
HAL Id: hal-01157528
https://hal.science/hal-01157528

Submitted on 28 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DISPERSIVE SCHEMES FOR THE CRITICAL
KORTEWEG–DE VRIES EQUATION

Corentin Audiard

To cite this version:
Corentin Audiard. DISPERSIVE SCHEMES FOR THE CRITICAL KORTEWEG–DE VRIES
EQUATION. Mathematical Models and Methods in Applied Sciences, 2013, Mathematical Models and
Methods in Applied Sciences, 23 (14), pp.2603-2646. �10.1142/S0218202513500413�. �hal-01157528�

https://hal.science/hal-01157528
https://hal.archives-ouvertes.fr


Dispersive schemes for the critical Korteweg de Vries equation

Corentin Audiard ∗†‡

Abstract

In this paper we study semi-discrete finite difference schemes for the critical Korteweg
de Vries equation (cKdV, which is gKdV for k = 4). We prove that the solutions of the
discretized equation (using a two grid algorithm) satisfy dispersive estimates uniformly
with respect to the discretization parameter. This implies convergence in a weak sense of
the discrete solutions to the solution of the Cauchy problem even for rough initial data. We
also prove a scattering result for the discrete equation, and show that the discrete scattering
function converges to the continuous one. Finally rates of convergence are obtained for the
approximation of a semi-linear equation with initial data in Hs, s > 0, yet a similar result
remains open for the quasi-linear ckdV equation. Our analysis relies essentially on the
discrete Fourier transform and standard harmonic analysis on the real line.

Introduction

The well-posedness of the generalized Korteweg de Vries equation

{
∂tu+ ∂3xu+ ∂xu

5/5 = 0,
u|t=0 = u0,

(cKdV)

for L2 initial data (which corresponds to the critical scaling) was obtained by Kenig Ponce
and Vega [12]. Scattering for small initial data was also proved as a direct consequence of the
existence theorem. This result was optimal in the sense that any other gKdV equation admits
traveling wave solutions (that are a nonlinear phenomenon) with arbitrarily small L2 norm.
The existence of solutions in negative regularity Sobolev spaces was later obtained for the KdV
equation [11], but our paper will only focus on the cKdV equation. The well-posedness relies
on the existence of several sharp dispersive estimates. Namely if V (t) is the group generated
by the skew symmetric operator −∂3x, Kenig Ponce and Vega proved

‖∂xV (t)u0‖L∞(Rx;L2(Rt) . ‖u0‖L2(Rx), (D1)
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‖V (t)u0‖L5(Rx;L10(Rt)) . ‖u0‖L2(Rx). (D2)

If one is not allowed to use dispersive estimates, semi-group technics only give well-posedness
Hs, s > 3/2, as was done by Kato [8] in 1979. It is thus essential that numerical schemes mim-
ick correctly the fine properties of dispersive equations if one wishes to approximate solutions
for rough initial data. Though travelling waves are problably the most well known solutions
of gKdV equations and are very smooth, the approximation of very rough solutions can be
important in some contexts. For example stochastic versions of the KdV equation appear in
modellisation of plasma fluids, it has been studied theoretically [16] and numerically [2, 3] by
Debussche and Printems. In this framework the initial data only belong to L2.

As was pointed out by Ignat and Zuazua [7] in their work on the nonlinear Schrödinger equa-
tion, numerical schemes often fail to reproduce dispersive properties of solutions. The deep
reason is that the symbol of the discretized differentiation operators do not behave in the same
way as the symbol of the continuous one : in particular they display a lack of convexity (can-
cellation of the second order derivative of the symbol) and a lack of “slope” (cancellation of
the first derivative), which are key ingredients for the proof of (D1,D2). To enlight the origin
of such ingredients, let us outline the proof of the estimate (D1) as is done in [10]. By Fourier
transform, we have

∂xu(x) =
1

2π

∫

R

eixξeiξ
3tû0(ξ)dξ =

1

2π

∫

R

eixη
1/3
eiηtû0(η

1/3)
dη

3η1/3
,

now using Parseval’s identity in the time variable and reversing the change of variables

‖∂xu(x, ·)‖2L2
t
=

1

18π

∫

R

|û0|2
dη

η2/3
=

1

18π

∫

R

|û0|23ξ2
dξ

ξ2
=

1

3
‖u0‖2L2 .

Looking with attention at the calculi, it is clear that the only important point is that (ξ3)′ ≍ ξ2,
or naively put the slope of the symbol is large for ξ large. However the symbol of any discrete
differentiation operator is periodic in ξ. In particular it cancels at several points ; this is a first
obstruction to dispersion. Similarly it can be seen that the gain of integrability (D2) relies
on the curvature (wether it is convexity or concavity does not matter) of the symbol, another
feature not satisfied for discrete schemes.
At this point, it is worth mentionning that this kind of difficulty has been overcome by Nixon
[14] in the case of fully implicit schemes. Indeed in this case the numerical dissipation is
particularly strong at the frequencies where the symbol of the discretized operator fails to
behave like the continuous one. Our aim here is to deal rather with non dissipative schemes -
discrete in space and continuous in time - for which dispersive estimates are a pure consequence
of the space discretization.
Our approach follows the one developped by Ignat and Zuazua for the Schrödinger equation
in [7], where they used a “two grid filtering” in order to eliminate the bad frequencies. The
technics rely on basic harmonic and functional analysis, and we tried to keep a reasonnable
balance between self-containedness and heaviness of the calculus : when proofs are slight
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modifications of already existing arguments we often point to a reference instead of repeating
them, and if several quantities are bounded by the same method the precise argument is
detailed only once.
Our main result is that there exists N ∈ N and an interpolation operator Π : l2(NhZ) → l2(hZ)
actually constructed for N = 6 such that the semi-discrete finite difference problem

{
∂tun + ∂3hun + (∂hΠEu)

5
n/5 = 0, (n, t) ∈ Z× R,

u|t=0 = Πu0,h,

is globally well-posed for u0,h ∈ l2(NhZ) sufficiently small, and the solution satisfies dispersive
estimates analogous to (D1, D2) uniformly in h. The notations E, Π, ∂h and ∂3h are defined in
the first and second sections. The convergence of the discrete solution is proved by standard
weak convergence/compactness arguments. Of course no rate of convergence in h can be
obtained if we work at the critical level of regularity u0 ∈ L2, but we expect that rates of
convergence in hαs should be true for u0 ∈ Hs for some α ≤ 2/5. Though we did not manage
to obtain such results for the quasi-linear cKdV equation, it is proved for a simpler (semi-
linear) equation in the last section of the article.
Finally, let us remind that scattering for the continuous problem means that there exists a
function w ∈ L2

x such that lim
t→+∞

‖u(t) − V (t)w‖L2 → 0, where V (t) is the group generated

by −∂3x. In other words the solution of the quasilinear problem behaves asymptotically as a
solution of the linear one. We prove here a discrete version of this result :

∃wh : lim
t

‖uh(t)− Vh(t)wh‖L2 → 0, where Vh(t) is generated by − ∂3h.

We prove also that wh converges to w in a weak sense.
The paper is organized as follows:

• In section 1 we set up notations and basic notions used,

• Sections 2 and 3 are focused on the derivation of linear dispersive estimates for the semi-
discrete problem. More precisely the discrete analog of local smoothing (D1) is obtained
in section 2 while global gain of integrability (D2) is tackled in section 3.

• The well-posedness of the discrete problem in a convenient space is proved in section 4.

• We prove in section 5 that, provided the discretized initial data converge to u0, then
the solution of the discrete problem converges strongly in L2

loc(Rx × Rt) (and weakly in
stronger spaces) to the solution of the Cauchy problem.

• The study of scattering is done in section 6.

• Finally, section 7 deals with rates of convergence for a simpler (semilinear) problem when
the initial data is in Hs, s > 0.
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• The appendix describes discrete versions of well-known results of Fourier and harmonic
analysis and contains a dispersive estimate that we did not manage to use for section 7,
but that may be useful in order to obtain rates of convergence for cKdV.

1 Notations and basic properties

The set of sequences defined on hZ is denoted S(hZ). As usual, the Lebesgue spaces on the
real line are denoted Lp(R) while the discrete Lebesgue spaces are lp(hZ), or in a shortened
notation lph, or l

p when there is no ambiguity. The norm of a sequence u ∈ lp(hZ) is defined as

‖u‖plp = h
∑

|uj |p.

We will index a sequence of S(hZ) as ujh or uj if there is no ambiguity. We write Rt, Rx in order
to avoid confusion between time and space, and write for conciseness Lp

xL
q
t := Lp(Rx;L

q(Rt)),
and similarly lpLq, Lp

tL
q
x. When working on bounded time intervals, and if there is no risk of

confusion we write L2
T for L2([−T, T ]) or L2([0, T ]).

If a, b are two numbers depending on several parameters the notation a ≍ b means that there
exists two constants α, β > 0 independant of the parameters such that

αa ≤ b ≤ βa. (1.1)

Similarly if a, b ≥ 0, a . b means that there exists C > 0 independant of the parameters such
that a ≤ Cb.
The Fourier transform is the application u 7→ F(u) = û =

∫
R
e−ixξu(x)dx, the discrete Fourier

transform is the application

S(hZ) ∋ (un) 7→ (ξ 7→ û(ξ) = h
∑

Z

e−ijhξuj).

The sequence (uj) can be deduced from its Fourier transform thanks to the Fourier inversion
formula

uj =
1

2π

∫ π/h

−π/h
eijhξû(ξ)dξ := (F−1û)j . (1.2)

A Fourier multiplier M(D) of symbol m(ξ) is defined by M̂u(ξ) = m(ξ)û(ξ). In particular, we
may define the fractional derivative operators

|D|su := F−1(|ξ|sû), (1.3)

and emphasize that this definition holds for sequences as well as for functions.
This leads to the definition of discrete and continuous Sobolev spaces for s ≥ 0

Hs(hZ) = {(un) ∈ l2(hZ) : ‖u‖Hs := ‖(1 + |D|s)u‖l2 <∞},
Hs(R) = {u ∈ L2(R) : ‖u‖Hs := ‖(1 + |D|s)u‖L2 <∞}.
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We now turn to the symbol of discrete differentiation operators. The operator ∂h is defined by

(∂hu)jh =
u(j+1)h − ujh

h
,

it is a Fourier multiplier on S(hZ) with symbol eihξ − 1. In section 5, we will also use ∂h as an
operator on functions defined by (∂hu)(x) = (u(x+ h)− u(x))/h. We use in all the paper the
standard discretization of the third order derivative operator

(uj) → (∂3huh)j :=
uh(j+2) − 2uh(j+1) + 2uh(j−1) − uh(j−2)

2h3
.

The symbol of −∂3h is

iph(ξ) = i
4

h3
sin2(ξh/2) sin(ξh).

Note that (despite the notation) ∂3h 6= ∂h ◦ ∂h ◦ ∂h. This is a stable (semi-)discretization for
the Airy equation ∂t + ∂3xu = 0, indeed

∂tû− iph(ξ)û(ξ) ⇒ û = eiph(ξ)t)û0, (1.4)

implying the conservation of the l2h norm by the Parseval equality (and of any Hs norm). The
first order derivative of ph is

p′h = 4 sin(ξh/2) sin(3ξh/2)/h2 , (1.5)

its second order derivative is

p′′h = 2(2 sin(2ξh) − sin(ξh))/h. (1.6)

The group corresponding to −∂3h will be denoted Vh(t) : u → F−1(eitph û), we also remind
that in the introduction we denoted V (t) the group corresponding to −∂3x, namely the Fourier
multiplier with symbol eitξ

3
.

