γ is connected, see e.g. [3, p.54, Satz 5.13] for a proof. Hence Γe is a
connected Lie group, and the Suschkewitsch decomposition Γ ∼= Γe×E, see
Appendix B, is a diffeomorphism. Conversely, any cartesian product of a Lie
group G and a differentiable manifold E equipped with the multiplication
(g, x)(h, y) := (gh, y) is easily seen to be a right Lie group. An analogous
statement holds for left Lie groups.
It is not hard to see that the category of all connected right Lie groups is
equivalent to the product of category of all connected Lie groups and the
category of all pointed connected manifolds.
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[10] Dixmier, J.: Algèbres enveloppantes. Gauthier-Villars, Paris 1974.

74



[11] Fenn, R., Rourke, C.: Racks and links in codimension 2 J. Knot Theory
Ramifications 1 (1992), no. 4, 343–406
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