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Dispersive schemes for the critical Korteweg de Vries equation

Corentin Audiard **

Abstract

In this paper we study semi-discrete finite difference schemes for the critical Korteweg
de Vries equation (cKdV, which is gKdV for k& = 4). We prove that the solutions of the
discretized equation (using a two grid algorithm) satisfy dispersive estimates uniformly
with respect to the discretization parameter. This implies convergence in a weak sense of
the discrete solutions to the solution of the Cauchy problem even for rough initial data. We
also prove a scattering result for the discrete equation, and show that the discrete scattering
function converges to the continuous one. Finally rates of convergence are obtained for the
approximation of a semi-linear equation with initial data in H®, s > 0, yet a similar result
remains open for the quasi-linear ckdV equation. Our analysis relies essentially on the
discrete Fourier transform and standard harmonic analysis on the real line.

Introduction

The well-posedness of the generalized Korteweg de Vries equation

3 55 _
{ Owu + Ou+ 0,u’ /5 =0, (cKdV)

uli—o = uo,

for L? initial data (which corresponds to the critical scaling) was obtained by Kenig Ponce
and Vega [12]. Scattering for small initial data was also proved as a direct consequence of the
existence theorem. This result was optimal in the sense that any other gkKdV equation admits
traveling wave solutions (that are a nonlinear phenomenon) with arbitrarily small L? norm.
The existence of solutions in negative regularity Sobolev spaces was later obtained for the KdV
equation [I1], but our paper will only focus on the cKdV equation. The well-posedness relies
on the existence of several sharp dispersive estimates. Namely if V (¢) is the group generated
by the skew symmetric operator —d2, Kenig Ponce and Vega proved

10V (#)uoll Loo ry;2Re) S w0l L2 (r,),s (D1)
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If one is not allowed to use dispersive estimates, semi-group technics only give well-posedness
H? s> 3/2, as was done by Kato [§] in 1979. It is thus essential that numerical schemes mim-
ick correctly the fine properties of dispersive equations if one wishes to approximate solutions
for rough initial data. Though travelling waves are problably the most well known solutions
of gKdV equations and are very smooth, the approximation of very rough solutions can be
important in some contexts. For example stochastic versions of the KdV equation appear in
modellisation of plasma fluids, it has been studied theoretically [16] and numerically [2, B] by
Debussche and Printems. In this framework the initial data only belong to L2

As was pointed out by Ignat and Zuazua [7] in their work on the nonlinear Schrodinger equa-
tion, numerical schemes often fail to reproduce dispersive properties of solutions. The deep
reason is that the symbol of the discretized differentiation operators do not behave in the same
way as the symbol of the continuous one : in particular they display a lack of convexity (can-
cellation of the second order derivative of the symbol) and a lack of “slope” (cancellation of
the first derivative), which are key ingredients for the proof of (DI[D2]). To enlight the origin
of such ingredients, let us outline the proof of the estimate (DI]) as is done in [I0]. By Fourier
transform, we have

[ e seay 1 [ s
o) = 5= [ e T Edg = 5o [ e e (g1

o o

dn
3771/3’

now using Parseval’s identity in the time variable and reversing the change of variables

U dp 1 [, ode 1
M2, — — 2 7 20¢275 _ © 2

Looking with attention at the calculi, it is clear that the only important point is that (£3)’ =< &2,
or naively put the slope of the symbol is large for & large. However the symbol of any discrete
differentiation operator is periodic in £. In particular it cancels at several points ; this is a first
obstruction to dispersion. Similarly it can be seen that the gain of integrability (D2]) relies
on the curvature (wether it is convexity or concavity does not matter) of the symbol, another
feature not satisfied for discrete schemes.

At this point, it is worth mentionning that this kind of difficulty has been overcome by Nixon
[14] in the case of fully implicit schemes. Indeed in this case the numerical dissipation is
particularly strong at the frequencies where the symbol of the discretized operator fails to
behave like the continuous one. Our aim here is to deal rather with non dissipative schemes -
discrete in space and continuous in time - for which dispersive estimates are a pure consequence
of the space discretization.

Our approach follows the one developped by Ignat and Zuazua for the Schrodinger equation
in [7], where they used a “two grid filtering” in order to eliminate the bad frequencies. The
technics rely on basic harmonic and functional analysis, and we tried to keep a reasonnable
balance between self-containedness and heaviness of the calculus : when proofs are slight



modifications of already existing arguments we often point to a reference instead of repeating
them, and if several quantities are bounded by the same method the precise argument is
detailed only once.

Our main result is that there exists N € N and an interpolation operator I1 : [2(NhZ) — (?(hZ)
actually constructed for NV = 6 such that the semi-discrete finite difference problem

{ Oun + Ouy + (OpI1EW) /5 =0, (n,t) € Z x R,
uli=o = Hugp,

is globally well-posed for ug, € I*(NhZ) sufficiently small, and the solution satisfies dispersive
estimates analogous to (DIL[D2) uniformly in h. The notations E, II, ), and (92 are defined in
the first and second sections. The convergence of the discrete solution is proved by standard
weak convergence/compactness arguments. Of course no rate of convergence in h can be
obtained if we work at the critical level of regularity ug € L?, but we expect that rates of
convergence in h®® should be true for uy € H® for some o < 2/5. Though we did not manage
to obtain such results for the quasi-linear cKdV equation, it is proved for a simpler (semi-
linear) equation in the last section of the article.

Finally, let us remind that scattering for the continuous problem means that there exists a
function w € L2 such that tginoo |lu(t) — V(t)wl||z2 — 0, where V (t) is the group generated

by —d2. In other words the solution of the quasilinear problem behaves asymptotically as a
solution of the linear one. We prove here a discrete version of this result :

Jwy, : li{n |un (t) = Vi (H)wp| 2 — 0, where V;(t) is generated by — ;.

We prove also that wy, converges to w in a weak sense.
The paper is organized as follows:

e In section 1 we set up notations and basic notions used,

e Sections 2 and 3 are focused on the derivation of linear dispersive estimates for the semi-
discrete problem. More precisely the discrete analog of local smoothing (D) is obtained
in section 2 while global gain of integrability (D2)) is tackled in section 3.

e The well-posedness of the discrete problem in a convenient space is proved in section 4.

e We prove in section 5 that, provided the discretized initial data converge to wg, then
the solution of the discrete problem converges strongly in L? (R, x R;) (and weakly in
stronger spaces) to the solution of the Cauchy problem.

e The study of scattering is done in section 6.

e Finally, section 7 deals with rates of convergence for a simpler (semilinear) problem when
the initial data is in H®, s > 0.
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e The appendix describes discrete versions of well-known results of Fourier and harmonic
analysis and contains a dispersive estimate that we did not manage to use for section 7,
but that may be useful in order to obtain rates of convergence for cKdV.

1 Notations and basic properties

The set of sequences defined on hZ is denoted S(hZ). As usual, the Lebesgue spaces on the
real line are denoted LP(R) while the discrete Lebesgue spaces are [P(hZ), or in a shortened
notation lg, or [P when there is no ambiguity. The norm of a sequence u € [P(hZ) is defined as

lallfy = B Juy P

We will index a sequence of S(hZ) as u;p, or u; if there is no ambiguity. We write R;, R, in order
to avoid confusion between time and space, and write for conciseness LELY := LP(R,; LI(Ry)),
and similarly PL9, LYL%. When working on bounded time intervals, and if there is no risk of
confusion we write L2 for L?([~T,T]) or L?([0,T)).

If a, b are two numbers depending on several parameters the notation a =< b means that there
exists two constants «, 8 > 0 independant of the parameters such that

aa < b < fBa. (1.1)

Similarly if a,b > 0, a < b means that there exists C' > 0 independant of the parameters such
that a < Cb.

The Fourier transform is the application u — F(u) = @ = [; e~ Su(z)dz, the discrete Fourier
transform is the application

S(hZ) > (up) = (£ = U(E) = hY_ e M),
Z

The sequence (u;) can be deduced from its Fourier transform thanks to the Fourier inversion

formula
1 w/h

TG (€)de = (F1a),;. (1.2)

e % —7/h

A Fourier multiplier M (D) of symbol m(§) is defined by m(&) =m(§)u(). In particular, we
may define the fractional derivative operators

|Dl*u = FH([]*w), (1.3)

and emphasize that this definition holds for sequences as well as for functions.
This leads to the definition of discrete and continuous Sobolev spaces for s > 0

H*(hZ) = {(un) € P(hZ) : |lullzs := (1 + |D*)ull;2 < oo},
H*(R) = {u € L*(R) : ||ullgs == [|(1 +|D|)ullz2 < oo}.
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We now turn to the symbol of discrete differentiation operators. The operator 0y is defined by

U(j+1)h — Ujh
(D) jn = Lh]’
it is a Fourier multiplier on S(hZ) with symbol ¢ — 1. In section 5, we will also use dj, as an
operator on functions defined by (Opu)(z) = (u(z + h) —u(z))/h. We use in all the paper the

standard discretization of the third order derivative operator

Up(j+2) = 2Un(j+1) T 2Un(j—1) = Un(j—2)

(uj) = (Dpun); = e

The symbol of —3} is
ipu(€) = i sin®(Eh/2) sin(ch).
Note that (despite the notation) 93 # O o 0y 0 9. This is a stable (semi-)discretization for
the Airy equation d; + d3u = 0, indeed
Oni — ipn(€)i(&) = 1 = ™, (14)

implying the conservation of the l% norm by the Parseval equality (and of any H® norm). The
first order derivative of py, is

pj, = 4sin(€h/2) sin(3Eh/2) /b2, (1.5)
its second order derivative is
Py = 2(2sin(2¢h) — sin(ER)) /h. (1.6)

The group corresponding to —d; will be denoted Vj(t) : u — F~1(ePr7), we also remind
that in the introduction we denoted V() the group corresponding to —d3, namely the Fourier
multiplier with symbol eite’

2 Discrete dispersive smoothing

The lack of smoothing effect for the operator Vj,(¢) and arbitrary initial data could be proved
as was done in [7, [6] for the Schrédinger equation. This is due to the cancellation of the symbol
p), = 4sin(h&/2) sin(3hE/2)/h? at £27/3h.