2 Discrete dispersive smoothing

The lack of smoothing effect for the operator Vh(t) and arbitrary initial data could be proved
as was done in [7, 6] for the Schrödinger equation. This is due to the cancellation of the symbol
p′h = 4 sin(hξ/2) sin(3hξ/2)/h2 at ±2π/3h.
The method that we will follow to tackle this issue consists in filtering the initial data and the
nonlinearity in a way such that their spectrum is localized away from ±2π/3h. Namely if (un)
is a sequence of 3hZ, we define Πuj defined on hZ as follows





Πu3j = u3j ,
Πu3j+1 = 2/3u3j + 1/3u3j+3,
Πu3j+2 = 1/3u3j + 2/3u3j+3.

(2.1)
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We also define E3 as the canonical projector

E3 : S(hZ) 7→ S(3hZ),
(un) 7→ (u3n).

A word of caution on notations: The operators Π and E3 as defined are of course linked to
h, though it is clear that their definition poorly depends on it. In order to lighten the notations
we have chosen not to display this dependance, although the symbols of operators does change
according to their natural scaling (see the case of ∂h, ∂

3
h).

We have

Π̂E3u =
1

9
(1 + 2 cos(hξ))2Ê3u. (2.2)

Indeed

Π̂E3u = h
∑

ΠE3uje
−ijhξ = 3h/3

∑
u3je

−3ijhξ
(
1 + 2/3eihξ + 2/3e−ihξ + 1/3e2ihξ

+1/3e−2ihξ
)

=
1

3
Ê3u(ξ)

(
1 + 4/3 cos hξ + 2/3 cos(2hξ)

)

=
1

9
Ê3u(ξ)

(
1 + 4 cos hξ + 4cos2 hξ

)

=
1

9
Ê3u(ξ)(1 + 2 cos hξ)2.

Note that it is clear that ‖ΠE3u‖lp(hZ) ≍ ‖E3u‖lp(3hZ) ≤ 31/p‖u‖lp(hZ), this fact will be used
during the rest of the article without further notice.

Proposition 1. (dispersive smoothing)
For any u ∈ l23h,

sup
j

∫

R

|(|D|Vh(t)Πu)j |2dt . ‖u‖2l23h , (2.3)

and the inhomogeneous counterpart stands for any (g3j(t))

‖|D|2
∫ t

0
V (t− t′)Πg(t′)dt′‖l∞L2 . ‖g‖l13hL2

t
. (2.4)

Proof. By scaling, it is sufficient to prove it for h = 1. We have

V (t)Πuj =

∫ π

−π
eixξeitp(ξ)

(1 + 2 cos ξ)2

9
|ξ|ûdξ

=

∫ π

−π
eixξe4it sin

2(ξ/2) sin ξ (1 + 2 cos ξ)2

9
|ξ|Π̂udξ.
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On ]− 2π/3, 2π/3[, (sin2(ξ/2) sin ξ)′ = sin(ξ/2) sin(3ξ/2) > 0, thus p is a diffeormorphism and
we may use the change of variables η = 4 sin2(ξ/2) sin ξ. To lighten the notations we write
ξ = ξ(η) and dξ = f(η)dη. This gives

∫ 2π/3

−2π/3
eixξe4it sin

2(ξ/2) sin ξ (1 + 2 cos ξ)2

9
|ξ|ûdξ =

∫ 3
√
3/8

−3
√
3/8

eixξ(η)+itη (1 + 2 cos ξ)2

9
|ξ|û

f(η)dη

=

∫

R

1[−3
√
3/8,3

√
3/8]e

ixξ(η)+itη (1 + 2 cos ξ)2

9
|ξ|ûf(η)dη,

which is an inverse Fourier transform in time. Plancherel’s formula thus implies

‖
∫ 3

√
3/8

−3
√
3/8

eixξ(η)eitη
(1 + 2 cos ξ)2

9
|ξ|ûf(η)dη‖2L2

t
=

∫ 3
√
3/8

−3
√
3/8

(1 + 2 cos ξ)4

81
|ξ|2|ûf(η)|2dη,

then reversing the change of variable η = η(ξ) we get

∫ 3
√
3/8

−3
√
3/8

(1 + 2 cos ξ)4|ξ|2|ûf(η)|2dη =

∫ 2π/3

−2π/3
(1 + 2 cos ξ)4|ξ|2|û|2 dξ

|4 sin(ξ/2) sin(3ξ/2)| .

The divisor sin(ξ/2) sin(3ξ/2) has a first order cancellation at ±2π/3 and a second order
cancellation at 0, but since it is easily seen that

(1 + 2 cos ξ)|ξ|2|
sin(ξ/2) sin(3ξ/2)

is uniformly bounded on [−2π/3, 2π/3],

this implies

∫ 2π/3

−2π/3
(1 + 2 cos ξ)4|ξ|2|û|2 dξ

sin(ξ/2) sin(3ξ/2)
.

∫ 2π/3

−2π/3
|1 + 2 cos ξ|3|û|2dξ

. ‖û‖2L2

. ‖u‖2l23h .

The same argument can be applied without further difficulties in the areas [2π/3, π] and
[−π,−2π/3] where p is also monotone, this gives (2.3).
The estimate (2.4) is slightly more technical and is based on the formula

|D|2
∫ t

0
V1(t− t′)Πg(t′)dt′ =

∫ π

−π

∫

R

eixξξ2
eiτt − eip(ξ)t

i(τ − p(ξ))

(1 + 2 cos(ξ))2

9
ǧ(ξ, τ)dξdτ, (2.5)

where ǧ is the Fourier transform of f with respect to both x and t. For the detail of the
argument we refer to [12], theorem 3.5.
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Remark 2. It is clear from the proof that the only thing needed for the boundedness of
(1 + 2 cos ξ)4|ξ|2
sin(ξ/2) sin(3ξ/2)

is the first order cancellation of (1+2 cos ξ)4 at ±2π/3h. Any other Fourier

multiplier whose symbol cancels in such a way would have also worked. This fact is impor-
tant since in the next section we will see that different interpolators must be used to gain
integrability.

Corollary 1. The following “dual“ estimates also hold:

∀u ∈ l2h, ‖Π∗|D|V (t)u‖l∞3hL2
t
. ‖u‖l2 , (2.6)

∀ g ∈ l13hL
2
t , sup

t
‖|D|

∫ ∞

−∞
V (t− t′)Πg(t′)dt′‖l2 . ‖Πg‖l1L2 , (2.7)

‖|D|
∫ t

0
V (t− t′)Πg(t′)dt′‖l2 . ‖Πg‖l1L2([0,t]). (2.8)

Proof. The inequality (2.7) is a direct duality consequence of (2.6), indeed

‖|D|
∫ ∞

−∞
V (t− t′)Πg(t′)dt′‖l2 = sup

‖u‖l2=1

∑

j

|D|
∫ ∞

−∞
V (t− t′)(Πg)j(t

′)dt′uj

= sup
‖u‖l2=1

∑

j

∫ ∞

−∞
g3j(t

′)(Π∗V (t′ − t)|D|u)3jdt′

≤ ‖g‖l1L2
t
‖Π∗V (t′ − t)|D|u‖l∞L2

t′

≤ ‖g‖l1L2
t
‖u‖l2 ,

while (2.8) is deduced from (2.7) by replacing g by 1[0,t]g.
It remains to prove (2.6). We remind that ψ = (1 + 2 cos(hξ))2/9 is the symbol of Π. From
the duality formula

∀ (u, v) ∈ l2(3hZ) × l2(hZ), 2π
∑

j

Πujvj =

∫ π/h

−π/h
ψûv̂

=

∫ π/(3h)

−π/(3h)
û(ξ)

(
ψv̂(ξ − 2π/3) + ψv̂(ξ)

+ψv̂(ξ + 2π/3
)
dξ

we see that 2πΠ̂∗v = ψv̂(ξ − 2π/3) + ψv̂(ξ) + ψv̂(ξ + 2π/3) so that

(Π∗|D|V (t)u)̂= |ξ − 2π/3|eitpψû(ξ − 2π/3) + |ξ|eitpψû(ξ) + |ξ + 2π/3|eitpψû(ξ + 2π/3),

and the proof of Proposition 1 can be repeated identically because ψ cancels at the appropriate
points.
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3 Global dispersive estimates

A key estimate for solutions of the linear evolution equation ∂tu+ ∂3xu = 0 is

‖u‖L4
xL

∞
t

. ‖|D|1/4u0‖L2 , (3.1)

it relies on the fact that the second derivative of the symbol ξ3 does not cancel on R outside
0, which is obviously not the case for the discrete symbol ph(ξ) on [−π/h, π/h]. This estimate
is sharp in the sense that it is scale invariant:

‖u(λx, λ3t)‖L4
xL

∞
t

= ‖u(x, t)‖L4
xL

∞t/λ
1/4, ‖|D|1/4u0(λx)‖L2

x
= ‖u0‖L2/λ1/4,

and the same scale invariancy holds for sequences of S(Z) dilated in sequences of S(hZ). This
will be used in order to reduce our proofs to the case h = 1.
According to (1.6), the second derivative of the discrete symbol p1 cancels at the points where

2 sin(2ξ) = sin ξ.

Except the obvious points 0,±π, there are only two solutions (ξ1, ξ0) in ] − π, π[, and up to
reindexing we can assume that ξ1 ∈]−π/2,−π/4[ and ξ0 ∈]π/4, π/2[. Similarly to the previous
section, we will see that the derivation of global dispersive estimates only requires to use an
interpolation operator whose symbol cancels at (ξ0, ξ1). Unfortunately they are not rational
multiple of π, thus no ’barycentric’ interpolator may be used to filter those frequencies as in
the previous section.

We chose instead to use an interpolation operator more tailored to this case, namely an
operator Π such that

Π̂u(ξ0) = Π̂u(ξ1) = Π̂u(±2π/3) = Π̂u(±π) = 0.

Given u6j defined on the coarse grid 6hZ, we set for 1 ≤ k ≤ 5

Παu6j+k = αku6j + (1− αk)u6(j+1), (3.2)

the discrete Fourier transform of (Παu)j is then

Π̂αu =
∑

e−ijξuj =
∑

u6je
−6ijξ +

5∑

k=1

e−i(6j+k)ξ
(
αku6j + (1− αk)u6(j+1)

)

=
∑

e−i6jξu6j

( 5∑

k=0

e−ikξ + αke
−ikξ − αke

i(6−k)ξ

)

=
1

6
û(ξ)

(
1− ei6ξ

1− eiξ
+

5∑

1

αke
−ikξ(1− ei6ξ)

)

=
1− e6iξ

6
û(ξ)

( 1

1− eiξ
+

5∑

1

αke
−ikξ

)

= m(ξ)û(ξ).
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Figure 1: The connected line is the graph of the symbol of −∂3
x, the other one is the graph of the discrete

symbol p for h = 1. The ’bad’ points are the inflexion points ξ0, ξ1 and the local extremas ±2π/3.

It is clear that without restriction on αk we have m(0) = 1, m(kπ/3) = 0, k 6≡ 0 (mod 6).
The system 




1 ≤ k ≤ 5, m(2kπ/6) = 0,
m(ξ0) = 0,
m(ξ1) = 0,

(3.3)

is thus underdetermined and we may arbitrarily choose a solution (αk). The optimal choice of
(αk) (minimizing the norm of Πα) is a question that we will not study.

Remark 3. The construction was performed here for h = 1, however it is clear that the same
construction of an operator Πα : S(6hZ) → S(hZ) leads to an interpolator whose symbol is
simply m(hξ), and thus cancels automatically at kπ/3h, k 6≡ 0 (mod 6).
More generally, any interpolator S(NhZ) → S(hZ) constructed by this technic has for symbol

mh(ξ) =
1− eiNhξ

N

( 1

1− eihξ
+

N−1∑

1

αke
−ikhξ

)
,

and thus always cancels at 2kπ/Nh, k 6≡ 0 (mod N). This fact will be important for the
sections dealing with convergence to the exact solution.

We simply assume in the rest of this section that an operator Π : S(NhZ) → S(hZ) is
given whose symbol has a first order cancellation at ξ0, ξ1, ±π.
Proposition 4. Let Π : NhZ → hZ be a discrete Fourier multiplier, i.e. there exists a smooth
function ψ such that Π̂f = ψf̂ . If ψ cancels at ξ0/h, ξ1/h,±π/h, then for any u0 ∈ l2(NhZ),

‖Vh(t)Πu0‖l4jL∞
t

≤ C‖|D|1/4u0‖l2 , (3.4)
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For any f ∈ l
4/3
NhL

1
t , we have the estimates

‖|D|−1/2

∫ t

0
Vh(t− s)Πf(s)ds‖l4L∞

t
≤ C‖f‖l4/3L1 , (3.5)

In both estimates the constant C does not depend on h.

Proof. The proof follows the one of the continuous case, up to some supplementary technical
difficulties.
By duality and elementary calculus the inequality (3.4) can be reduced to

‖
∫

R

|D|−1/4Vh(t)ΠΠ
∗V (−t′)D−1/4gj(t

′)dt′‖l4jL∞
t

. ‖g‖
l
4/3
j L1

t
.

(for a detailed argument see [13] Lemma 7.3). By repeating the argument of the proof of
(2.6), we see that it is sufficient to prove the above estimate for the function

∫
R
|D|−1/2Vh(t−

t′)ΠΠ∗gj(t′)dt′, but then we have

∫

R

(· · · )dt′ =

∫ π/h

−π/h

∫

R

ei(t−t′)ph(ξ)+ijξ

|ξ|1/2 Π̂Π∗g(ξ, t′)dt′dξ

=

∫ π/h

−π/h

∫

R

ψ
ei(t−t′)ph(ξ)+ijξ

|ξ|1/2 Π̂∗g(ξ, t′)dt′dξ

≤
∫

R

|(Π∗g)j(t
′)|dt′ ∗j sup

t
|
∫ π/h

−π/h

eitph(ξ)+ijξ

|ξ|1/2 ψdξ|

. ‖ max
|j−k|≤5

|gk| ‖L1
t
∗j sup

t
|
∫ π/h

−π/h

eitph(ξ)+ijξ

|ξ|1/2 ψdξ|,

the last inequality being a direct consequence of the explicit form of Π∗. Thus we are reduced
to prove

∥∥ ‖ max
|j−k|≤5

|gk| ‖L1(R) ∗j sup
t

|
∫ π/h

−π/h

eitph(ξ)+ijξ

|ξ|1/2 ψdξ|
∥∥
l4j
. ‖g‖l4/3L1 (3.6)

Similar arguments show that (3.5) amounts to

∥∥ sup
t

‖ max
|j−k|≤5

|fk| ‖L1(0,t) ∗j sup
s

|
∫ π/h

−π/h

eisph(ξ)+ijξ

|ξ|1/2 ψdξ|
∥∥
l4j
. ‖f‖l4/3L1 ,

which is implied by (3.6). According to proposition 22 p.38 (discrete Hardy-Littlewood-
Sobolev), it is sufficient to prove

sup
t

|
∫ π/h

−π/h

eitp(hξ)/h
3+ijhξ

|ξ|1/2 ψ(hξ)dξ| . 1
(
h(1 + |j|)

)1/2 . (3.7)
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By homogeneity we may reduce it to h = 1, indeed the change of variable ξ = η/h shows that
(3.7) is equivalent to

1√
h
sup
t

|
∫ π

−π

eitp(η)/h
3+ijη

|η|1/2 ψ(η)dη| . 1

(h(1 + |j|))1/2 ,

which amounts to

sup
t

|
∫ π

−π

eitp(η)+ijη

|η|1/2 ψ(η)dη| . 1

1 + |j|1/2 .

We remind that p(ξ) = 4 sin2(ξ/2) sin ξ, we perform the analysis only on [0, π], t ≥ 0, the
proof being the same on [−π, 0] or t ≤ 0. The estimate for j = 0 is trivial, thus we assume
j ∈ Z∗. We split the interval [0, π] in several parts:

A1 = [0, t−1/3],

A2 = Ac
1 ∩ {|tp′ + j| ≥ |j|/2},

A3 = (A1 ∪A2)
c.

Note that if , t−1/3 ≥ π we only need to work on A1, moreover in this case the integrand only
runs over [0, π], though we do not write it explicitly.
If |j| ≤ C0t

1/3, C0 > 0 fixed, one has trivially |
∫
A1

(· · · )| . 1/
√
j, else

∫

A1

ei(tp+jξ)ψ/
√
ξdξ =

∫ 1/|j|

0
ei(tp+jξ)ψ/

√
ξdξ +

∫ 1/t1/3

1/|j|
ei(tp+jξ)ψ/

√
ξdξ,

the first integral is obviously bounded by 1/
√

|j|. After an integration by part we obtain for
the second one

|
∫ 1/t1/3

1/|j|
ei(tp+jξ)ψ/

√
ξdξ| ≤ t1/6

|j + tp′(t−1/3)| +
√

|j|
j + tp′(1/j)

+

∣∣∣∣
∫ 1/t1/3

1/|j|
ei(jξ+tp) 1

ξ1/2(j + tp′)

(−ψ
2ξ

− ψtp′′

(j + tp′)
+ ψ′

)∣∣∣∣

.
1√
|j|
,

provided C0 is chosen large enough, for |p′| . ξ2 and p′ ∼0 3ξ2. We implicitly used the fact
that the integration interval is bounded to get the estimate

∣∣∣∣
∫ 1/t1/3

1/|j|
ei(jξ+tp) 1

ξ1/2|j + tp′|ψ
′
∣∣∣∣ .

∫ 1/t1/3

1/|j|

|j|1/2
|j + tp′| .

1

|j|1/2 .
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Let us note that the key point in the previous analysis was j ≥ C0t
1/3 ⇒ |j + tp′| & |j|. Since

on A2 this inequality is automatically satisfied, the same integration by part argument gives

|
∫

A2

ei(tp+jξ)ψ/
√
ξdξ| . 1√

|j|
.

We still have to estimate the integral on A3. Let us consider V, Ṽ two disjoint neighbourhoods
of the points {ξ0, π} where p′′ cancels, and set A4 = A3 ∩ (V ∪ Ṽ)c, A5 = A3 ∩V, Ã5 = A3 ∩ Ṽ.
On A4, p

′′ ≍ ξ, p′ ≤ ξ2 and tp′ ≍ j/2, thus ξ &
√

|j|/t. The Van der Corput lemma (see [13]
Corollary 1.1) implies

|
∫

A4

ei(tp+jξ)ψ/
√
ξdξ| . 1√

t
4

√
t

|j| supA4

1√
ξ
.

1√
t

4

√
t

|j|

2

=
1√
|j|
.

We then have on the neighbourhood of ξ0

p′ − p′(ξ0) =
β

2
(ξ − ξ0)

2 + o(ξ − ξ0)
2, p′′ = β(ξ − ξ0) + o(ξ − ξ0), β ∈ R

∗.

For c (resp C) chosen small enough (resp large enough), if t/|j| /∈ [c, C], one obtains easily by
integrations by parts

|
∫

A5

ei(tp+jξ)ψ/
√
ξdξ| . 1/|j|,

thus we may assume that t ≍ |j|, and all that remains is to prove

|
∫

A5

ei(tp+jξ)ψ/
√
ξdξ| . 1/

√
t.

This estimate can be seen as a particular case of lemma 2.7 in [9], we provide the argument
for completeness. Since ψ cancels at ξ0, we have

|
∫ ξ0+1/t1/3

ξ0−1/t1/3
ei(tp+jξ)ψ/

√
ξdξ| . t−2/3 . 1/

√
t,

because t is bounded away from 0.
(note here that it would be enough that ψ simply cancelled at the order 1/2)
On A′

5 := A5∩{|p′+j/t| ≤ |(j+p′(ξ0)t)/2t|, |ξ−ξ0| ≥ t−1/3} one has |ξ−ξ0| ≍
√

(j + p′(ξ0)t)/2t
so that by using again the Van der Corput’s lemma and the fact that ψ . max(|ξ − ξ0|, 1) ⇒
ψ .

√
|ξ − ξ0| we get

|
∫

A′
5

ei(tp+jξ)ψ/
√
ξdξ| . 1√

t

∣∣∣∣
j + p′(ξ0)t

2t

∣∣∣∣
−1/4

√
j + p′(ξ0)t

2t
=

1√
t

(
j + p′(ξ0)t

2t

)1/4

.
1√
t
.

1√
|j|
.
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Finally on A′′
5 := A5 ∩ {|p′ + j/t| ≥ |(j + p′(ξ0)t)/2t|, |ξ − ξ0| ≥ t−1/3}, one has |p′ + j/t| &

|p′| & |ξ − ξ0|2 ≥ t−2/3.
We may conclude again by integration by parts, since the calculus are very similar we shall
only detail the case of one of the terms appearing :

∣∣∣∣
1

t

∫

A′′
5

ei(tp+xξ)ψ

(p′ + j/t)ξ3/2

∣∣∣∣ .
1

t

∫

A′′
5

|ξ − ξ0|
|ξ − ξ0|2

dξ .
1

t
max
A′′

5

|ln(|ξ − ξ0|)| .
1√
|j|
.

The integral estimate on Ã5 can be performed in the same way, and this concludes the proof.

Finally some other useful estimates are obtained by interpolation of the estimates in Prop.
4 and those of section 2. For the precise argument on interpolation we refer to [13] prop. 7.4.

Corollary 2. For u0 ∈ l2, f ∈ l5/4L10/9

‖Vt(t)Πu0‖l5L10 . ‖Πu0‖l2 , (3.8)

‖
∫ t

0
Vt(t− s)Πf(s)ds‖l5L10 . ‖f‖l5/4L10/9 , (3.9)

‖DhVt(t)Πu0‖l20L5/2 . ‖D1/4
h Πu0‖l2 . (3.10)

Remark 5. The results above apply to convenient interpolation operators, but also to any
Fourier multiplier composed with any such interpolators. As a consequence we may (and will)
also apply the estimates above to other operators, for instance ∂h ◦ Π.

4 Existence of a solution

This section is devoted to the existence of a global in time solution to the discrete dispersive
scheme, that admits bounds depending only on the l2(hZ) of the initial data, and in particular
independent of h. We first state a simple but useful lemma.

Lemma 1. In H1(hZ), the norm (
∫ π/h
−π/h |û|2(1 + |ξ|2)dξ)1/2 is (uniformly in h) equivalent to

‖u‖l2 +
‖uj+1 − uj‖l2

h
.

The operator Π ◦ Ek is continuous Hs(hZ) → Hs(hZ), 0 ≤ s ≤ 1, where Ek is the natural
projection operator S(hZ) → S(khZ), Π is an interpolation operator as in the previous section.

Proof. A short computation shows that

̂uj+1 − uj = 2ieihξ/2 sin
ξh

2
û,

and since on [−π/h, π/h], 2/h sin ξh
2 ≍ ξ, one has

‖u‖2Hs =

∫ π/h

−π/h
|û|2(1 + |ξ|2)sdξ ≍

∫
|û|2(1 + 22s sin2s ξh

2

h2s
)dξ, (4.1)
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in particular for s = 1

‖u‖H1 ≍
∫ π/h

−π/h
|û|2(1 + 4

sin2 ξh
2

h2
)dξ = ‖u‖2l2 +

‖uj+1 − uj‖2l2
h2

. (4.2)

It is easily checked that ‖Π ◦ Eku‖l2 . ‖u‖l2 . Moreover for kn ≤ j < k(n + 1), by hypothesis
uj = αjukn + (1− αj)uk(n+1), so that

|uj+1 − uj | ≤ |αj+1 − αj|ukn − uk(n+1)| ≤ (max |αj+1 − αj |)
5∑

1

|ukn+j − ukn+j−1|.

This implies ‖(Π◦Eku)j+1−(Π◦Eku)j‖l2 . ‖uj+1−uj‖l2 , the operator Π◦Ek is thus continuous
l2 → l2 et H1 → H1, so that by interpolation it is continuous Hs → Hs, 0 ≤ s ≤ 1.