The method that we will follow to tackle this issue consists in filtering the initial data and the
nonlinearity in a way such that their spectrum is localized away from +27/3h. Namely if (uy,)
is a sequence of 3hZ, we define ITu; defined on hZ as follows

HU3j = U3j,
HU3J‘+1 = 2/3U3j + 1/3U3j+3, (21)
HU3j+2 = 1/311,3]‘ + 2/3U3j+3.
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We also define F3 as the canonical projector

Bsy: S(hZ) — S(3hZ),

A word of caution on notations: The operators II and F3 as defined are of course linked to
h, though it is clear that their definition poorly depends on it. In order to lighten the notations
we have chosen not to display this dependance, although the symbols of operators does change
according to their natural scaling (see the case of Oy, 62)

We have 1
[IEsu = 5(1 + 2cos(hé))?Esu. (2.2)
Indeed
MEsu=h > TEsuje " = 3h/3 ugje (14 2/3e" + 2/3e M 4 1/37M
+1/3e” %)

= é@(&)(l +4/3 cos h§ + 2/3 cos(2hE))

= %@(5)(1 + 4 cos hé + 4 cos® hé)

= SBu(€)(1+ 2coshe)

Note that it is clear that [[IIEzul[;pnz) < [[E3ullp@nz) < 31/pHqup(hZ), this fact will be used
during the rest of the article without further notice.

Proposition 1. (dispersive smoothing)
For any u € lgh,

sup [ [(DIVa(O), Pat < [l (23)
i R

and the inhomogeneous counterpart stands for any (gs;(t))

t
DR [ V= )g)at o S Ny, (2.4)
Proof. By scaling, it is sufficient to prove it for h = 1. We have

T ) 1 9 2
V(D)IMu; = / emfeztp(f)%wmdg

LA e (1+2cos€)? —~
o / elm§e4zt sin?(¢£/2) sin& w |£|Hud£
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On | —27/3,2r/3[, (sin?(£/2)sin &)’ = sin(£/2) sin(3¢/2) > 0, thus p is a diffeormorphism and
we may use the change of variables n = 4sin?(¢/2)siné. To lighten the notations we write

& =¢&(n) and d€ = f(n)dn. This gives

or/3 . 2 3vV3/8 A 2
/ ezm§e4ztsm2(§/2)sm§(1 +2COS§) lf\ﬂdf _ / esz(n)-‘,—ztn (1 +2COS§) ’é-‘a

—2m/3 9 —3/3/8 9
F(n)dn

iz an(1+2cos€)?
:/Rl[:s\/é/s,s\/ﬁ/s]e st tnﬁﬁmﬂﬁ)d%

which is an inverse Fourier transform in time. Plancherel’s formula thus implies
3V3/8 . (14 2cos &)? 3v3/8 14 2cosé)*
1] el 2 gz, - [ CE2E ey pan
—3/3/8 9 b Jo3vays 81

then reversing the change of variable n = n(§) we get

3V3/8 41412 2 2 /3 41121532 3
(1+ 2eosg) ePlasePan = [ (14 2cos ) PR
/3\/3/8 —27/3 4sin(£/2) sin(3¢/2)]
The divisor sin(§/2)sin(3¢/2) has a first order cancellation at +27/3 and a second order
cancellation at 0, but since it is easily seen that

142 ?
(1 +2cos&)IE["] is uniformly bounded on [—27/3,27/3],

sin(£/2) sin(3¢/2)
this implies
2m/3 d¢ 2m/3
1+ 2cos &)*¢?|a)*— : < / 1+ 2cos &3 |al?de
I P e sin@e s o
S Iz
< ullf -

The same argument can be applied without further difficulties in the areas [27/3,7] and
[—7, —27 /3] where p is also monotone, this gives (2.3]).
The estimate (24]) is slightly more technical and is based on the formula

1T

! T t_ ip(&)t 2
2 oy N ixg 02 © € (I1+2cos(€))” .
|D| /Ovl(t t)Ig(t")dt /_F/Re 3 =20 9 g(&, m)dédr,  (2.5)

where ¢ is the Fourier transform of f with respect to both x and ¢. For the detail of the
argument we refer to [12], theorem 3.5.

O
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Remark 2. It is clear from the proof that the only thing needed for the boundedness of
(1 + 2cos &)*|¢)?
sin(&/2) sin(3¢£/2)
multiplier whose symbol cancels in such a way would have also worked. This fact is impor-
tant since in the next section we will see that different interpolators must be used to gain

is the first order cancellation of (14 2cos &)* at £27/3h. Any other Fourier

integrability.

Corollary 1. The following “dual“ estimates also hold:

Vuel,  ITIDIV©ul s S lule, (2.6)
Vgellt,  swlID / V(t — Y g(#)de |2 < Mgl e, (2.7)
I1D| / V(t— ) g(t)de 2 < |Tglli 2 o). (2.8)

Proof. The inequality (27 is a direct duality consequence of (2.6]), indeed

101 [~ V-t mg@iatle = s 31D | vie=tme; @ity

[lull;2=1

= s 3 [ ) v - pipjgar
Jlullp=1 5" J o0

< ol IV~ O1DJul

<

gllz 22 [l

while (Z8)) is deduced from (X)) by replacing g by 1y 49
It remains to prove (Z8). We remind that 1 = (1 + 2cos(h€))?/9 is the symbol of II. From
the duality formula

w/h
Y (u, v) € I*(3hZ) x I*(hZ), 27y Tujv; = Yav

J —7/h

©/(3h)
= [0 w20/ +va()
—7/(3h)
+Y0(€ + 27/3)dE
we see that 2r1l*v = 3(& — 21 /3) + (&) + Yo (€ + 27/3) so that
(IF|D|V (t)u) = |€ = 2m/3|e"Pyu( — 2m/3) + €| Pya(€) + [€ + 2m/3[e"PYu(E + 2 /3),

and the proof of Proposition [l can be repeated identically because 1) cancels at the appropriate
points. ]
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3 Global dispersive estimates

A key estimate for solutions of the linear evolution equation dyu + d3u = 0 is
lull s ee S DI uoll 2, (3.1)

it relies on the fact that the second derivative of the symbol &3 does not cancel on R outside
0, which is obviously not the case for the discrete symbol pp,(§) on [—7/h,m/h]. This estimate
is sharp in the sense that it is scale invariant:

luz, X3 | s pge = I, )| g poee /A D1 uo(A) |1z = lluoll 2 /A,

and the same scale invariancy holds for sequences of S(Z) dilated in sequences of S(hZ). This
will be used in order to reduce our proofs to the case h = 1.
According to (6, the second derivative of the discrete symbol p; cancels at the points where

2sin(2¢€) = siné.
Except the obvious points 0,4, there are only two solutions (£1,&p) in | — m, 7[, and up to
reindexing we can assume that & €| —m/2, —7 /4] and &y €]n/4,7/2[. Similarly to the previous
section, we will see that the derivation of global dispersive estimates only requires to use an
interpolation operator whose symbol cancels at (£p,&1). Unfortunately they are not rational
multiple of 7, thus no ’barycentric’ interpolator may be used to filter those frequencies as in
the previous section.

We chose instead to use an interpolation operator more tailored to this case, namely an
operator II such that

(&) = (&) = Mu(+2r/3) = Hu(+r) = 0.
Given ug; defined on the coarse grid 6AZ, we set for 1 <k <5
Hau(ij—f—k = Qg Ug; + (1 — ak)uﬁ(j+1), (3.2)

the discrete Fourier transform of (II,u); is then

5
Myu = Z e Uy = Z ugje 09 4 Z e~ U6TFR)E (ckuej + (1 — ak)u6(j+1))
k=1
5
_ Z =3y, < Z ek 4 o eiRE akei(ﬁ—k)§>
k=0

-6 (5(1_625+Zakez L—e™)

1— GiEA 1 .
= 66 u(ﬁ)(l T + Zake Zkﬁ)
1

= m(&u(§).
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Figure 1: The connected line is the graph of the symbol of —82, the other one is the graph of the discrete
symbol p for h = 1. The ’bad’ points are the inflexion points &o, &1 and the local extremas 42w /3.

It is clear that without restriction on aj we have m(0) = 1, m(kn/3) = 0, k # 0 (mod 6).
The system

1 <k<5, m(2kr/6) =0,

m(&) =0,
is thus underdetermined and we may arbitrarily choose a solution (). The optimal choice of
(ag) (minimizing the norm of I1,) is a question that we will not study.
Remark 3. The construction was performed here for A = 1, however it is clear that the same
construction of an operator I, : S(6hZ) — S(hZ) leads to an interpolator whose symbol is
simply m(h), and thus cancels automatically at k7 /3h, k # 0 (mod 6).
More generally, any interpolator S(NhZ) — S(hZ) constructed by this technic has for symbol

l—eNhe 1 =
mp(§) = N (1 e T Z age ),
1

and thus always cancels at 2kn/Nh, k # 0 (mod N). This fact will be important for the
sections dealing with convergence to the exact solution.

We simply assume in the rest of this section that an operator Il : S(NhZ) — S(RZ) is
given whose symbol has a first order cancellation at &y, &1, +.

Proposition 4. Let 11 : NhZ — hZ be a discrete Fourier multiplier, i.e. there exists a smooth
function 1 such that IIf = f . If 1 cancels at &y/h, &1 /h, £ /h, then for any ug € I2(NhZ),

Vi ()1 Tug||ps e < CllIDM g2, (3-4)
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For any f €l /3L1, we have the estimates

t
IDRE / Vit — S (s)ds g < Ollf lussrs, (3.5)

In both estimates the constant C does not depend on h.