As an application of the estimates of the previous sections we shall prove the existence of
a solution for the following semi-discrete problem

{
∂tu+ ∂3hu+ ∂hΠEu

5/5 = 0,
u|t=0 = Πu0.

(DcKdV)

We say that u is a solution of (DcKdV) if it belongs to C(Rt, l
2) ∩ l5L10(Rt) and satisfies

u(t) = Vh(t)Πu0 −
∫ t

0
Vh(t− s)∂hΠEu

5/5ds.

Theorem 6. We define the space X(R × hZ) as the set of functions t → u(t) ∈ S(hZ) such
that

u ∈ C(R; l2) ∩ L∞(R; l2),

‖∂hu‖l∞L2
t
<∞,

‖u‖l5L10
t
<∞.

with the corresponding norm ‖u‖X associated. We assume that Π is an interpolation operator
whose symbol cancels at the points ±2π/3, ±π, ξ0, ξ1 (such operators exist according to the
construction before Remark 3 p.10).
There exists δ > 0 independent of h such that for ‖Πu0‖l2 < δ small enough there exists a
unique solution u of (DcKdV) satisfying

‖u‖X <∞, (4.3)

Moreover the solution map {u0 ∈ l2(NhZ) : ‖u0‖l2 < δ} → X(hZ) is Lipschitz.
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Proof. The proof is based on the Picard-Banach fixed point theorem applied in the space X.
We recall that Vh(t) is the semigroup corresponding to the third order discretized derivative,
it is a Fourier multiplier of symbol eitph(ξ). We check that for ‖u0‖ ≤ δ and a small enough,

T : u→ Vh(t)Πu0 −
∫ t

0
Vh(t− s)∂hΠEu

5(s)/5ds,

sends {u ∈ X : ‖u‖X < a} = BX(0, a) to itself.

Control of the L∞l2 norm: We have ‖Vh(t)Πu0‖l2 ≤ ‖u0‖l2 and

‖
∫ t

0
Vh(t− s)∂hΠEu

5(s)ds‖l2 . ‖ΠEu5‖l1L2 . ‖u‖5l5L10 ≤ ‖u‖5X .

Control of ‖∂hTu‖l∞L2: Using Proposition 1 we may write

‖∂hVh(t)Πu0‖l∞L2 . ‖u0‖l2 ,
moreover

‖∂2h
∫ t

0
Vh(t− s)ΠEu5(s)ds‖l∞L2 . ‖ΠEu5‖L1l2 . ‖u‖5l5L10 ≤ ‖u‖5X .

Control of the l5L10 norm: By Corollary 2, ‖Vh(t)Πu0‖l5L10 . ‖u0‖l2 , and

‖
∫ t

0
Vh(t− s)∂hΠEu

5(s)ds‖l5L10 . ‖∂hΠEu5‖l5/4L10/9 .

Since

(ΠEu)5j+1 − (ΠEu)5j = ((ΠEu)j+1 − (ΠEu)j)(
4∑

0

(ΠEu)kj+1(ΠEu)
4−k
j ), (4.4)

Hölder inequality implies

‖∂hΠEu5‖l5/4L10/9 . ‖∂hΠEu‖l∞L2‖ΠEu4‖l5/4L10/4 .

Using now the continuity of Π ◦E : H1 → H1 (lemma 1)

‖∂hΠEu5‖l5/4L10/9 . ‖∂hu‖l∞L2‖u‖4l5L10 ≤ ‖u‖5X .
Finally we have obtained

‖Tu‖X ≤ c‖Πu0‖l2 + c‖u‖5X .
Let a be fixed such that ca4 < 1/2, then if we choose δ ≤ a

2c we get

‖Tu‖X ≤ c‖Πu0‖l2 + a/2 ≤ a,

that means T : BX(0, a) → BX(0, a). Following the same arguments, we see that (up to
diminishing a) the operator is a contraction. By the Picard-Banach’s fixed point theorem this
ensures existence and uniqueness of a solution (in X) for any u0 such that ‖u0‖l2 ≤ δ. The
smoothness of the solution operator follows from the classical fixed point theory.
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5 Convergence to the solution of the Cauchy problem

We denote by P the interpolation operator from l2 to the set of continuous affine by parts
functions:

∀u ∈ l2(hZ), ∀x ∈ [jh, (j + 1)h] : Pu(x) = uj + (x− jh)
uj+1 − uj

h
.

Although our natural level of regularity is only l2, we need continuous functions in order to use
the dispersive smoothing of uh. The operator P is particularly handy since it commutes with
the operator ∂h. Let uh be the discrete solution such that P (Πu)0,h → u0 (L2). The aim of
this section is to establish the convergence of Puh to the solution of (cKdV ) in a sense which
will be precised.
We start with a lemma that links the “smoothness” of a sequence v to the smoothness of Pv.

Lemma 2. For any v ∈ S(hZ), we have

‖Pv‖L2(R) = ‖v‖l2(hZ), ‖Pv‖H1(R) =

(
‖v‖2l2 +

∥∥∥∥
vj+1 − vj

h

∥∥∥∥
2

l2

)1/2

,

and the same equalities are true if we replace R by [kh, lh] and hZ by kh · · · lh for (k, l) ∈ Z2.
The Fourier transform of Pu is

P̂ v(ξ) =
4 sin2(hξ/2)

h2ξ2
v̂(ξ).

If PΠvh → v (L2), then for any fixed t PVh(t)Πvh → V (t)v (L2), where V is the semigroup
corresponding to the operator ∂3x. Moreover if v is fixed and t remains in a compact the
convergence is uniform.

Proof. The norm equalities are elementary. A simple calculation gives for the Fourier transform

P̂ v(ξ) =
∑

j

∫ (j+1)h

jh
e−ixξ

(
vj +

vj+1 − vj
h

(x− jh)
)
dx

=
∑

j

vje
−ijhξ e

−ihξ − 1

−iξ +
vj+1 − vj

h

(
he−ijξ

−iξ +
e−ijhξ(e−ihξ − 1)

ξ2

)

=
∑

j

vj+1 − vj
h

e−ijhξ(e−ihξ − 1)

ξ2

=
(eihξ − 1)(e−ihξ − 1)

h2ξ2
v̂(ξ) =

4 sin2(hξ/2)

h2ξ2
v̂(ξ).
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For the norm convergence we may write

̂PVh(t)Πvh =
4 sin2(hξ/2)

h2ξ2
eitph(ξ)Π̂vh(ξ)

⇒ ‖PVh(t)Πvh − V (t)v‖L2 =

(∫

R

∣∣4 sin
2(hξ/2)

h2ξ2
eitphΠ̂vh(ξ)− eitξ

3
v̂
∣∣2dξ

)1/2

≤
(∫

R

∣∣4 sin
2(hξ/2)

h2ξ2
eitphΠ̂vh(ξ)− eitph v̂

∣∣2dξ
)1/2

+

(∫

R

|(eitph − eitξ
3
)v̂(ξ)|2dξ

)1/2

.

Since |eitph | = 1, the first term tends to 0 according the the hypothesis PΠvh → v (L2),
moreover |etph − eitξ3 | ≤ 2 and →h→0 0, so that by Lebesgue’s dominated convergence theorem
the second term also tends to 0.
If t, ξ remain in a compact, |t(ph(ξ)− ξ3)| → 0 uniformly. Since limA→∞ ‖v̂‖L2(|ξ|≥A) = 0, the
uniform convergence of PVh(t)Πvh to V (t)v follows easily.

Remark 7. The convergence PVh(t)Πuh → V (t)u (L2) is uniform in t for t bounded, however
it does depend on u0, preventing any rate of convergence in h.

In what follows we shall assume that u0h ∈ l2(NhZ) is such that

‖PΠu0h − u0‖L2 →h 0,

which is clearly the minimal assumption for convergence, and we consider the family uh of
solutions to {

∂tuh + ∂3huh + ∂hΠEu
5
h/5 = 0,

uh|t=0 = Πu0h.
(5.1)

According to Theorem 6, the family (Puh)0≤h≤1 is bounded in L∞
t L

2
x ∩ L5

xL
10
t , and (uh(· +

h)−uh(·))/h is bounded in L∞
x L

2
t . By weak star (resp weak) compactness, we may extract uh

weakly converging toward some u ∈ L∞
t L

2
x ∩ L5

xL
10
t .

It is slightly more delicate to check that ∂xu ∈ L∞
x L

2
t . We use that

∀ϕ ∈ C∞
c ,

∫

R2

Puh(x+ h)− Puh(x)

h
ϕdxdt =

∫

R2

Puh(x)
ϕ(x− h)− ϕ(x)

h
dxdt.

Since (ϕ(x − h)− ϕ(x))/h → −ϕ′ L1
xL

2
t , we have

∫

R2

Puh(x)
ϕ(x − h)− ϕ(x)

h
dxdt → −

∫

R

uϕ′dxdt,

Moreover up to extracting again we may assume that (Puh(·+ h)− Puh(·))/h ⇀∗ v ∈ L∞
x L

2
t ,

so that ∫

R2

vϕdxdt = −
∫

R2

u∂xϕdxdt,
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that is ∂xu = v ∈ L∞
x L

2
t (in the sense of distributions).

Theorem 8. Let Πu0,h be the initial data of the discrete problem (DcKdV). Assume that
PΠu0,h →h u0 in L2. Let u ∈ L∞

t L
2
x ∩L5

xL
10
t be the weak limit of any extracted subsequence of

Puh. Then u is the solution of cKdV with initial data u0 and the whole sequence Puh converges
to u in the following sense

Puh ⇀
∗ u (L∞

t L
2
x), Puh ⇀ u (L5

xL
10
t ),

∂xPuh ⇀
∗ ∂xu (L∞

x L
2
t ), Puh → u

(
L2
loc(R

2)
)
.

Proof. Let T > 0 be fixed, J = [−T, T ], Ω = [−C,C]. Up to increasing by at most 2h the size
of Ω we may always assume that C is a multiple of h and apply the norm equalities of Lemma
2 (a fact that we will not mention in the rest of the proof). Since

∂tPuh = −P∂3huh − P∂hΠEu
5
h/5,

we have according to the injection L1(Ω) →֒ H−1(Ω) (dual of H1 →֒ L∞)

‖∂tPuh‖L1(J,H−3(Ω)) ≤ ‖Puh‖L1(J,L2) + ‖P∂hΠEu5h/5‖L1(J,H−3(Ω))

. ‖u0‖L2 + ‖P∂hΠEu5h/5‖L1(J×Ω).

As J and Ω are bounded, we may write

‖P∂hΠEu5h‖L1(J×Ω) . ‖P∂hΠEu5h‖L5/4
x (Rx,L

10/9
t (J))

,

then by application of Hölder’s inequality and continuity of ΠE and P :

‖P∂hΠEu5h‖L5/4
x

(
Rx,L

10/9
t (J)

) . ‖∂huh‖l∞L2‖uh‖4l5L10 . ‖u0‖5L2 .

Thus ∂tPuh is bounded in L2(J,H−3(Ω)). On the other hand

‖Puh‖L2(J ;H1(Ω)) . ‖Puh‖L∞(J ;L2) + ‖∂xPuh‖L∞
x L2

t
,

and thus Puh is bounded in L2(J,H1(Ω)). Since we have the sequence of injections H1(Ω) →֒
L2(Ω) →֒ H−3(Ω) where the first injection is compact, Aubin-Lions’s lemma implies that
Puh is precompact in L2(J,L2(Ω)). Using a diagonal extraction argument, we find that a
subsequence of uh is strongly converging to u in L2

loc(Rx × Rt) as h→ 0.
This list of convergences is now sufficient to check that the limit is the solution of the continuous
problem. In order to do so we introduce the ‘variational’ formulation

∀ϕ ∈ C∞
c (R2),

∫

R2

Puh(−∂tϕ− ∂3hϕ)− PΠEu5h∂hϕdxdt = 0.
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Passing to the limit in h we will obtain that u is a solution of (cKdV). The linear terms are
easily handled, indeed for ϕ ∈ C∞

c , ∂3hϕ→ ∂3xϕ (L2), thus using Puh → u (L2
loc) we find

∫

R2

Puh(−∂tϕ− ∂3hϕ) →
∫

R2

u(−∂tϕ− ∂3xϕ).

For the nonlinear term, let us fix R such that suppϕ ⊂]−R,R[2 and ε > 0 to be small. Let us
define

Ah,ε := {(x, t) ∈ [−R,R]2 : |u5h − u5| > ε}. (5.2)

Since Puh → u L2([−R,R]2), up to an other extraction Puh → u a.e. and we have for ε > 0
fixed λ(Ah,ε) →h 0. For h small enough we may write

∫

[−R,R]2
∂hPΠEu

5
hϕdxdt =

∫

[−R,R]2
PΠEu5h∂−hϕdxdt.

We have ∂−hϕ→ −∂xϕ (L∞(R2)) thus is is sufficient to prove
∫

[−R,R]2
(PΠEu5h − u5)∂−hϕdxdt → 0.

Let N ∈ N∗ be such that Π : NhZ → hZ, Z = ⊔N−1
p=0 {NhZ + ph} =: ⊔Zp :

|
∫

[−R,R]2
(PΠEu5h − u5)∂−hϕdxdt| .

∫ R

−R

∑

k∈Z

N−1∑

p=0

∫ Nkh+p+1

Nkh+p
|ΠEu5Nkh+ph − u5| |∂−hϕ|dxdt

≤
∫ R

−R

∑

p,k

∫ Nkh+p+1

Nkh+p

1∑

j=0

αj,p|u5N(k+j)h − u5| |∂−hϕ|dxdt,

where the αj,p only depend on the operator Π. This implies

|
∫

[−R,R]2
(PΠu5h − u5)∂−hϕdxdt| ≤

N−1∑

p=0

∫ R

−R

∑

Zp

1∑

j=0

αj,p|u5N(k+j)h − u5| |∂−hϕ|dxdt

≤
N−1∑

p=0

1∑

j=0

∫ R

−R

∫

R

αj,p|Pu5h(x)− u5(x+ τj,ph)| |∂−hϕ|dxdt,

where τj,p = p if j = 0, p−N if j = 1. Since u ∈ L5L10,

lim sup
ε→0

∫

[−R,R]2
|u5(x+ ε)− u5(x)|dxdt = 0,

and we are reduced to prove
∫ R

−R

∫

R

|Pu5h(x)− u5(x)| |∂−hϕ|dxdt =
∫

[−R,R]2
|Pu5h(x)− u5(x)| |∂−hϕ|dxdt → 0. (5.3)
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But
∫

[−R,R]2
|Pu5h(x)− u5(x)| |∂−hϕ|dxdt =

∫

Ah,ε

|Pu5h(x)− u5(x)| |∂−hϕ|dxdt.

+

∫

Ac
h,ε

|Pu5h(x)− u5(x)| |∂−hϕ|dxdt

The second term is simply bounded by

|
∫

Ac
h,ε

|Pu5h(x)− u5(x)| |∂−hϕ|dxdt| ≤ ε4R2 sup
0≤h≤1, (x,t)∈[−R,R]2

|∂hϕ|.

For the other term we use a discrete version of the Sobolev embedding H1 →֒ L∞ (the proof
is similar)

Puh, P∂huh ∈ L2([−R,R]2) ⇒ Puh ∈ L2
tL

∞
x ([−R,R]2) ⇒ Puh ∈ L∞

x L
2
t ([−R,R]2),

with bound independent of h. By interpolating with Puh ∈ L5
xL

10
t we get Puh ∈ L6([−R,R]2).

The same (simpler) argument implies u ∈ L6([−R,R]2), so that
∫

Ah,ε

|PΠu5h − u5| |∂−hϕ| dxdt ≤
(
‖Pu5h‖

5/6

L6/5(Ah,ε)
+ ‖u5‖5/6

L6/5(Ah,ε)

)
‖∂−hϕ‖1/6L6(Ah,ε)

,

but since λ(Ah,ε) → 0, we get

∫

Ah,ε

|Pu5h − u5| |∂−hϕ| dxdt → 0.

Finally we have obtained

∀ ε > 0, lim sup
h→0

|
∫

[−R,R]2
(PΠu5h − u5)∂hϕdxdt| ≤ 4R2ε sup

0≤h≤1, (x,t)∈[−R,R]2
|∂hϕ|,

which means as desired ∂hPΠu
5
h ⇀ ∂xu

5 (D′).
We have proved that and u is a solution of (cKdV ). It remains to check is that this solution
has indeed u0 for initial data, that is u ∈ CtL

2, u|t=0 = u0. According to lemma 2 :

lim
h,t→0

PVh(t)Πu0,h = u0 (L2) (see lemma 2),

and we must prove limh,t→0 ‖
∫ t
0 ∂hVh(t − s)Πu5h(s)ds‖L2 = 0. According to the estimates of

section 4, we have

‖
∫ t

0
∂hVh(t− s)ΠEu5h(s)ds‖L2 ≤ ‖u5h‖l1L2([0,t]) = ‖uh‖5l5L10([0,t]).
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Moreover (following the proof of Theorem 6)

‖uh‖l5L10([0,t]) ≤ ‖Vhu0,h‖l5L10([0,t]) + ‖
∫ r

0
∂hVh(r − s)ΠEu5h(s)/5ds‖l5L10([0,t])

≤ ‖Vhu0,h‖l5L10([0,t]) + ‖∂hΠEu5h/5‖l5/4L10/9([0,t])

≤ ‖Vhu0,h‖l5L10([0,t]) + C‖∂huh‖l∞L2‖uh‖4l5L10([0,t])

≤ ‖Vhu0,h‖l5L10([0,t]) +
1

2
‖uh‖l5L10([0,t]),

so that ‖uh‖l5L10([0,t]) ≤ 2‖Vh(s)u0,h‖l5L10([0,t]) and it is sufficient to prove that this last quantity
goes to 0 when h, t → 0. Let ε > 0 be fixed, we introduce v0 ∈ H1 such that ‖u0 − v0‖L2 ≤ ε,
and we set v0,h,n = v0(nh). Classically ‖Pv0,h−v0‖H1 → 0, this implies both ‖v0,h−u0,h‖l2 → 0
and ‖Pv0,h‖H1 ≤ C‖v0‖H1 . We get then, using the continuity of Vh : H1(hZ) → H1(hZ),

‖VhΠu0,h‖l5L10([0,t]) ≤ ‖Vh(Πu0,h − v0,h)‖l5L10([0,t]) + ‖Vhv0,h‖l5L10([0,t])

≤ ‖Vh(Πu0,h − v0,h)‖l5L10([0,t]) + t1/10‖Vhv0,h‖L∞[0,T ]l∞∩l2

. ‖Πu0,h − v0,h)‖l2 + t1/10‖v0‖H1 .

As lim sup
h

‖Πu0,h − v0,h)‖l2 ≤ ε, by chosing h, (then) t small enough we have obtained

∀ ε > 0, ∃t0, h0 > 0 : ∀ ε ≤ t ≤ t0, h ≤ h0, ‖VhΠu0,h‖l5L10([0,t]) ≤ 2ε,

which is the expected convergence.

Remark 9. The convergence of any extracted subsequence to the solution u actually proves
that any sequence Puhn converges to u as hn → 0.

6 Scattering

Scattering of the solutions of the continuous cKdV equation for small initial data has been
known for 20 years [12]. Roughly, it means that the solution of the nonlinear equation asymp-
totically behaves like a solution of the linearized equation. This phenomenon is opposed to the
existence of solitons, which are the canonical example of nonlinear behavior. The mathematical
statement is the following.

Theorem 10. [12, Kenig-Ponce-Vega] Let u(t) be the solution of cKdV with initial data u0
small enough in L2(R). Then w(x) = u0 −

∫∞
0 V (−s)u5(s)/5ds belongs to L2(R) and

‖u(t)− V (t)w‖L2 →t→+∞ 0. (6.1)

Remark 11. A similar result holds for t → −∞, but the functions obtained w, w̃ have no
reason to be equal.
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We check here as a first step that a discrete analog of the theorem above can be formulated,
and then discuss the convergence of the discrete functions wh such that uh ∼t Vh(t)wh to the
continuous function w such that u ∼t V (t)w.

Proposition 12. For ‖u0,h‖l2 satisfying the smallness condition of Theorem 6, we denote uh
the solution of (DcKdV). Then wh = u0,h −

∫∞
0 Vh(−s)Πu5h(s)ds is in l2(Z) and is such that

‖uh(t)− Vh(t)wh‖l2 → 0.

Proof. According to the formula

uh(t) = Vh(t)u0,h −
∫ t

0
∂hVh(t− s)ΠEu5h(s)/5ds = Vh(t)

(
u0,h −

∫ t

0
∂hVh(−s)ΠEu5h(s)/5ds

)
,

it is sufficient to check that
∫ t
0 ∂hVh(−s)ΠEu5h(s)ds converges in l2 as t → ∞, thus to check

that it is a Cauchy sequence. The inequality (2.8) implies

‖
∫ t

T
∂hVh(−s)ΠEu5h(s)ds‖l2 ≤ ‖ΠEu5h‖l1L2([T,∞[) . ‖1t≥Tuh‖5l5L10([T,∞[).

But by dominated convergence we have ‖1t≥Tuh‖l5L10([T,∞[) → 0, we can conclude:

‖uh(t)− Vh(t)wh‖l2 → 0, where wh = v0 +

∫ ∞

0
∂hVh(−s)ΠEu5h(s)ds.

At this point, it should be emphasized that there is no reason for the discrete solution to
behave asymptotically as the continuous one. In fact even in linear settings it is not hard to
see that in general

‖PVh(t)u0,h − V (t)u0‖ 9t→∞,h→0 0.

Thus we may expect at best Pwh → w (or equivalently PVh(−t)uh →t V (−t)u), this is the
purpose of the following proposition.

Proposition 13. Assume that Pu0,h →h u0 L
2 and satisfies the l2 smallness condition of

Theorem 6, then Pwh ⇀h w L2
w.

Proof. According to the previous Proposition,

wh = u0,h −
∫ ∞

0
Vh(−s)∂hΠEu5h(s)/5ds,

the improper integral being seen as a strong limit in l2. Since w = u0 −
∫∞
0 V (−s)∂xu5(s)ds it

is sufficient to check that
∫ ∞

0
PVh(−s)∂hΠu5h(s)ds ⇀h

∫ ∞

0
∂xV (−s)u5(s)ds.
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Note that the convergence in h of
∫ t
0 Vh(−s)ΠEu5h(s)ds for fixed t is actually rather easy but

leaves open the problem of interversion limt limh = limh limt. More directly we shall write

‖
∫ ∞

0
PVh(−s)∂hΠEu5h(s)ds‖L2 ≤ ‖ΠEu5h(s)‖l1L2 ≤ ‖uh‖l5L10 ≤ C,

so that we may extract an L2 weakly converging subsequence. Up to further extraction we
may also assume (see the proof of theorem 8) that Puh → u a.e. . Let ϕ be an L2 function
with compactly supported Fourier transform,

∫

R

∫ ∞

0
P∂hVhΠEu

5
hϕdsdx =

∫

R

∫ T

0
P∂hVhΠEu

5
hϕdsdx+

∫

R

∫ ∞

T
P∂hVhΠEu

5
hϕdsdx.