Proof. The proof follows the one of the continuous case, up to some supplementary technical
difficulties.
By duality and elementary calculus the inequality ([3.4]) can be reduced to

H/]R\D!AMVh(t)HH*V( YD~ g (")t |y e < N9l 1o
(for a detailed argument see [I3] Lemma 7.3). By repeating the argument of the proof of

(20), we see that it is sufficient to prove the above estimate for the function [ |D|~ Y2V, (t —
t")IIII*g;(¢')dt’, but then we have

. w/h i(t—t")pp (&) +ijs , ,
/(...)dt _ / |£|1/2 T illg(e, )t de
R

w/h

" wg t"dt'd
_ /W/h/ |£|1/2 “g(&,t)dt'de

m/h eitpn (§)+ijé

< * -

< [Ima,wr s, sup!/ ERANE
7T/h eltpn(§)+ijé

S H max _|gy|[|L1 *; Sup! — e YdE],

J—Fk|<5 —7/h ‘5’1/2

the last inequality being a direct consequence of the explicit form of IT*. Thus we are reduced
to prove

m/h itpn(§)+ijé
11 s ol v el [ el g 5 gl (35
Similar arguments show that (B3] amounts to

T/h oispn(§)+ijé
| Sup | \1?1%5 |l 1210, *5 Sup ’ /_ﬂ/h Wiﬁdf‘ Hl;l S fllass s

which is implied by (B6]). According to proposition pB8 (discrete Hardy-Littlewood-
Sobolev), it is sufficient to prove

w/h eltp hE)/h3+ijhé 1
o [

S .
R VO S (3.7)
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By homogeneity we may reduce it to h = 1, indeed the change of variable £ = 1/h shows that
[B7) is equivalent to

T Gitp(n)/h3+ijn 1
sup|

ool | o £ G

ettp(n)+ijn 1
Sup’/ i ‘1/2 Y(n)dn| < W

We remind that p(&) = 4sin?(£/2)sin €, we perform the analysis only on [0, 7], ¢ > 0, the
proof being the same on [—7,0] or ¢ < 0. The estimate for j = 0 is trivial, thus we assume
j € Z*. We split the interval [0, 7] in several parts:

which amounts to

Ay =[0,t713),
Ay = AT {|tp’ + j| > 141/2},
A3 = (Al U AQ)C'

Note that if , ¢~/ > & we only need to work on A;, moreover in this case the integrand only
runs over [0, 7], though we do not write it explicitly

If |j| < Cot'/3, Cy > 0 fixed, one has trivially |fA I £ 1/4/7, else
. vy s
/ e’(tpﬂf)w/\/g%:/ ez(tp+3£)¢/\/gd§+/ ez(tpﬂ&)w/\/gd{,
Ay 0 /131

the first integral is obviously bounded by 1/4/|j|. After an integration by part we obtain for
the second one

1/¢1/3 -
| /t ez‘(tp+j£)¢/\/gd§] < t1/9 +—V 171 :
1/14] T itV G +t(1/))
1/3
+ e ei(j§+tp);<__¢ _ }ﬁtp” +¢/>‘
1/l ERG+p)\ 26 (G +tp)
< 1

vl
provided Cj is chosen large enough, for [p/| < €2 and p’ ~¢ 3¢2. We implicitly used the fact
that the integration interval is bounded to get the estimate

1/t1/3 /613 41/2
1 5/ ‘\J’ < ‘1 _
T A AR

cii€+tp) :
1/ &12)5 + tp/|

/
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Let us note that the key point in the previous analysis was j > Cot'/? = |j + tp/| > |j|. Since
on As this inequality is automatically satisfied, the same integration by part argument gives

[ erou Ve 5 e
We still have to estimate the 1ntegral on As. Let us consider V, V two disjoint neighbourhoods
of the pomts {&o, 77} where p” cancels, and set Ay = A3N (VU V) As = ANV, A5 AsNV.

On Ay, p’" =< ¢, p/ < €% and tp’ < j/2, thus € 2 /|j|/t. The Van der Corput lemma (see [13]
Corollary 1.1) implies

2
i(tp+358) d <Lt A1 1)t :L.
[, e £ il < il NG

We then have on the neighbourhood of &

P —1'(&) = g(ﬁ —&)?+0(€ —&)?, " = B(E— &) +olE — &), BER

For ¢ (resp C) chosen small enough (resp large enough), if ¢/[j| ¢ [c, C], one obtains easily by

integrations by parts
[ ety e < 1/,
As

thus we may assume that ¢ < |j|, and all that remains is to prove

| / e +iy \ [Ede| < 1V,
As

This estimate can be seen as a particular case of lemma 2.7 in [9], we provide the argument
for completeness. Since 1 cancels at &y, we have

fot1/tt/s
| eIy [\ edg] S S 1V
5071/151/3
because t is bounded away from 0.
(note here that it would be enough that ) simply cancelled at the order 1/2)
On AL := A {lp/+/t] < |G+0'(€)0)/2t], [E—€o] > £/} one has [0l = /G + P&/
so that by using again the Van der Corput’s lemma and the fact that ¢ < max(|¢ — &l,1) =

¥ S VIE— of we get

(-t + P (o)t 1 (G40 )\
|/A/5 (ir+i€)y /. [Edg| < 'J + ' (o)t ' J+2;t(50) - > J+I;t(§o)>
< LSL
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Finally on A := A5 (1 {|p' + j/t] > |G + 9/ (€0)t)/2t], |€ — €| > t1/3}, ome has |p/ + j/t| 2
P 2 I€ = &l* > 723,

We may conclude again by integration by parts, since the calculus are very similar we shall
only detail the case of one of the terms appearing :

'1 / eltp+a€)q),
tJay (0 + /)€

The integral estimate on :4v5 can be performed in the same way, and this concludes the proof. [J

1 1§ — ol 1
<z d¢ < = max|In(|¢ — &) < .

Finally some other useful estimates are obtained by interpolation of the estimates in Prop.
[ and those of section 2. For the precise argument on interpolation we refer to [I3] prop. 7.4.

Corollary 2. For ug € 12, f € [5/4L19/9

VA (8) g 5 10 < || o 12 (3.8)
t

|| / Vi(t — $)Tf (s)dss 1o S 1flls/agrors (3.9)
0

| DRVa(E) o 20 5/2 S || Dy Mg 2. (3.10)

Remark 5. The results above apply to convenient interpolation operators, but also to any
Fourier multiplier composed with any such interpolators. As a consequence we may (and will)
also apply the estimates above to other operators, for instance d, o II.

4 Existence of a solution

This section is devoted to the existence of a global in time solution to the discrete dispersive
scheme, that admits bounds depending only on the 12(hZ) of the initial data, and in particular
independent of h. We first state a simple but useful lemma.

Lemma 1. In H'(hZ), the norm (fi/rl/lh [@2(1 4 [€2)d€)Y? is (uniformly in h) equivalent to

Uit 1 — Us
HUHZ2+ H j+1 JHlQ.

The operator 11 o Ey, is continuous H*(hZ) — H*(hZ), 0 < s < 1, where E} is the natural
projection operator S(hZ) — S(khZ), 11 is an interpolation operator as in the previous section.

Proof. A short computation shows that

ujJr/l?uj = 2ie™¢/2 sin %ﬂ,
and since on [—x/h,w/h], 2/h sin% = ¢, one has
w/h R R 925 ¢in2s &h
ol = | RO < f R+ S (41)
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in particular for s = 1

o snt g g1 —
= [ AP+ 4™ e = fulf TR, (1.2

_7r/

It is easily checked that ||IT o Exul|;2 < ||ull;z. Moreover for kn < j < k(n + 1), by hypothesis
uj = ajupn + (1 — aj)up i), so that

5

w1 — gl < Jo1 = aglugn — ] < (max g — o)) D [uknts — Ukntj-1l.
1

This implies |[(IToEpu) 1 —(IToEpu)jll2 S ||wjr1—ujl2, the operator ITo Ej, is thus continuous
12 =12 et H' — H', so that by interpolation it is continuous H* — H*, 0 < s < 1. U

As an application of the estimates of the previous sections we shall prove the existence of
a solution for the following semi-discrete problem

{ o + Bgu + OpIIEW’ /5 = 0,

i = Tug. (DcKdV)

We say that u is a solution of (DcKdV]) if it belongs to C'(Ry, %) NI°L0(R;) and satisfies
¢
u(t) = Vi (t)ug — / Viu(t — 8)OpILEW’ /5ds.
0

Theorem 6. We define the space X (R x hZ) as the set of functions t — u(t) € S(hZ) such
that

u € C(R;1?) N L=(R;1?),
[Onulljee 2 < 00,

[[ullj5 Lr0 < o0.

with the corresponding norm ||u||x associated. We assume that I1 is an interpolation operator
whose symbol cancels at the points +2mw /3, £m, &, & (such operators exist according to the
construction before Remark [3 p[IQ).

There exists 0 > 0 independent of h such that for |[Hug|;2 < & small enough there exists a

unique solution u of (DcKdY) satisfying
[Jul| x < oo, (4.3)

Moreover the solution map {ug € I>(NhZ) : ||lugllz < 8} — X(hZ) is Lipschitz.
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Proof. The proof is based on the Picard-Banach fixed point theorem applied in the space X.
We recall that Vj,(¢) is the semigroup corresponding to the third order discretized derivative,
it is a Fourier multiplier of symbol ¢P»(&). We check that for |jug|| < § and a small enough,

t
T: u— Vy(t)ug — / Vi (t — 8)OpILEU® () /5ds,
0
sends {u € X : |lul|x < a} = Bx(0,a) to itself.
Control of the L°/? norm: We have ||V}, (#)ITugl;2 < ||uol;2 and

t
H/ Vi(t = s)0p LB’ (s)ds 2 < ITEW 2 S Jlullps pao < Jlull -
0

Control of ||y Tu||jecr2: Using Proposition [[l we may write
10 Vi () g 1002 < o iz

moreover

t
107 /0 Vit — $)IIEW’ (s)ds oo 2 S TLEW || page S [|ulljs oo < Jlull-

Control of the [°L!Y norm: By Corollary B, ||V}, (t)ug||;5 110 < ||uoll;2, and
t
I Valt = s)onItEe (s)ds o S [00TE oo
0

Since
4

(B, — (B} = (MBu);11 — (Bu),) (3 (M) (T ), (4.4)
0
Hoélder inequality implies
IOWTLEW® (573 oo < (|OpTLEullyoe 2 [ TLEU |34 rosa
Using now the continuity of o E: H' — H! (lemma [I])
IORTLEW? ||/ 1079 S 1O ullioe p2llullis o < Jlullk-

Finally we have obtained

ITullx < ellTTuoll2 + elful-
Let a be fixed such that ca* < 1/2, then if we choose § < 5= we get

[Tullx < el[Mugll2 +a/2 < a,

that means T' : Bx(0,a) — Bx(0,a). Following the same arguments, we see that (up to
diminishing a) the operator is a contraction. By the Picard-Banach’s fixed point theorem this
ensures existence and uniqueness of a solution (in X) for any wug such that |jugl/;z < 0. The
smoothness of the solution operator follows from the classical fixed point theory. O
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5 Convergence to the solution of the Cauchy problem

We denote by P the interpolation operator from [? to the set of continuous affine by parts
functions:

Yu € 2(hZ), Y € [jh,(j + 1)h] : Pu(z) = u; + ( —jh)“th_“ﬂ.
Although our natural level of regularity is only /2, we need continuous functions in order to use
the dispersive smoothing of u,. The operator P is particularly handy since it commutes with
the operator d),. Let uy, be the discrete solution such that P(Ilu) — uo (L?). The aim of
this section is to establish the convergence of Puy, to the solution of (cKdV') in a sense which
will be precised.
We start with a lemma that links the “smoothness” of a sequence v to the smoothness of Pv.