As a first step, we prove that the limit as T → ∞ of the second term in the above right hand
side is 0 uniformly in h. In what follows we use the fact that the Fourier multiplier Vh(t) is
formally defined by its symbol on l2(hZ) as well as on L2(R), and we have PVh = VhP . Thus
we can write

∫
R

∫∞
T P∂hVh(−t)ΠEu5hϕdtdx =

∫
R

∫∞
T ∂hPΠEu

5
hVh(t)ϕdxdt. Hölder’s inequality

implies

∣∣
∫

R

∫ ∞

T
∂hPΠEu

5
hVh(t)ϕdxdt

∣∣ . ‖∂huh‖l∞L2([T,∞])‖u‖4l5L10([T,∞])‖Vh(t)ϕ‖L5L10([T,∞]).

Now using the fact that ϕ has a Fourier transform compactly supported, for h small enough
we have 1 ‖Vh(t)ϕ‖L5

xL
10
t

. ‖ϕ‖L2 , thus

lim
T

‖Vh(t)ϕ‖L5
xL

10([T,∞] = 0.

This implies our first step: for any ε > 0, there exists T0 > 0, h0 > 0 such that for T ≥
T0, h ≤ h0,

|
∫

R

∫ ∞

T
P∂hVhΠEu

5
hϕdsdx| ≤ ε. (6.2)

We now focus on the convergence of
∫
R

∫ T
0 P∂hVhΠEu

5
hϕdsdx :

∫

R

∫ T

0
P∂hVhΠEu

5
hϕdsdx =

∫

R

∫ T

0
PΠEu5h∂−hVh(−s)ϕdsdx

=

∫

R

∫ T

0
PΠEu5h

(
(V − Vh)∂xϕ+ Vh(∂x + ∂−h)ϕ− V ∂xϕ

)
dsdx.

From the proof of theorem 8, we know that PΠEu5h ⇀ u5 (D′(R2)), and thus weakly in L1
xL

2
t

since it is bounded in that space: indeed by uniqueness of the distributional limit any extracted

1 This fact may be seen as a simple corollary of the dispersive estimates proved previously: suppϕ̂ ⊂

[−C,C] ⇒ ϕ̂ = ϕ̂1[−π/6h,π/6h] for h small enough. It is thus supported away from the “bad” points
±2π/(3h), ξ0, ξ1.
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subsequence converging weakly in L1L2 has limit u5. As a consequence

∫

R

∫ T

0
PΠEu5hV (s)∂xϕdsdx→

∫

R

∫ T

0
u5V (s)∂xϕdsdx = −

∫

R

∫ T

0
∂xV (−s)u5 ϕdsdx.

Moreover for fixed T , one easily sees that sups∈[0,T ] ‖(V − Vh)(−s)∂xϕ‖H1
x
→ 0 (it is a simple

consequence of the convergence ph → ξ3 and the fast decrease of ϕ̂). Thus

‖(V − Vh)(−s)∂xϕ‖L∞
x L2

T
→ 0, and ‖(∂x + ∂−h)ϕ‖H1 → 0,

so that ‖Vh(∂x + ∂−h)ϕ‖L∞
x L2

T
→ 0, and we finally get

∫

R

∫ T

0
P∂hVh(−s)ΠEu5hϕdsdx→

∫

R

∫ T

0
u5∂xV (s)ϕdsdx = −

∫

R

∫ T

0
∂xV (−s)u5ϕdsdx.

(6.3)
Using (6.2), (6.3) we find that for any ε > 0, there exists h0 small enough such that for h ≤ h0:

|
∫

R

∫ ∞

0
P∂hVhΠEu

5
hϕdsdx−

∫

R

∫ ∞

0
∂xV u

5ϕdsdx| ≤
∣∣∣∣
∫

R

∫ ∞

T
P∂hVhΠEu

5
hϕdsdx

∣∣∣∣

+

∣∣∣∣
∫

R

∫ T

0
(P∂hVhΠEu

5
h − ∂xV u

5)ϕdsdx

∣∣∣∣ +

∣∣∣∣
∫

R

∫ ∞

T
∂xV u

5ϕdsdx

∣∣∣∣
≤ 3ε.

We have proved that for any ϕ with compactly supported Fourier transform,
∫

R

∫ ∞

0
P∂hVhΠEu

5
hϕdsdx→

∫

R

∫ ∞

0
∂xV u

5ϕdsdx.

But the density of these functions in L2 implies the uniqueness of the weak L2 limit of uh (if
it exists), and the L2 boundedness of

∫∞
0 P∂hVhΠu

5
hdt gives its existence by weak compacity.

7 Rates of convergence

Since the previous sections were only devoted to the critical case, it is very unlikely that any
rate of convergence may be obtained for L2 initial data . However if u0 ∈ Hs, s > 0 the
problem becomes subcritical and more quantitative estimates are expected. We first define
discrete initial data converging to the continuous one in the following way. Let Th be defined
as

Th : L2 → l2(hZ),

(Thu)n =
1

2π

∫ π/h

−π/h
ûeinhξdξ,
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here we use for the usual Fourier transform the same notation ·̂ as for the discrete one. If u0 is
the initial continuous data, we simply set u0,h = Thu0. By dominated convergence, it can be
seen (though it is not absolutely obvious) that for any f ∈ L2, ‖PThf − f‖L2 → 0, and more
precisely ‖PThf − f‖L2 . hs‖f‖Hs . For this reason we will only study the convergence to 0
of uh − Thu rather than Puh − u. Note that the operator Th is particularly convenient since
̂V (t)Thu0|[−π/h,π/h] = eitξ

3
û0|[−π/h,π/h] = ̂ThV (t)u0|[−π/h,π/h]. Consequently - as in previous

section - in what follows we will abusively write V (t) for both multipliers of symbol eitξ
3
acting

on L2(R) and l2(hZ).
Convergence rates were obtained for the (subcritical) nonlinear Schrödinger equation in [5]
by using “discrete Littlewood-Paley analysis“. Our case is slightly more complicated, for
essentially three reasons; critical regularity, lack of ”choice“ for the Strichartz estimates, and
the nonlinearity involving derivatives.
The section is divided in two parts. The first one establishes a list of linear estimates with rates
of convergence. Unfortunately this list is not sufficient to obtain actual rates of convergence on
Thu−uh but we prove such results for a simpler semi-linear problem. Though it is not entirely
satisfactory we believe that the result and the technics used are interesting by themselves.

7.1 Linear estimates

As a warm up, we first treat the control of ‖ThV (t)u0 − Vh(t)ΠThu0‖l2 , which is quite simple
but gives a good idea of the technics used in this subsection.

Proposition 14. Let Π be an interpolator as in theorem 6, of symbol m such that m(0) = 1.
For u0 ∈ L2, we have the homogeneous estimate

‖V (t)Thu0 − Vh(t)ThΠTNhu0‖L∞([0,T ];l2) ≤ Ch2s/5‖u0‖Hs(R). (7.1)

The constant C only depends on p and Π.

Proof. First we note that the scheme is of order 2 in the sense that

ξ3 − ph = ξ3 − 4 sin2(ξh/2) sin(ξh)

h3
= O(h2ξ5) (by Taylor expansion). (7.2)

Using the inequality
∀ 0 ≤ α ≤ 1, a, b ≥ 0, min(a, b) ≤ aαb1−α, (7.3)

we have ∣∣eitph − eitξ
3∣∣ .

∣∣th2ξ5
∣∣α. (7.4)

We split the left hand side of (7.1) as follows

‖V (t)Thu0 − Vh(t)ΠTNhu0‖L∞([0,T ];l2) ≤ ‖V (t)ΠTNhu0 − Vh(t)ΠTNhu0‖L∞([0,T ];l2)

+‖V (t)(Th −ΠTNh)u0‖L∞([0,T ];l2)

= N1 +N2.
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N1 is estimated thanks to (7.4) :

N2
1 . h4s/5T 2s/5

∫

R

|ξ|2s|ΠT̂Nhu0|2dξ . h4s/5‖u0‖2Hs . (7.5)

On the other hand if we denote by m the symbol of Π

N2
2 ≤ ‖(Th −ΠTNh)u0‖l2) =

∫ π/h

−π/h
|û0 −m(hξ)ũ0(ξ)|2dξ,

where ũ0 is the 2π/Nh periodic function such that ũ0|[−π/Nh,π/Nh] = û0. But since m is
bounded and m(0) = 1, |m(hξ)− 1| . hs|ξ|s. We also remind (see Remark 3) that m satisfies
m(2kπξ/N) = 0, 1 ≤ k ≤ N − 1, thus m(2kπ/N + hξ) = O(hs|ξ|s). This gives

∫ π/h

−π/h
|û0 −m(hξ)ũ0(ξ)|2dξ =

∫ π/Nh

−π/Nh
|û0 −m(hξ)û0(ξ)|2dξ

+

∫

π/Nh≤|ξ|≤π/h
|û0 −m(hξ)ũ0(ξ)|2dξ

.

∫ π/h

−π/h
h|ξ|2|û0|2dξ +

N−1∑

k=1

∫ (2k+1)π/Nh

(2k−1)π/Nh
|m(hξ)|û0(ξ)|2dξ.

. h2s
∫ π/Nh

−π/Nh
|ξ|2s|û0|2dξ + h2s

∫ π/h

−π/h
|ξ|2s|û0|2dξ

≤ 2h2s‖u0‖2Hs . (7.6)

Summing (7.5), (7.6) we get

‖V (t)Thu0 − Vh(t)ΠTNhu0‖L∞([0,T ];l2) ≤ C(1 + T s/5)(h2s/5 + hs/2)‖u0‖Hs . h2s/5‖u0‖Hs .

Proposition 15. Under the same assumptions as Prop. 14, and for any g ∈ l4/3L1
T ,

‖|D|−1/4
(
V (t)Thu0 − Vh(t)ΠTNh

)
u0‖l4L∞([0,T ]) ≤ C(T )h2s/5‖u0‖Hs(R), (7.7)

‖|D|−1/2

∫ t

0
(V (t− s)g − Vh(t− s))ΠTNhg‖l4L∞

T
≤ C(T )h2s/5‖|D|sΠTNhg‖l4/3L1([0,T ]). (7.8)

Proof. As in the proof of Prop 14, we write

‖ |D|−1/4(V (t)Thu0 − Vh(t)ΠTNhu0)‖l4L∞([0,T ]) ≤ ‖ |D|−1/4(V − Vh)ΠTNhu0‖l4L∞ (7.9)

+ ‖ |D|−1/4V (Th −ΠTNh)u0‖l4L∞ .(7.10)
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We have directly using (7.6)

‖|D|−1/4V (t)(Th −ΠTNh)u0‖l4L∞([0,T ]) . ‖(Th −ΠTNh)u0‖l2 . hs‖u0‖Hs ,

so that it suffices to prove the (more precise) estimate

‖V (t)ΠTNhu0 − Vh(t)ΠTNhu0‖l4L∞([0,T ]) . h2s/5(1 + T )s/5‖ |Dx|sΠTNhu0‖L2 . (7.11)

A careful look at the proof of Prop 4 shows that it amounts to the estimate

∣∣∣∣
∫ π/h

−π/h
ψh
eitph(η) − eitη

3

|η|1/2+s
eijhηdη

∣∣∣∣ ≤ C
h2s/5(1 + T )s/5

(h(1 + |j|))1/2 , (7.12)

where ψh is the symbol of Π and cancels at ±2π/(3h), ξ0/h, ξ1/h. Since (7.12) also implies
by the duality argument of Prop 4 the estimate (7.8), the rest of the proof is devoted to its
derivation. Set τ = t/h3, after the change of variable η = ξ/h, (7.11) is equivalent to

∣∣∣∣
∫ π

−π
ψ(ξ)

eiτp(ξ) − eiτξ
3

|ξ|1/2+s
eijξdξ

∣∣∣∣ ≤ C
τ s/5

(1 + |j|)1/2 .

By parity, we may may reduce it to

∣∣∣∣
∫ π

0
ψ(ξ)

eiτp(ξ) − eiτξ
3

|ξ|1/2+s
eijξdξ

∣∣∣∣ ≤ C
τ s/5

(1 + |j|)1/2 .