2\ 1/2

)

and the same equalities are true if we replace R by [kh,lh] and hZ by kh---1h for (k,l) € Z2.
The Fourier transform of Pu is

Lemma 2. For any v € S(hZ), we have

Yi+1 — Y5
h

1Pl @ = ol [Pollm ) = (Hvul% T

—~ sin?
Pu(e) = 5 (e

If PTlvy, — v (L?), then for any fived t PVy(t)[v, — V(t)v (L?), where V is the semigroup
corresponding to the operator 0. Moreover if v is fived and t remains in a compact the
convergence is uniform.

Proof. The norm equalities are elementary. A simple calculation gives for the Fourier transform
- G+ R
Pv(§) = Z/ e~ it (Uj + %(m —jh))dx
j Ik
= Y et e -1 vy vy (heTVE TN — 1)
: —i¢ R\ i &
-y Y A G
= - 5
r 3
(eih§ _ 1)(efih£ _ 1)
h2¢2

J

in(h
S

v(8)-
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For the norm convergence we may write

— 4sin(h&/2)

PVA(B)TTon = =555 e (O, (¢)

.92 - L 1/2
= [PV, — Vool = [ |2 et 6) - o

.92 ‘ - ' 1/2
(/R ‘748122(?25/2) e"PrTluy, (&) — eltph@‘2d§>

1/2
citpn _ 6it§3 o 2 )
+(/R|< 5(6) dg)

Since [e!Pr| = 1, the first term tends to 0 according the the hypothesis PIlv, — v (L?),
moreover |ePh — e’t53| <2 and —p_,0 0, so that by Lebesgue’s dominated convergence theorem

IN

the second term also tends to 0.
If t,£ remain in a compact, [t(py(€) — €3)| — 0 uniformly. Since lim4 s 91l L2(jg)>4) = O, the
uniform convergence of PV} (t)IIv, to V (¢t)v follows easily. O

Remark 7. The convergence PVj,(t)ITuy, — V (t)u (L?) is uniform in ¢ for + bounded, however
it does depend on ug, preventing any rate of convergence in h.

In what follows we shall assume that ugy, € [2(NhZ) is such that
HPHUOh — UQHLQ —h 0,
which is clearly the minimal assumption for convergence, and we consider the family uy of

solutions to

{ Opup, + Oup, + OpILEW] /5 = 0, (5.1)

up =0 = Hugp,.

According to Theorem [, the family (Pup)o<p<1 is bounded in L°LZ N L3LYP, and (up(- +
h) —up(-))/h is bounded in L°L?. By weak star (resp weak) compactness, we may extract uy,
weakly converging toward some u € L{°L2 N L3 LY.

It is slightly more delicate to check that d,u € LS°L?. We use that

Ve O / Pup (x4 h) — Puh(x)gpdmdt _ / Puh(x)sp(x —h) — gp(w)dxdt.
- I 2 I

Since (p(x — h) — @(z))/h — —¢' LLL?, we have

—h) —
/ Puh(x)(p(x ) Mx)dwdt—) —/ugp’dmdt,
R2 R

h

Moreover up to extracting again we may assume that (Puy(- + h) — Puy(-))/h —* v € LLL2,

so that
/ vodrdt = —/ udzpdxdt,
R2 R2



5 CONVERGENCE TO THE SOLUTION OF THE CAUCHY PROBLEM 19

that is d,u = v € L°L? (in the sense of distributions).

Theorem 8. Let Iugy, be the initial data of the discrete problem (DcKdV). Assume that
Plug j, —p, uo in L2, Let uw € LPL2N LI LY be the weak limit of any extracted subsequence of
Puy,. Then wu is the solution of cKdV with initial data ug and the whole sequence Puy, converges
to u in the following sense

Puy, =" u (LPLE), Pup —u (L3L{°),
OpPup, —=* Opu (LELY), Pup — u (Lj,(R?)).

Proof. Let T > 0 be fixed, J = [-T,T], Q = [-C,C]. Up to increasing by at most 2h the size
of () we may always assume that C' is a multiple of h and apply the norm equalities of Lemma
(a fact that we will not mention in the rest of the proof). Since

Oy Puy, = —Pjuy, — PORIIEN] /5,
we have according to the injection L'(Q2) — H~1(Q) (dual of H' — L)

|1 Pup 11,02y + | PORILEUS, /5] 11 (713 ()

10:Punllpr (g m-30)) <
S lluollpz + 1PORILES /5] 11 (g6

As J and 2 are bounded, we may write

HPahHEugHLl(JXQ) < HPahHEugHLi/‘l(RI,Ltm/g(J))?

then by application of Holder’s inequality and continuity of IIE and P :

HPahHEuZHLgM( < Nowun i 2 lunllfs pro < Iluol|Ze-

Ra, L% ()
Thus 0y Puy, is bounded in L?(.J, H=3(£)). On the other hand
HPuh||L2(J;H1(Q)) S ||Puh||L°°(J;L2) + HamPUhHLgOLfa

and thus Puy, is bounded in L?(.J, H*(£2)). Since we have the sequence of injections H'(£2) —
L?(Q)) — H~3(Q) where the first injection is compact, Aubin-Lions’s lemma implies that
Puy, is precompact in L%(J,L?(2)). Using a diagonal extraction argument, we find that a
subsequence of uy, is strongly converging to u in L120 Ry xRy) as h — 0.

This list of convergences is now sufficient to check that the limit is the solution of the continuous

problem. In order to do so we introduce the ‘variational’ formulation

Vo € C(R?), Puy,(—0pp — 03 ) — PILE; d)pdadt = 0.
R2
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Passing to the limit in h we will obtain that u is a solution of (cKdV). The linear terms are
easily handled, indeed for ¢ € C°, &3¢ — 03¢ (L?), thus using Puj, — u (L) we find

/ Pup(—dpp — D) — / u(—0pp — 03p).
R2 R2

For the nonlinear term, let us fix R such that suppy C] — R, R[> and € > 0 to be small. Let us
define
Ape = {(z,t) €[-R,R*: |uj, —u’| > ¢}. (5.2)

Since Puj, — u L*([~R, R]?), up to an other extraction Puy — u a.e. and we have for £ > 0
fixed A(Ape) =4 0. For h small enough we may write

/ O PNIEW; pdxdt = / PIEu;0_ppdxdt.
[_RvRP [_RvRP
We have 9_p,p — —0,¢ (L*°(R?)) thus is is sufficient to prove
/ (PIIEY;, — u®)0_pedxdt — 0.
[7R7R}2

Let N € N* be such that IT: NhZ — hZ, 7 = I_IéV;Ol{NhZ +ph} = UZy, :

N—-1
PIEW — u®)0_,pdzdt]| < ) Nkh+p+1HE5 — | |0_po|dxdt
‘ ( up, — u’)0_ppdrdt| S ZZ ‘ UNkh+ph u’l|0-pp|de
[~ R,R]? ~R ez p=0 J Nkh+p

R Nkh+p+1 1 5 .
< / Z/ Zaj,p|u1v(k+j)h — u’| |0_pp|dxdt,
Rk §=0

Nkh+p

where the «; ), only depend on the operator 1I. This implies

N—-1 R 1
|/[ RRP(PHUZ — ud)O_ppdadt| < Z /Rzzajvpm?vwﬂ)h | |0 ppldadt
R 2 )

Z, j=0
N-1 1 R
<3 / / 0| P () — P (z + 75.0)| |0—nepldadt,
p=0 j=0’—F/R

where 7;, =pif j =0, p— N if j = 1. Since u € LA,
lim sup/ |u®(x + ¢) — u’(x)|dxdt = 0,
e=0  J[-RRJ?

and we are reduced to prove

R
/ / |Puj(z) — u®(2)| |0_pp|dedt = / |Puj () — u®(z)| |0_pp|dedt — 0. (5.3)
~rJR [—R,R)?
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But
/ |Puj () — u®(2)] |0_pp|dedt = / |Pul () — u®(2)] |0_p | dadt.
[_RvRP Ah,s

+ [ IPui@) — o @)l 0-rpldaude

h,e
The second term is simply bounded by

]/ |Puj () — u®(2)] |0_pp|dedt| < e4R* sup |On ).
Ag 0<h<1, (z,t)€[~R,R]?

For the other term we use a discrete version of the Sobolev embedding H! < L* (the proof
is similar)

Puy,, Poyuy, € L*([-R, R?) = Puj, € L2L([-R, R]?) = Puy, € LL?([-R, R]?),
with bound independent of h. By interpolating with Pu;, € L3L" we get Pu;, € L%([-R, R]?).
The same (simpler) argument implies v € LS([—R, R]?), so that

5/6 5/6 1/6
/ P, = P[0 dedt < (PRI a 0,y + 16150, IO-hPN L, -

but since A(Ap ) — 0, we get
/ |Puj, — u®||0_pp| dzdt — 0.
h,e
Finally we have obtained

Ve >0, limsup| (PIu; — u®)Oppdrdt] < 4R%e sup |0,
h—0  J[-R,R]? 0<h<1, (z,t)€[~R,R]?

which means as desired 8, PTIu) — d,u° (D').
We have proved that and w is a solution of (cKdV'). It remains to check is that this solution
has indeed ug for initial data, that is u € CyL?, u|i—g = ug. According to lemma [ :

lim PV, (t)ugy, = ug (L?) (see lemma B),
h,t—0

and we must prove limy, ;0 || fg OpVi(t — s)Iu (s)ds||z2 = 0. According to the estimates of
section 4, we have

t
H/O OnVa(t = )TLBuj (s)dsl|z2 < i r2qo.) = lunllZs oo,
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Moreover (following the proof of Theorem [G])

lunlsrioqog) < IVauonrllispiogo,g) + ||/O OpVi(r — s)ILEw}, () /5ds |5 £10(j0,4)
< Viuonllis ooy + 1OnTUEW;, /5])15/4 1079 10,17
< | Vauonllisprogo.y + Cllonunllie 2 lunlls 1o o)
1
< WVauonllis oo,y + 5llunllis Lrogo,n),

so that [|unl|;sz10([0,4) < 2[IVi(8)uo.nllis£10(j0,4) and it is sufficient to prove that this last quantity
goes to 0 when h,t — 0. Let € > 0 be fixed, we introduce vg € H' such that |lug —vol|z2 < &,
and we set vg 5, , = vo(nh). Classically || Pvgp—uvol|lg1 — 0, this implies both ||vg p, —ug pll;z — 0
and || Pvgpllgn < Cllvoll . We get then, using the continuity of Vj, : H'(hZ) — H'(hZ),
IVaTluo nllis oo,y < IVa(Muo.n = vo.n)llis 1o o) + [[Vavoallis 1o o)
< Vi (Mug, — vo ) s r1o(go.) + £/ Vv nll poofo riiserz

< Mg, — vo,)lli2 + 2wl |2 -

As limsup || Hug p, — vo,n)||;2 < €, by chosing h, (then) ¢ small enough we have obtained
h

Ve >0, dtg,hg >0: Ve <t <ty h<hg, ||VhHU07hH15LIO([O7tD < 2¢,
which is the expected convergence. U

Remark 9. The convergence of any extracted subsequence to the solution w actually proves
that any sequence Puy, converges to u as h, — 0.

6 Scattering

Scattering of the solutions of the continuous cKdV equation for small initial data has been
known for 20 years [12]. Roughly, it means that the solution of the nonlinear equation asymp-
totically behaves like a solution of the linearized equation. This phenomenon is opposed to the
existence of solitons, which are the canonical example of nonlinear behavior. The mathematical
statement is the following.

Theorem 10. [12, Kenig-Ponce-Vega] Let u(t) be the solution of cKdV with initial data ug
small enough in L*(R). Then w(z) = uo — [;° V(—s)u®(s)/5ds belongs to L*(R) and

u(t) — V(E)wl|| 2 ——s400 0. (6.1)

Remark 11. A similar result holds for ¢ — —oo, but the functions obtained w, w have no
reason to be equal.
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We check here as a first step that a discrete analog of the theorem above can be formulated,
and then discuss the convergence of the discrete functions wy, such that up ~¢ Vi, (t)wy, to the
continuous function w such that u ~; V(t)w.

Proposition 12. For ||ug 2 satisfying the smallness condition of Theorem [@, we denote uy,
the solution of (DcKdW). Then wy, = ugp, — [y Va(—s)Iluj,(s)ds is in I(Z) and is such that

l[un(t) = Vi(t)wll;z — 0.

Proof. According to the formula
t t
up(t) = Vi (t)uon — / MWVi(t — s)IIEu;,(s)/5ds = Vi () (ugp — / Vi (—s)I1Eu} (s)/5ds),
0 0

it is sufficient to check that f(f OnVi(—s)IIEu; (s)ds converges in [? as t — oo, thus to check
that it is a Cauchy sequence. The inequality (Z8]) implies

t
\\Aahvh(—S)HEU2(8)d8\\z2 < B [l p2r,0p) < ILezrun s progrccp-

But by dominated convergence we have ||1>7up |5 L10(j7,00) — 0, we can conclude:
o
llup(t) — Vi (t)wp ;2 — 0, where wy, = vy —i—/o O Vi (—s)ILEw; (s)ds.

O

At this point, it should be emphasized that there is no reason for the discrete solution to
behave asymptotically as the continuous one. In fact even in linear settings it is not hard to
see that in general

| PVi(t)uon — V (E)uol| *t—00,n—0 0

Thus we may expect at best Pw;, — w (or equivalently PV} (—t)up —¢ V(—t)u), this is the
purpose of the following proposition.

Proposition 13. Assume that Pugjp —p uo L? and satisfies the 1> smallness condition of
Theorem [@, then Pwy —j, w L2,

Proof. According to the previous Proposition,
[ee]
wn =g~ [ Vi(=9)OnIE(5)5ds,
0

the improper integral being seen as a strong limit in 12, Since w = ug — [;° V(—s)0,u’(s)ds it
is sufficient to check that

/OO PVi,(—35)0pI1uj (s)ds —p, /OO 0,V (—s)ud(s)ds.
0 0
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Note that the convergence in h of fg Vi (—s)ILEw; (s)ds for fixed ¢ is actually rather easy but
leaves open the problem of interversion lim; lim;, = limy, lim;. More directly we shall write

u / PVi(~ )0 ILE (s)ds | 2 < [TLEW(s) s 2 < JunlIPLY < €

so that we may extract an L? weakly converging subsequence. Up to further extraction we
may also assume (see the proof of theorem ) that Pu;, — u a.e. . Let ¢ be an L? function
with compactly supported Fourier transform,

00 T [e'S)
// P@thHEuigodsdx:// PathHEuzgodsd:c—l—// P@thHEuzgodsdx.
RJO R JO RJT

As a first step, we prove that the limit as 7" — oo of the second term in the above right hand
side is 0 uniformly in h. In what follows we use the fact that the Fourier multiplier V;,(¢) is
formally defined by its symbol on I2(hZ) as well as on L?*(R), and we have PV}, = V;, P. Thus
we can write [, [° PORVi,(—t)IIEu) pdtdr = [ [ 0, PIIEW} Vy, (t)edadt. Holder’s inequality
implies

‘/R/T O PILEUR V;, (t)pdadt| < HahuhHl‘X’LQ([T,oo})||UH?5L10([T,00})HVh(t)SDHL5L10([T,oo])-

Now using the fact that ¢ has a Fourier transform compactly supported, for A small enough
we have [] [ Vi (6)@ g 130 < 1]z, thus

lim V@)l 25 L10((7,00) = O-

This implies our first step: for any € > 0, there exists Ty > 0, hg > 0 such that for 7" >
TO, h < hO,

|// POV 1B, wdsdzx| < e. (6.2)
RJT
We now focus on the convergence of fR fOT PathHEu?Lgodsdx :
T T
/ / POV IIEW, pdsdz = / / PILEW; O_1 Vi, (—5)pdsda
R JO RJO
T
= / / PHEuZ ((V —Vn)0zo + V(0 + 0_p)p — V@xgo) dsdz.
RJO

From the proof of theorem B we know that PIIEu] — u® (D’'(R?)), and thus weakly in L} L?
since it is bounded in that space: indeed by uniqueness of the distributional limit any extracted

! This fact may be seen as a simple corollary of the dispersive estimates proved previously: supp@ C
[-C,Cl = @ = @li—z/6h,n/on] for h small enough. It is thus supported away from the “bad” points
:|:27T/(3h)7 507 fl-
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subsequence converging weakly in L'L? has limit u°. As a consequence

T T T
/ / PILEW}V (5)0ppdsds — / / uPV (s)0ppdsdr = —/ / 0,V (—s)u® pdsdz.
R JO R JO R JO

Moreover for fixed T', one easily sees that sup,cjo 71 [|(V — Vi) (=8)0z¢l| g1 — 0 (it is a simple
consequence of the convergence pj, — €3 and the fast decrease of $). Thus

IV = Vi) (=8)02ll pge 2. = 0, and [[(0z + 0-n) ¢l — 0,
so that [|V,(0r + 0-p)@llpee 2 — 0, and we finally get

T T T
// P@th(—s)HEuiapdsdx—)// uP 0,V (s)pdsdr = —// 0,V (—s)udpdsdz.
R Jo RJO RJ0

(6.3)
Using ([6.2]), (63) we find that for any € > 0, there exists hy small enough such that for h < hy:

|// P@thHEuzgpdsdx—// D, Vulpdsdr| < ‘// PathHEuzgodsdx
R JO R JO RJT

+ ‘// 0, Vudpdsdx
RJT
< 3e

T
+ // (PORVRIIEY; — 0,V ud)pdsdx
RJO

We have proved that for any ¢ with compactly supported Fourier transform,

// P@thHEu2¢dsdx—>// 0, Vudpdsdz.
RJO RJO

But the density of these functions in L? implies the uniqueness of the weak L? limit of uy, (if
it exists), and the L? boundedness of fooo PathHu;:’ldt gives its existence by weak compacity.
O

7 Rates of convergence

Since the previous sections were only devoted to the critical case, it is very unlikely that any
rate of convergence may be obtained for L? initial data . However if ug € H®, s > 0 the
problem becomes subcritical and more quantitative estimates are expected. We first define
discrete initial data converging to the continuous one in the following way. Let T}, be defined
as

Ty : L* — I*(hZ),
1 w/h )
(Thu)n =5 aemhﬁd&
27 —7/h
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here we use for the usual Fourier transform the same notation = as for the discrete one. If ug is
the initial continuous data, we simply set ug = Tjug. By dominated convergence, it can be
seen (though it is not absolutely obvious) that for any f € L2, ||[PTyf — f|/z2 — 0, and more
precisely |PTyf — fllr2 < A% f]|gs. For this reason we will only study the convergence to 0
of up — Tpu rather than Pup — u. Note thaulﬁ operator T}, is particularly convenient since
V() Thuol(—n/hm/n) = eitggﬂﬁh,w/hm/h] = TpV (t)uo|(—r/n,x/n- Consequently - as in previous
section - in what follows we will abusively write V(t) for both multipliers of symbol eite’ acting
on L*(R) and I>(hZ).

Convergence rates were obtained for the (subcritical) nonlinear Schrédinger equation in [5]
by using “discrete Littlewood-Paley analysis“. Our case is slightly more complicated, for
essentially three reasons; critical regularity, lack of ”choice® for the Strichartz estimates, and
the nonlinearity involving derivatives.

The section is divided in two parts. The first one establishes a list of linear estimates with rates
of convergence. Unfortunately this list is not sufficient to obtain actual rates of convergence on
Thu— up, but we prove such results for a simpler semi-linear problem. Though it is not entirely
satisfactory we believe that the result and the technics used are interesting by themselves.

7.1 Linear estimates

As a warm up, we first treat the control of ||7,V (t)ug — Vi (¢)IIThug||;2, which is quite simple
but gives a good idea of the technics used in this subsection.

Proposition 14. Let II be an interpolator as in theorem[d, of symbol m such that m(0) = 1.
For ug € L?, we have the homogeneous estimate

IV (£)Thuo — Vi ()T T ntiol| oo (o,7102) < Ch**/%[uo| 1o ) - (7.1)
The constant C' only depends on p and 11.