The proof of this estimate is rather delicate, in fact it follows the proof of Prop 4 with some
non trivial modifications. Since a lot of quantities which will appear are estimated by similar
technics, we will often skip details.
We will use repeatedly the fact that ξ lies in a bounded set, thus the inequality |p− ξ3| . |ξ|5
implies |p− ξ3| . |ξ|r for 0 ≤ r ≤ 5. Similarly |eiτp − eiτξ

3 | ≤ |τξ5|r for 0 ≤ r ≤ 1. First note
that for j = 0 the result is trivial since

∣∣∣∣
∫ π

0
ψ(ξ)

eiτp(ξ) − eiτξ
3

|ξ|1/2+s
eijξdξ

∣∣∣∣ .
∫ π

0

τ s/5|ξ|s
|ξ|1/2+s

dξ . τ s/5.

We split [0, π] as

A1 = [0, τ−1/3] ∩ [0, π],

A2 = Ac
1 ∩ {min(|3τξ2 + j|, |τp′(ξ) + j|) ≥ |j|/2},

A3 = (A1 ∪A2)
c.

Let us fix C large enough such that

τ−1/3 ≥ C/|j| ⇒ ∀ ξ ∈ [0, τ−1/3], min(|j + 3τξ2|, |j + τp′|) ≥ |j|/2. (7.13)
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If τ−1/3 ≤ C/|j|
∣∣∣∣
∫

A1

ψ(ξ)
eiτp(ξ) − eiτξ

3

|ξ|1/2+s
eijhξdξ

∣∣∣∣ ≤
∫ C/|j|

0

τ s/5

|ξ|1/2 dξ .
τ s/5

|j|1/2 ,

and the estimate on A1 is complete. Else
∣∣∣∣
∫

A1

ψ(ξ)
eiτp(ξ) − eiτξ

3

|ξ|1/2+s
eijξdξ

∣∣∣∣ ≤
∣∣∣∣
∫ C/|j|

0
ψ(ξ)

eiτp(ξ) − eiτξ
3

|ξ|1/2+s
eijξdξ

∣∣∣∣

+

∣∣∣∣
∫

C/|j|≤ξ≤τ−1/3
ψ(ξ)

eiτp(ξ) − eiτξ
3

|ξ|1/2+s
eijξdξ

∣∣∣∣

.

∣∣∣∣
∫

C/|j|≤ξ≤τ−1/3

ψ(ξ)
eit/h

3p(ξ) − eit/h
3ξ3

|ξ|1/2+s
eijξdξ

∣∣∣∣

+
τ s/5

|j|1/2 .

On C/|j| ≤ ξ ≤ τ−1/3, an integration by part gives

∫ τ−1/3

C/|j|
ψ(ξ)

eiτp(ξ) − eiτξ
3

|ξ|1/2+s
eijξdξ =

eijτ
−1/3

ψ(τ−1/3)

|τ−1/3|1/2+s

(
eiτ

3p(τ−1/3)

j + τp′(τ−1/3)
− ei

j + 3τ1/3

)

− j1/2+sψ(C/|j|)eisgn(j)
(

eiτp(C/|j|)

j + τp′(C/|j|) −
eiτ(C/j)3

j + 3C2τ
j2

)

+

∫ τ−1/3

C/|j|
eiτξ

3

(
ψ

(j + 3τξ2)|ξ|1/2+s

)′
dξ

−
∫ τ−1/3

C/|j|
eiτp

(
ψ

(j + τp′)|ξ|1/2+s

)′
dξ.

Remind that τ satisfies (7.13). The first term is estimated using

eiτp(τ
−1/3) − eiτ(τ

−1/3)3 = O(τ−2/3), 3τ−2/3 − p′(τ−1/3) = O(τ−4/3),

which gives
∣∣∣∣τ (1/2+s)/3

(
eiτp(τ

−1/3)

j + τp′(τ−1/3)
− ei

j + 3τ1/3

)∣∣∣∣ =
∣∣∣∣τ1/3(1/2+s)

(
eiτp(τ

−1/3)

j + τp′(τ−1/3)
− ei

j + 3τ1/3

)∣∣∣∣

= τ (1/2+s)/3 e
iτp(τ−1/3)(j + 3τ1/3)− ei(j + τp′(τ−1/3))

(j + τp′(τ−1/3)(j + 3τ−1/3)

= τ (1/2+s)/3

∣∣∣∣
j(eiτp − ei) + τ1/3

(
3eiτp − 3ei + 3ei − τ2/3p′ei

)

(j + τp′)(j + 3τ−1/3)

∣∣∣∣

. τ (1/2+s)/3 |jτ−2s/15|
j2

. .
τ s/5√
j
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The estimate for the second term is similar, we give details for two of the remaining integral
terms involved:

∣∣∣∣
∫ τ−1/3

C/|j|
eiτξ

3 6τξψ(ξ)

(j + 3τξ2)2ξ1/2+s)
− eiτp

τp′′(ξ)ψ(ξ)

(j + τp′(ξ))ξ1/2+s
dξ

∣∣∣∣

.

∫ τ−1/3

C/|j|

τ |p′′ − 6ξ|
j2ξ1/2+s

dξ +

∫ τ−1/3

C/|j|

τ |p′′|
ξ1/2+s

∣∣∣∣
1

(j + τp′)2
− 1

(j + 3τξ2)2

∣∣∣∣

.

∫ τ−1/3

C/|j|

τ s/5ξ1+2s/5

j2ξ7/2+2s/5
dξ +

∫ τ−1/3

C/|j|

τ |p′′|
ξ1/2+sj4

∣∣∣∣2jτ(3ξ2 − p′(ξ)) + 9ξ4τ2 − (p′)2τ2
∣∣∣∣

.
τ s/5√
|j|

+

∫ τ−1/3

C/|j|

τ |ξ|
ξ1/2+sj4

(
|2jτξ2+2s/5|+ τ2ξ4+2s/5

)
dξ

.
τ s/5√
|j|

+

∫ τ−1/3

C/|j|

τ s/5

ξ3+1/2|j|3 +
τ s/5

ξ4+1/2j4
)dξ

.
τ s/5√
|j|
.

The analysis on A2 is similar (and in fact simpler) so we skip it and prove the estimate for the
integral on A3 = {|τ−1/3| ≤ |ξ| ≤ π} ∩ {min(|j + 3τ |ξ|2|, |j + τp′(ξ)|) ≤ |j|/2}.
Since 1/ξ1/2+s is a smooth function away from 0, for any fixed ε > 0 we may directly carry
the proof of proposition 4 to obtain

∣∣∣∣
∫

A3∩{ξ≥ε}
ψ(ξ)

eiτp(ξ) − eiτξ
3

|ξ|1/2+s
eijξdξ

∣∣∣∣ ≤
C(ε)

|j|1/2 ≤ C(ε)(1 + τ)s/5

|j|1/2 .

Thus we only have to treat the integral on A4 := A3 ∩ {ξ ≤ ε}, and in particular if ε is small
enough we may assume the following

• for ξ ∈ A4, |ξ| ≍
√

|j|/τ ≪ 1,

• A4 is an interval of measure dominated by
√

|j|/τ ,

• The equation j + τp′(ξ) = 0 has an unique root ξ2 such that ξ2 ≍
√

−j/τ .

We define f(ξ) = eijξ(eiτξ
3 − eiτp(ξ)). Let ξ1, be the positive solution of j + 3τξ2 = 0. Clearly

ξ1 ≤ ξ2 and we define F (ξ) =
∫ ξ
ξ1
f(η)dη. An integration by parts gives

∣∣∣∣
∫

A4

f(ξ)
ψ(ξ)

ξ1/2+s
dξ

∣∣∣∣ ≤
∣∣∣∣
[
F

ψ

ξ1/2+s

]maxA4

minA4

∣∣∣∣+
∣∣∣∣
∫

A4

F (ξ)

(
ψ′

ξ1/2+s
− (1/2 + s)ψ

ξ3/2+s

)
dξ

∣∣∣∣

. ‖F‖L∞(A4)‖ξ−1/2−s‖L∞(A4)

. ‖F‖L∞(τ/|j|)1/4+s/2.
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In view of the above inequality, we are reduced to prove ‖F‖∞ .
|j|s/2τ−3s/10

|jτ |1/4 . Firstly, by

application of the Van der Corput lemma :

‖F‖L∞(A4) .
1√

τ infA4 min(p′′, 6ξ)
.

1

|jτ |1/4 ,

which rules out the case |j|s/2τ−3s/10 ≥ 1. Moreover if τ ≥ |j|3 we have A4 ⊂ A1 thus we can
assume without loss of generality

|j|3 ≥ τ ≥ |j|5/3. (7.14)

We will repeatedly use that for ξ ≍
√

|j|/τ |, 0 ≤ α ≤ 1/2,

|f(ξ)| . |τξ5|2α . |j|5ατ−3α. (7.15)

A basic asymptotic development shows that |ξ2 − ξ1| = O(
√

|j|/τ 3) = O(1/|j|) thus (7.15)
implies

|
∫ ξ2

ξ1

fdη| . |j|s/2+5/12τ−3s/10−1/4

|j| ≤ |j|s/2τ−3s/10

(|j|τ)1/4 .

It remains to prove

∀ ξ ∈ A4, ξ ≥ ξ2,

∣∣∣∣
∫ ξ

ξ2

fdη

∣∣∣∣ ≤
|j|s/2τ−3s/10

|jτ |1/4 , (7.16)

∀ ξ ∈ A4, ξ ≤ ξ1,

∣∣∣∣
∫ ξ

ξ1

fdη

∣∣∣∣ ≤
|j|s/2τ−3s/10

|jτ |1/4 , (7.17)

We detail the estimate (7.16), the other is similar : let us set δ = |jτ |−1/4 (≤
√

|j|/τ by (7.14)),
and split

|
∫ ξ

ξ2

f(η)dη| ≤
∣∣
∫ ξ2+δ

ξ2

f(η)dη
∣∣+

∣∣
∫ ξ

ξ2+δ
f(η)dη

∣∣

.
τ−3s/5|j|s/2

|jτ |1/4 +

∣∣∣∣
[
eiτη

3+ijξ

j + 3τη2
− eiτp+ijξ

j + τp′

]ξ

ξ2+δ

∣∣∣∣

+

∣∣∣∣
∫ ξ

ξ2+δ

eiτη
3+ijξ6τη

(j + 3τη2)2
− eiτp+ijξτp′′

(j + τp′)2
dη

∣∣∣∣

After a few basic calculations, we are reduced to estimate a (large) number of terms which are
all similar to one of the following :

eiτ(ξ2+δ)3τ
p′(ξ2 + δ) − 3(ξ2 + δ)2

(j + 3τ(ξ2 + δ)2)2
,
eiτ(ξ2+δ)3 − eiτp(ξ2+δ)

j + 3τ(ξ2 + δ)2
,

∫ ξ

ξ2+δ
eiτη

3+ijητ
p′′(η)− 6η

(j + 3τη2)2
dη.
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On A4, |ξ| ≍
√

|j|/τ , thus |j +3τξ2| ≍ |ξ − ξ1|
√

|j|τ . Combining this with (7.14) gives for the
first term
∣∣∣∣eiτ(ξ2+δ)3τ

p′(ξ2 + δ)− 3(ξ2 + δ)2

(j + 3τ(ξ2 + δ)2)2

∣∣∣∣ .
τ |ξ2 + δ|3

(
√

|jτ ||ξ2 + δ − ξ1|)2
.

√
τ

|j|

√
|j|
τ

3

=
|j|s/2τ−3s/10

|jτ |1/4
|j|3/2−1/4−s/2

τ3/4−3s/10

.
|j|s/2τ−3s/10

|jτ |1/4 .

The second term is simpler, indeed |j + 3τ(ξ2 + δ)2| & |jτ |1/4 thus (7.15) with α = s/10 gives
∣∣∣∣
eiτ(ξ2+δ)3 − eiτp(ξ2+δ)

j + 3τ(ξ2 + δ)2

∣∣∣∣ .
|j|s/2τ−3s/10

|jτ |1/4 .