Proof. First we note that the scheme is of order 2 in the sense that

5 4sin®(¢h/2)sin(¢h)

& —pp=¢ = O(h%¢%) (by Taylor expansion). 7.2
3
Using the inequality
VO<a<1, ab>0, min(a,b) < a®b ™, (7.3)
we have A »
|e"Pr — 87| < [th?eP|". (7.4)

We split the left hand side of () as follows

HV(t)ThUO - Vh(t)HTNhuOHLoo([QT};lQ) < HV(t)HTNhuO _ Vh(t)HTNhUOHLOO([(),T];p)
+V () (Th — HTNh)UOHL‘x’([(),T];lz)
= Nl + NQ.
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Nj is estimated thanks to (74 :
NE S W00 [ (eI e 1 ol (7.5
R

On the other hand if we denote by m the symbol of 11

w/h
N £ 1= ol = [ — (e ioge) P
—n/h
where ug is the 27/Nh periodic function such that uo|(—r/np-/vn) = Uo. But since m is

bounded and m(0) = 1, |m(h§) — 1| < h¥|€]°. We also remind (see Remark [3) that m satisfies
m(2kn§/N) =0, 1 <k <N — 1, thus m(2kn/N + h&) = O(h*|£|®). This gives

w/h w/Nh
j/ @ — m(he)g(€)Pde = /f T — m(he ) (E) Pde

—7/h —7/Nh

+/ T — m(he)iin(€) 2de
7/Nh<|¢|<m/h

w/h (2k+1) 7r/Nh
< / e 2de + Z / m(he)|am () 2de.
-7/ 2k—1)w/Nh
2s W/Nh 25112 2s 71’ h 2s
< h / € (@ 2de + h / €[22 o e
—n/Nh -7/
< 2h%||ugl%s. (7.6)

Summing (ZH), (.6) we get
IV (£)Thuo — Vi (&I T ol oo o 12y < C(1 + T/5) (2% + 1/2)[ug | s S W/ |[uo]| s

Proposition 15. Under the same assumptions as Prop. and for any g € l4/3L1T,
| D74 (V (#)Thuo — Vi (&I Twp) ol oo go.77) < C(T)VR*/P||uo]| prsry,  (7.7)
I|D|~/? /Ot(V(t —5)g — Vi(t = )1Txngllirge < C(TVR* || DI TITNngllss 1 (gozyy- (7-8)
Proof. As in the proof of Prop [I4] we write

| |D|_1/4(V(t)Thuo — V() Txpuo)liapeeqory < |l |D|_1/4(V VTl e (7.9)
+ || |DI" YAV (Th, — T uo s 1o7.10)
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We have directly using ({.6])
D[~V ()(Th = TTwn)uollis oo o.7) S (T = T wa)uolliz S h*[luo]| s,
so that it suffices to prove the (more precise) estimate
IV ()T wpuo — Vi (I Tvpuol|iapee o) S 025 (1 + T)%| | Dy I uo || 2. (7.11)

A careful look at the proof of Prop Ml shows that it amounts to the estimate

ztph _ etn3 ) h25/5(1 +T)s/5
whngnl < 02— T =2 7.12
'/_ﬂ/h ] < Ot (712

where 1y, is the symbol of II and cancels at +27/(3h), &/h, &1 /h. Since ([I2]) also implies
by the duality argument of Prop M the estimate (78], the rest of the proof is devoted to its
derivation. Set 7 = t/h3, after the change of variable n = ¢/h, (ZI1)) is equivalent to

m—p _ ZT§3 jfd o 7_s/5
1. < E—
YRE |5|1/2+ | < g

By parity, we may may reduce it to

T () _ gine® /5
— U < C————.
/0“5) e 5‘— L+ )7

The proof of this estimate is rather delicate, in fact it follows the proof of Prop [ with some
non trivial modifications. Since a lot of quantities which will appear are estimated by similar
technics, we will often skip details.

We will use repeatedly the fact that ¢ lies in a bounded set, thus the inequality [p — €3] < [£]°
implies |p — &3] < [€|" for 0 < r < 5. Similarly [ei™ — e*| < |7€5|” for 0 < r < 1. First note
that for j = 0 the result is trivial since

m—p . 1753 7r 3/5’5‘3
z f s/5
v \511/2+8 it 5 || Ferede "

We split [0, 7] as

A =1[0,7 Y3 nJ0,x],
Ay = A7 N {min(|37E? + 4], [7p'(€) +41) > [41/2},
Ag = (A1 U AQ)C.

Let us fix C' large enough such that

T3> )il = VE €073, min(|j +37€3, 15 + 7p]) > Iil/2. (7.13)
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If 713 < /|4

6i7'p(§) _ 6iT§3 p C/\7] ,7_8/5 ,7_8/5
V(&) — ¢ dg| < 2% S T
Ay |E|1/2+s 0 13K Vi

and the estimate on A; is complete. Else

itp(¢) _ Lited
/w(&)ep—eewﬁdg' <
Aq

C/l3l iTp(€) _ i€
- / e e it ge
|g[1/2+s 0

|£|1/2+s

_l’_

eiTp(g) — ei7—£3 .
L) ‘
/C/IjggsT-l/S V) |€|1/2+s :

_ / ( )eit/h3p(£) _it/ne y
e
~ C/\jlssgrl/swg |E|1/2+s g‘
+5/5
T

On C/|j| < & <7713, an integration by part gives

eijr*1/3¢(7—1/3) eiTip(r /) ol
[r 1782 (j + (T B) Gt 371/3>

L eimp(8) _ oit€?

- = Gu€ge =
/C O e

, N ip(C/14]) iT(C/4)?
31/2+8w<0/|y|>e25g““><. T e )
J+m(C/5) 5+

+—1/3 /
ited Y )d
" /c/u ‘ ((j+37é“2)!§\1/2+5 :

oUs " ,
_ irp de.
/C/lj ‘ ((j+7p’)|£|1/2+5> ¢

Remind that 7 satisfies (Z.I3]). The first term is estimated using
= O(r ), 37728 - 4f (7118) — O,

27
72

. ~1/3 - —1/333
eZTp(T ) elT(T )

which gives
irp(r—1/3 7 irp(r—1/3 7
T(1/2+s)/3< g e > _ | 1/301/249) < gl e >
JATp(r7Y3) 33 jHTo(r78) 43713
€T G 37 — el 4 ()
(G + 70/ (7 1/3)(j + 3771/3)
j(eiﬂ'p o ei) + 7_1/3 (3eiTp o 3ei + 361' o T2/3p/ei)
(G +70)(j +3771/3)
S T(1/2+S)/3 ’j7728/15‘ < TS/5

[N

_ (1/249)/3
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The estimate for the second term is similar, we give details for two of the remaining integral
terms involved:

1/3

/T ei7'£3 67£¢(£) . eirp Tp”(£)¢(£) d§
/il (J + 37€2)2€1/2+9) (j + 7P/ (£))E1/ 2+
—-1/3 -1/3
T | /! 6£| /T 7_|p//| 1 1
S ————d{ + . - —
/C/|] JREY 2 < cil EYA (G +Tp)? (54 37E2)?
V3 s/54142s/5 T=1/3 I'd
5/ T.gid@r/ TP _lojr(3¢2 — p/()) + 96472 — () >
o/l JRETIATES o/l EYATE
< 75/5 /71/3 TI¢] (,2 £2+2 /5’ 2¢4+2 /5 de
N = + > JTET 1 s )
il Jens 51/2+ +
T=1/3 s/5
S 7)d€
\/IJ ¢/l 53“/2\]!3 T grrg
s/b
< T /' _
||

The analysis on Aj is similar (and in fact simpler) so we skip it and prove the estimate for the
integral on Ag = {713 < [¢] < 7} N {min(|j + 37I¢[2], |j + 70/ (€)]) < I31/2).

Since 1/£1/2%5 is a smooth function away from 0, for any fixed ¢ > 0 we may directly carry
the proof of proposition [ to obtain

eip(€) _ (i’ ije Cle) _ C(e)(1 +7)*/5
1/2+s S| < 5 < 11/2 :
Asn{eze} €] 7] 1Jl

Thus we only have to treat the integral on Ay := A3 N {¢ < e}, and in particular if £ is small
enough we may assume the following

o for & € Ay, [¢] = /IiT/7 < L,

e A, is an interval of measure dominated by +/|j|/T,
e The equation j 4+ 7p/(£) = 0 has an unique root & such that & =< \/—j/7.

We define f(€) = e (e e _ iTp(f)) Let &1, be the positive solution of j + 37¢? = 0. Clearly
&1 < & and we define F(¢ fg n)dn. An integration by parts gives

e max A (124 s
‘/Af (5)51/2+8d5‘ : HF@/Q+SLHA4 ‘/A <£W+S_ s )dg'
1F oo () 1672 oo

1| o (/L) /4472,

IZANRYAN
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|]|S/2 —3s/10
In view of the above inequality, we are reduced to prove [[Fllc < GrlA Firstly, by

application of the Van der Corput lemma :
1 1
Fllrooi sy < < ,
1F e an /7 inf 4, min(p”, 66) ~ |iT|1/4

which rules out the case \j]s/27'*33/10 > 1. Moreover if 7 > |j|®> we have 4y C A; thus we can
assume without loss of generality
G > > 5P, (7.14)

We will repeatedly use that for & < \/|j|/7], 0 < a <1/2,
IFOI S 7€ < liPor. (7.15)

A basic asymptotic development shows that |2 — &i| = O(\/|j|/7'3) = O(1/]j|) thus (ZIT)

implies
€ _ ’j‘s/2+5/127_73s/1071/4 ,j‘s/2f38/10
’ fdn| S . < i\1/4
14 (I7]7)

It remains to prove

§ ‘j’s/zT—:ss/lo
VE € Ay, € > &, / fdﬁ‘ < A (7.16)
&2 J7|
3 |j|s/27_—3s/10
VEE Ay, € < &, ‘/ fdn' < Ty (7.17)
& Vd

We detail the estimate (ZI0)), the other is similar : let us set § = [j7|~/* (< /|j]/7 by (@I4)),

and split
&2+0 3
|/§2 f(n)dn| + | /&Mf(n)d?ﬂ

735/ j[5/2 [ez‘mmjf ez‘rp+ij£} €

IN

¢
| [ f(n)dn
&2

1/4

Vil j+3m*  j+Tp €940
/ rrn +1]§6,7_,'7 ei’rp—i—ijpr// ‘
3

a5 (G322 (G + )2

After a few basic calculations, we are reduced to estimate a (large) number of terms which are
all similar to one of the following :

ir(e2+0)* P (€ 4 8) — 3(&s 4+ 8)2  &T(E+0)° _ citp(€2+9) /6 i 2 () — 61 .
(J+37(Ea+0)2)? 7 j+37(E+0)? T Jeus TG+ 3m2)?
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On Ay, |€] < \/|7]/7, thus |j +37€2| < |€ — &1]4/|j]7. Combining this with (ZI4]) gives for the

first term

oy @+ —3&+0P| _ e+ _ F\@B
(j +37(& +0)%)? Wit +5=&)2 T v 7

’j‘s/27_733/10 ‘j’3/271/4fs/2
- 7|1/ —3/4-35/10
’j‘s/2T73s/10
T[4
The second term is simpler, indeed | + 37 (& + 6)2| = [j7|Y/* thus (ZI5) with o = s/10 gives
eiT(E2+0)% _ pitp(E2+9) _ |j[5/27=35/10

JH3r(&+0)? |7 T
Finally the third term is estimated like the first one :

'/ i, P (0) = 61 dn‘ < 7(l/m)*? /\J \J’s/Q [Vl
€2 td TGP N (Vo) \/\J g |/

This ends the proof of (7.16]). O

Remark 16. So far in every estimates one looses s derivatives to gain a rate in h2%/°. This is
probably optimal since it has the scaling of the inequality |p — pp,| < Ch?|¢[°. To the contrary,
the I°L'0 estimate will not be optimal, this is due to the fact that it is obtained via the
interpolation of the estimates above with the dispersive smoothing results of section 2.

Nevertheless, it should be noticed that without dispersive estimates, one may only obtain for

example
H( ( ) ( ))3hA HTNhUQHlooL2 < h25/52j 8+3/2)HA HTNhUQHp

this would lead to estimates involving h%%/°||ug|| ;3245 putting low regularity results out of
reach.

Using the interpolation argument of [I3] prop. 7.4 (as for the Corollary @ ) we have the
following.

Proposition 17. Let ug € L*(R), g € I°/4(hZ; LlTO/g), we have the following estimates
IV (£)Thuo — Vi Twnuo|s 10 < CT)RY > ug || oy, (7.18)

t
| / V(t—s)g = Vit — s)ITwnglls 1o < C(TVR/P|[|DIThgllisaprors oy (7:19)
0
Remark 18. The exponent 8/25 comes from the weights in the interpolation, which are respec-
tively 4/5 for inequality (7)) and 1/5 for inequality (2.3)).

More dispersive estimates with rates (not useful for the next subsection) are given in
Appendix [Bl
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7.2 A simpler problem

Though we did not manage to collect enough dispersive estimates in order to obtain rates of
convergence for the approximation of the cKdV problem, we will describe for a simpler problem
how these estimates may be succesfully used. Let us consider the semi-linear equation

{ O+ O3u+ f(u) =0,

7.20
u|t:0 =ug € LQ, ( )

where f(u) = u|u|[?/?. Tt is quite clear that the existence of an L? solution may not be ob-

tained by basic semigroup methods, however using||V'(¢)u|[ 5 110 < [[uol 12 and its homogeneous
counterpart, we can solve the equation

Tu = u where Tu(t) = V(t)up — /0 V(t—s)f(u)(s)ds

by a fixed point argument for small times or small initial data. Indeed
ITullgz < luollzz + IV (=) f ()l 2y < luollz + 2V (E =) f (u)ll2r2

< Nuoll 2 +¢72(1f (w)ll 2 2

5/2
< fJuoll 2 + ¢/ lull 75
5/2
< fluoll 2 + 5 |full o,
similarly
5/2 5/2
1Tl g0 < lollze + el s asn < lluollze + /2% o
T t x,t
1/10 5/2 5/2
S luollpe +¢ / (HUHL?/sL% + HUHL?/S’LQ)
5/2 5/2
< Juolls + ¢l Fy o + ¢ full 7 1

For ¢ small enough (or small initial data), these estimates are sufficient to apply the Picard-
Banach fixed point theorem in the space X = LL2 N L2LYY) which implies existence and
uniqueness of a solution in this space.

We focus now on the derivation of rates of convergence. We define as for (¢cKdV') the semi-
discrete approximation scheme

{ d + Upt2 — 2Upy1 + 2Up—1 — Up—2

%un n3 + (HENhf(uh))n =0, (721)
up|t=0 = IITNpuo,

Using the discrete version of X7, Xj 7 = L%olg N lngO, it can be proved as for the continuous

problem that for 7" small enough there exists an unique solution uy, of this problem admitting

bounds in X}, 7 independent of h. The following theorem establishes a precise convergence of

up, to u as h — 0.
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Theorem 19. Let u be the solution of (7.20) and uy, the solution of (7.21). For T small
enough and 0 < s <1

5/2 5/2
lun = Thull i, S 052 (ullxy + 1D ullxr + Il + 11D, (7.22)

The W*P spaces are defined here as the usual Bessel potential spaces, namely

{f+ FHQ+e))*f) € LP}.

For the proof of the theorem we will need several technical properties on fractional derivation
and Fourier multipliers:

e Fractional chain rule : for any a € (0,1), p, p1, p2 such that % = p% + p%, for F differen-
tiable |[|D|“F(f)|lze < CIF'(f)|lze1 ||| D]* fzr2 (see [1] section 3 for a proof).

e The [? norm of T}, f is equivalent to the LP norm of F *1()([,7T Jh,m /B f), independently of
h (see Lemma 2.1 in [5], referring itself to the classical article [I5], we include a sketch
of proof for the estimate | F 1T} f||zr < ||Thf|li» in the appendix).

e We have for any 1 < p < oo,
|Thf = OTNpfllw < CR°(||DI fl Lo (r)- (7.23)

This is proved for a slightly less general IT in [5] in the end of the proof of Theorem 4.2. It
relies on their Lemma 2.1 combined with a Marcinkiewicz multiplier theorem (that they
state in appendix). The main ingredient is that the symbol of T}, — IITn}, is bounded by
Rl

e For s € (0,1), there exists C' > 0 independent of h such that

1F(Thw) = T f (w)l2 < Ch¥[ull32 5, 1 (Tnw) = Tf @lsa < Chull})2 s, (7:24)

again, the proof is given in [5], Lemma 5.2, for integration exponents different of (2, 5),
but the proof can be adapted without significant modifications.

Proof. We begin by writing the difference as
t
up — Thu = V(t)Thuo — Vh(t)HTNhUQ — / V(t — s)Thf(u)(s) — Vh(t — s)HEf(uh)(s)ds.
0

The linear term is directly controlled by applying inequalities (TI8]) and (1) :

IV (£)Thuo — Vi ()T wpuol|x,, . < CTIBS? |l s w) -
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We split the non-linear term as follows :

t

/0 V(t— $)Tof (u)(s) — Vit — )TLf (up) (s)ds = /0 V(t — $)(Tuf (u) — Ty f ()
+(V = V) ITnp f (u) + ViIU(Tnp — ETy) f () + VRILE(Th f (u) — f(up))ds
=L+ 1o+ I35+ 1.

Since most of the estimates are obtained in very similar ways, we will only detail how to deal
with I; and I;. The L? bound for I; is obtained by using (6] and the fractional chain rule
with p; = 10/3, po = 5:
! 1/2
I V= )T 0) = W ()l 5 €2 Thf () = T ) sl
< BNDEF)lgz o
3/2
Sl o ll1Dull s 0.

L3 L9

For the I° LY bound, we use the estimate (Z.23)) to get

t
| /O V(t = 8)(Thf(u) = MTnnf(w)dsllspro S | Thf (w) = Tnnf ()| L5454

S INDEf)l porapssa,

and using again the chain rule with p; = 10/3, pa = 2 we find

t
3/2

I [ V= )Tt ) =TT sl < 2 el 11D w2

S HuHingTO + HUH%%OH;

For I, we have using (7.24])

t
[ /O VAILE(Th f (u) = fun))dslle S 1 T0f(w) = F(Thw) | e o,z + 1 (Thw) = fun) | poge
S Wl s + 1 (D) = S )y o

: 3/2 3/2 . e
Since ||f(Thu) — f(un)llzre S [[Thu — uhHL2l5(HThUHL/315 + HuhHL/g,lg,), using again Holder’s

inequality in time, this term can be absorbed (for 7" small enough independent of h) in the left



7 RATES OF CONVERGENCE 36

hand side. The [°L' norm of I; is dealt with in the same way:

t
HAVMUWEﬂw—fwwMﬂwm)S 1T f () — FCunllgosogsss
S N Tnf(u) = F(Tuw) | pssagssa + 70 F(Thw) — f (un) || pssarsa
5/2 5/2
S R(IDP e+ ull2 o + llull oo rre)
—i—tl/lOHThu — ’l,LhHL25/8125/8(HUHL25/8l25/8 + HuhHL25/sl25/8)
5/2 5/2
S WIDPul b+l a0 + lullzgprre)

+T13/29|| Ty u — un|xr (lunllxp, - + lullxr),

(in this chain of inequality we implicitly used the continuity of T}, : LP — [P before interversion
of time and space integration). For T" small enough the second term of the right hand side can
be absorbed in the left hand side as in the proof of existence for the problem (7.20). Gluing
all the estimates we have obtained

[Thu = unllis pionrgr < OB (||ull g 1= + [ullis o + 11D ulls 1o
5/2 5/2 5/2
Hlal22 g + Tl 0 + 11Dl 7).
O

Remark 20. By continuity of u with respect to the initial data, the estimate (Z22]) could also
be stated as
lun, = Thullx, » S B/ [[uol| -

Some open questions and perspectives

e The existence of rates of convergence for the approximation of the quasi-linear cKdV
equation is still open. Basically one would need to obtain rates for every linear dispersive
estimates, but the time-space integration may open some other difficulties,

e The schemes studied here are only semi-discrete, it is essential to introduce time dis-
cretization that do not break the dispersive estimates (this was done for NLS in [4]), and
it would be of particular interest to compare them with more standard schemes when
the initial data are sufficiently rough (only in H? for s < 3/2),

e The construction of dispersive schemes that do not rely in some way on the Fourier
transform seems so far way beyond reach.
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A Standard results of harmonic analysis

This section is devoted to some results of standard Fourier analysis that are maybe less known
in discrete settings. The proofs are elementary adaptations from the ones in continuous settings
and we include them only for completeness.

Definition 1. We define the (discrete) mazimal function of a sequence u as

1 n+k
(Mu),, —sup 1 Z ;). (A1)

j=n—~k

The weak space 1% (hZ) is the set of sequences such that 3 C > 0: |{k: |ug| > a}| < C/a.
Here |A| is h times the cardinal of A.

Proposition 21. The mazimal function satisfies the following properties:

e foru € I*(hZ), a >0,
[{k: (Mu)y, > a}| S Jlull/a-

(i.e. M is continuous from I* — 1}).
e Forp>1, M is continuous [P — [P.

Proof. The second point is obvious for p = co. If the first point is proved, the general case for
the second point is implied by the Marcinkiewicz interpolation theorem.

Thus we focus on the first point: fix N € N*, A, vy = {|k| < N : (Mu); > a}. For k € Ay n,
there exists nj such that

>
2y + 1 kzn [ug] > o
— K

The set Ugc A, ~ |k — ng, k + ni) contains A, n, from Vitali’s covering lemma there exists a
subset A of Aq,n such that U, _z[k — 3ng, k+3ng] D Aa v and the [k —ng, k+ng| are disjoint.
Therefore:

kJrnk
u
Aan| <3hY 2+ 1<3hY " 3 = k] ””ﬂ
keA keAk—nk

The estimate being uniform in N, this directly implies by letting N — oo

U (Mu < a}] = [Ag ] 5 102

which is the continuity of M : '+ 1. O
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Proposition 22. (discrete Hardy-Littlewood-Sobolev with parameter)
Let w € IP(hZ), 1 <p < q<o0,0<vy<1 where

1 1
e (A.2)
q p

We set

U *p V= hz Up—kVk - (A.3)
Z
If |v] < %, then (uy) € 19(hZ) with ||ue < Cllul|p.
(h(1 + |k]))

Proof. We first reduce the proof to the case h = 1: we write |[ul[}, = k" u, [P, while [Jull;p =
h
> |upP. With those notations, and if the result is proved for h =1

lwsn ollfy =R Y10y uegoel” = B usollf, < R |ulf,09/00
n k
= thq+1‘|u||lqph—(vq+q/p)
h
= CYull-
h

Since | Y up—rvr| < C Y |up—kl/(1 + |k|)7, we may assume u, > 0, v, = 1/(1 + |n|)?.
Let us write for N € N arbitrary

1 1 1
LK TRy~ 2 R 2,
The second term is bounded thanks to the Holder inequality
3wy < e (Y ) S Il N
|k|>N |k|>N
For the first term, set

1 1
= — —, 0<j<N
SRR J

AN =

(1+N)r
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One has

1 N
Z Un—km = Z Zun—kaj

|k|<N |k|<N j=]|k|

N
S 3)
J=01k|<j

N

> 0 (25 + 1)(Mu),
j=0

IN

N

= (./\/lu)nz Z Oéj

J=0 |k|<n
N
= (Mu), Z Z a; = (.Mu)n% < (Mu), N7,

1+ k)~
[KI<N j=Ik] kD)

Thus
| S NYP Yl + NPT (M), (A.4)

we optimize in N by chosing N7 =7V|jup ~ N'=7(Mu),,, which gives

P
N = {<(.|/|\ZHZ; > J, where |-| denotes the integer part.
U)n

Note that (Mu),, < ||ul/j= < ||ul|p is always true, thus N > 1 and

o[ (i) | = =[(Ga) |

Injecting this in (A.4) we find

(Ma) ([l 28 (Mu)2O=DY 4 o (M) P2 =) [y [P
[l 27 (Mu)2/.

RS
S

Proposition 2] finally gives:
~ 1—
Il S Nallpr ™ Ml S .

O

Proposition 23. Let F be the usual Fourier transform on L*(R). For p > 1, the operator
I: (up) = F YU _r/pn/n)) is continuous IP(hZ) — LP(R).
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Proof. (Sketch of) Note that the case p = 2 is simply the Parseval identity. By homogeneity
we are reduced to the case h = 1, and we prove that I is continuous from I! to L., this implies
the strong LP continuity thanks to the Marcinkiewicz interpolation theorem for 1 < p < 2 and
then by duality for p > 2. The proof is derived from the continuity of the Hilbert transform,
however the result goes back at least to Plancherel and Polya [15], 1937. A basic calculus
shows that for (u,) rapidly decaying

Tu(x) = %Zuniﬁi?x@_;;@)

For A fixed we use the decomposition Z = (UI) LU (Z \ (U})) such that
o for any k, A < 1/|Ix[ 32, |un| <2, in particular | U | < [[ull1/A,
o for any n ¢ Uly, |u,| < A

(this is a discrete Calderon-Zygmund decomposition, see for example Stein [I7] 1.3).
We define g = wn if n & U, ™ /|14] S €97u; if 0 € Iy Clealy, lgn] < 27, lgnlls < lunll,

Ik
and we may write

n = bn + gn,
where b, = 0 if n ¢ Ul and

by = Uy — €™ /| I Zeij”uj for n € I.
Iy,

In particular [|bf[;1 < 2|[ull; and for any k, 3, e"™h,, = 0. We remark then
{z R [Tul > A} < [{z €R: |Ig] > M2} + [{z € R: |Tb] > A/2}].
Using Chebychev’s inequality for p = 2 and the L? continuity, we obtain for the first set
{z e R [Ig] > N/2}] < 4|Tgll72/A* < 8X[Jull1/X* = 8llull1 /.

We note ¢ the center of I and we write abusively 2/ for the interval of center ¢; and twice
larger than I. Chebychev’s inequality implies for the second term

Hz e R: |Ib] > )/2}] < 2z\fky+\{mez&\(usz) 16| > \/2}]

< 2 Ik—|— Ibldx
S 3 [

—uunlmz/ p gy

IN
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Using now e*T7h, = 0 we obtain

im(x—n)

/R\Ik ’Z%%!dw - %/]R\Ik ‘an<;(az —n) N jr_(:(j_:))> |dx

Ik Ik

1/ k( —imn e*lﬁrn eiﬂn
- = bE _ _

2 Jr\21, % m(x—n) w(r—ck) w(r—n)

ez7rn
— | |d
+w<x - cm) !

< dx

R\21), “T- m(z —n (x—Ck
< QZ\b y/ i de

R\2I, T (z —cp)

= =% bl
W? |

So that by summing it all

8
freR: T > 2} < 25 /m

lull1-

B Dispersive smoothing and rate of convergence

We did not manage to obtain a version with rates of convergence for the estimate (8]

t
HIDIQ/0 V(t — gt )dt e 2 < (Mgl p2,

which is one of the main points that prevented us from obtaining rates of convergence for the
approximation of the cKdV equation. It seems like the deep technical problem is the fact that
in the proof of (7)), ¢ lies in an unbounded set and thus Vj(t) — V (¢) is certainly not small.
More modestly this section describes how - by using basic Littlewood-Paley analysis - one may
obtain a non optimal rate of convergence on

HTthV(t)uo — 8th (t)HTNhUQ) HlooL2 .

To do so, we outline rapidly the main features of the Littlewood-Paley decomposition for
sequences of hZ , which are similar to the usual properties for functions. Let ¢ be a smooth
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compactly supported function such that supp(y)) C [-2,2] and V|z| < 1, ¢(z) = 1. We set
po =1 and for j > 1 ‘ ‘
Py = P27 = (27T,
For u € S(hZ), the operators A; are defined by
Aju’[*ﬂ/h,ﬁ/h} = QOja, (Bl)

as for interpolation operators we chose not to emphasize the dependance on h (which appears
notably in the fact that for 2/ > 47 /h, Aju = 0).

Using the “quasi-orthogonality” |j — k| > 2 = AjA, = 0, it is easily seen that [lul|}, =
> |Ajul|%, and more deeply a key feature of this decomposition are the so-called Bernstein
inequalities.

Proposition 24. (Bernstein inequalities) The following estimates hold:
Vp > 2, || Agulls < OOV Au, (B.2)
Vs >0, [[DIFAjulle < C2(|Azulle, (B.3)
with C, Cy independant of h, and the constant C' is also independent of p € [2, o).
The main result of this section is the following.

Proposition 25. Let IT be an interpolator as in theorem[@ For ug € L?, we have the homo-
geneous estimate

Chi/"3(1+T
Ve > O, H@V(t)Thuo — 8th(t)HTNhuoHlooLz([QTD < f(g)”uoulis-ks(]&). (B.4)

(B.5)
The constant C' only depends on II.
Proof. We first split

HBxV(t)Thuo — Bth(t)HTNhuoHlooLz([O’T])

IN

[(V(t) = Va(t) OnTIT N uo |l 2 (fo,1)
HIV (#)(0:Th — OpIITNp ) uoll 100 £2([0,17)
= M+ M.

We will only focus on the derivation of an estimate for Mj, the other one being similar and
simpler. For any f defined on hZ x [0,T7],

T T
1 .
HleQOOLgT :sup/O (Z Ajfo)2dt < —sup/0 ZQ%J\A]‘f”Pdt
J J

E n

1 217 T 2 1 2e7 2

IN
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Applying it to M; we have
1V (£) = Va(£)) T no | e 20 1) Z 229 (V Vi (1)) A, HTNWOHMQ
On one side the dispersive estimate (2.3]) gives
I(V(£) = Vi () 0 AT N o llpoe 2. S 1A I vnuo ]2 (B.6)

while Bernstein’s inequality (B:2) combined with the inequality [¢?€” —eiPr(©)| < ¢[¢|5h? implies

[(V(#) = V(1) On AT vh oo 2, S [(V(8) = Viu(#)) On AT npuo | £ger

< 212 sup ||(V(t) — Vi(t)) On AT T npuo]| 2
< /2G| AT TN uo | 2, (B.7)
so that by (T3] with a = 2s/13 applied to (B.7), (B6)),
1(V(£) = Va()) Oh AT T pio e p2. < B4/ 1327 | A T Ty 2 (B.8)

By summing and using lemma [I] we find as expected

8s/13

2%(s+ h
Mf < ZhSS/BiHA Twpuolfe S o[+ (B.9)

J
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