Finally the third term is estimated like the first one :

∣∣∣∣
∫ ξ

ξ2+δ
eiτη

3+ijητ
p′′(η) − 6η

(j + 3τη2)2
dη

∣∣∣∣ .
τ(|j|/τ)3/2
(
√
jτδ)2

=

√
τ

|j|

√
|j|
τ

3

.
|j|s/2τ−3s/10

|jτ |1/4 .

This ends the proof of (7.16).

Remark 16. So far in every estimates one looses s derivatives to gain a rate in h2s/5. This is
probably optimal since it has the scaling of the inequality |p− ph| ≤ Ch2|ξ|5. To the contrary,
the l5L10 estimate will not be optimal, this is due to the fact that it is obtained via the
interpolation of the estimates above with the dispersive smoothing results of section 2.
Nevertheless, it should be noticed that without dispersive estimates, one may only obtain for
example

‖
(
V (t)− Vh(t)

)
∂h∆jΠTNhu0‖l∞L2

T
≤ h2s/52j(s+3/2)‖∆jΠTNhu0‖l2 ,

this would lead to estimates involving h2s/5‖u0‖H3/2+s putting low regularity results out of
reach.

Using the interpolation argument of [13] prop. 7.4 (as for the Corollary 2 ) we have the
following.

Proposition 17. Let u0 ∈ L2(R), g ∈ l5/4(hZ; L
10/9
T ), we have the following estimates

‖V (t)Thu0 − Vh(t)ΠTNhu0‖l5L10
T

≤ C(T )h8s/25‖u0‖Hs(R), (7.18)

‖
∫ t

0
V (t− s)g − Vh(t− s)ΠTNhg‖l5L10

T
≤ C(T )h8s/25‖|D|sThg‖l5/4L10/9(([0,T ]). (7.19)

Remark 18. The exponent 8/25 comes from the weights in the interpolation, which are respec-
tively 4/5 for inequality (7.7) and 1/5 for inequality (2.3).

More dispersive estimates with rates (not useful for the next subsection) are given in
Appendix B.
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7.2 A simpler problem

Though we did not manage to collect enough dispersive estimates in order to obtain rates of
convergence for the approximation of the cKdV problem, we will describe for a simpler problem
how these estimates may be succesfully used. Let us consider the semi-linear equation

{
∂tu+ ∂3xu+ f(u) = 0,
u|t=0 = u0 ∈ L2,

(7.20)

where f(u) = u|u|3/2. It is quite clear that the existence of an L2 solution may not be ob-
tained by basic semigroup methods, however using‖V (t)u‖L5

xL
10
t

. ‖u0‖L2 and its homogeneous
counterpart, we can solve the equation

Tu = u where Tu(t) = V (t)u0 −
∫ t

0
V (t− s)f(u)(s)ds

by a fixed point argument for small times or small initial data. Indeed

‖Tu‖L2
x
≤ ‖u0‖L2 + ‖V (t− ·)f(u)‖L2

xL
1
t
≤ ‖u0‖L2 + t1/2‖V (t− ·)f(u)‖L2

xL
2
t

≤ ‖u0‖L2 + t1/2‖f(u)‖L2
xL

2
t

≤ ‖u0‖L2 + t1/2‖u‖5/2
L5
xL

5
t

≤ ‖u0‖L2 + t3/4‖u‖5/2
L5
xL

10
t
,

similarly

‖Tu‖L5
xL

10
t

≤ ‖u0‖L2 + ‖u‖5/2
L
25/8
x L

25/9
t

≤ ‖u0‖L2 + t1/10‖u‖5/2
L
25/8
x,t

. ‖u0‖L2 + t1/10(‖u‖5/2
L
25/8
t L2

x

+ ‖u‖5/2
L
25/8
t L5

x

)

≤ ‖u0‖L2 + t13/20‖u‖5/2
L5
xL

10
t
+ t9/10‖u‖5/2

L∞
t L2

x
.

For t small enough (or small initial data), these estimates are sufficient to apply the Picard-
Banach fixed point theorem in the space XT = L∞

T L
2
x ∩ L5

xL
10
T , which implies existence and

uniqueness of a solution in this space.
We focus now on the derivation of rates of convergence. We define as for (cKdV ) the semi-
discrete approximation scheme

{
d

dt
un +

un+2 − 2un+1 + 2un−1 − un−2

h3
+ (ΠENhf(uh))n = 0,

uh|t=0 = ΠTNhu0,
(7.21)

Using the discrete version of XT , Xh,T = L∞
T l

2
x ∩ l5xL10

T , it can be proved as for the continuous
problem that for T small enough there exists an unique solution uh of this problem admitting
bounds in Xh,T independent of h. The following theorem establishes a precise convergence of
uh to u as h→ 0.
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Theorem 19. Let u be the solution of (7.20) and uh the solution of (7.21). For T small
enough and 0 < s ≤ 1

‖uh − Thu‖Xh,T
. h8s/25( ‖u‖XT

+ ‖|D|su‖X,T + ‖u‖5/2XT
+ ‖|D|su‖5/2XT

). (7.22)

The W s,p spaces are defined here as the usual Bessel potential spaces, namely

{f : F−1
(
(1 + |ξ|)sf̂

)
∈ Lp}.

For the proof of the theorem we will need several technical properties on fractional derivation
and Fourier multipliers:

• Fractional chain rule : for any α ∈ (0, 1), p, p1, p2 such that 1
p = 1

p1
+ 1

p2
, for F differen-

tiable ‖|D|αF (f)‖Lp ≤ C‖F ′(f)‖Lp1‖|D|αf‖Lp2 (see [1] section 3 for a proof).

• The lp norm of Thf is equivalent to the Lp norm of F−1(χ[−π/h,π/h]f̂), independently of
h (see Lemma 2.1 in [5], referring itself to the classical article [15], we include a sketch
of proof for the estimate ‖F−1Thf‖Lp ≤ ‖Thf‖lp in the appendix).

• We have for any 1 < p <∞,

‖Thf −ΠTNhf‖lp ≤ Chs‖|D|sf‖Lp(R). (7.23)

This is proved for a slightly less general Π in [5] in the end of the proof of Theorem 4.2. It
relies on their Lemma 2.1 combined with a Marcinkiewicz multiplier theorem (that they
state in appendix). The main ingredient is that the symbol of Th −ΠTNh is bounded by
hs|ξ|s.

• For s ∈ (0, 1), there exists C > 0 independent of h such that

‖f(Thu)− Thf(u)‖l2 ≤ Chs‖u‖5/2
W s,5 , ‖f(Thu)− Thf(u)‖l5/4 ≤ Chs‖u‖5/2

W s,25/8 , (7.24)

again, the proof is given in [5], Lemma 5.2, for integration exponents different of (2, 5),
but the proof can be adapted without significant modifications.

Proof. We begin by writing the difference as

uh − Thu = V (t)Thu0 − Vh(t)ΠTNhu0 −
∫ t

0
V (t− s)Thf(u)(s)− Vh(t− s)ΠEf(uh)(s)ds.

The linear term is directly controlled by applying inequalities (7.18) and (7.1) :

‖V (t)Thu0 − Vh(t)ΠTNhu0‖Xh,T
≤ C(T )h8s/25‖u0‖Hs(R).
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We split the non-linear term as follows :

∫ t

0
V (t− s)Thf(u)(s)− Vh(t− s)Πf(uh)(s)ds =

∫ t

0
V (t− s)(Thf(u)−ΠTNhf(u))

+(V − Vh)ΠTNhf(u) + VhΠ(TNh −ETh)f(u) + VhΠE(Thf(u)− f(uh))ds

= I1 + I2 + I3 + I4.

Since most of the estimates are obtained in very similar ways, we will only detail how to deal
with I1 and I4. The L2 bound for I1 is obtained by using (7.6) and the fractional chain rule
with p1 = 10/3, p2 = 5:

‖
∫ t

0
V (t− s)(Thf(u)−ΠTNhf(u))ds‖L2 . t1/2‖Thf(u)−ΠTNhf(u))ds‖L2

T l2

. hs‖|D|sf(u)‖L2
TL2

x

. hs‖u‖3/2
L5
xL

10
T
‖|D|su‖L5

xL
10
T
.

For the l5L10
T bound, we use the estimate (7.23) to get

‖
∫ t

0
V (t− s)(Thf(u)−ΠTNhf(u))ds‖l5L10 . ‖Thf(u)−ΠTNhf(u)‖L5/4l5/4

. hs‖|D|sf(u)‖
L
5/4
t L

5/4
x
,

and using again the chain rule with p1 = 10/3, p2 = 2 we find

‖
∫ t

0
V (t− s)(Thf(u)−ΠTNhf(u))ds‖l5L10 . hs‖ ‖u‖3/2

L5
x
‖|D|su‖L2

x
‖
L
5/4
t

. ‖u‖3L5
xL

10
T
+ ‖u‖2L∞

T Hs
x
.

For I4, we have using (7.24)

‖
∫ t

0
VhΠE(Thf(u)− f(uh))ds‖l2 . ‖Thf(u)− f(Thu)‖L1([0,T ];l2) + ‖f(Thu)− f(uh)‖L1l2

. hs‖u‖5/2
L1
TW s,5 + ‖f(Thu)− f(uh)‖L1

T l2 .

Since ‖f(Thu) − f(uh)‖L1
T l2 . ‖Thu − uh‖L2l5(‖Thu‖3/2L3l5

+ ‖uh‖3/2L3l5
), using again Hölder’s

inequality in time, this term can be absorbed (for T small enough independent of h) in the left
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hand side. The l5L10 norm of I4 is dealt with in the same way:

‖
∫ t

0
VhΠE(Thf(u)− f(uh))ds‖l5L10 . ‖Thf(u)− f(uh‖L5/4l5/4

. ‖Thf(u)− f(Thu)‖L5/4l5/4 + t1/10‖f(Thu)− f(uh)‖L5/4l5/4

. hs(‖|D|su‖5/2
l5L10 + ‖u‖5/2

l5L10 + ‖u‖L∞Hs)

+t1/10‖Thu− uh‖L25/8l25/8(‖u‖L25/8 l25/8 + ‖uh‖L25/8l25/8)

. hs(‖|D|su‖5/2
l5L10

T
+ ‖u‖5/2

l5L10
T
+ ‖u‖L∞

T Hs)

+T 13/20‖Thu− uh‖XT
(‖uh‖Xh,T

+ ‖u‖XT
),

(in this chain of inequality we implicitly used the continuity of Th : Lp → lp before interversion
of time and space integration). For T small enough the second term of the right hand side can
be absorbed in the left hand side as in the proof of existence for the problem (7.20). Gluing
all the estimates we have obtained

‖Thu− uh‖l5L10
T ∩L∞

T l2 ≤ Ch8s/25(‖u‖L∞
T Hs + ‖u‖l5L10

T
+ ‖|D|su‖l5L10

T

+‖u‖5/2L∞
T Hs + ‖u‖5/2

l5L10
T
+ ‖|D|su‖5/2

l5L10
T
).

Remark 20. By continuity of u with respect to the initial data, the estimate (7.22) could also
be stated as

‖uh − Thu‖Xh,T
. h8s/25‖u0‖Hs .

Some open questions and perspectives

• The existence of rates of convergence for the approximation of the quasi-linear cKdV
equation is still open. Basically one would need to obtain rates for every linear dispersive
estimates, but the time-space integration may open some other difficulties,

• The schemes studied here are only semi-discrete, it is essential to introduce time dis-
cretization that do not break the dispersive estimates (this was done for NLS in [4]), and
it would be of particular interest to compare them with more standard schemes when
the initial data are sufficiently rough (only in Hs for s < 3/2),

• The construction of dispersive schemes that do not rely in some way on the Fourier
transform seems so far way beyond reach.
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A Standard results of harmonic analysis

This section is devoted to some results of standard Fourier analysis that are maybe less known
in discrete settings. The proofs are elementary adaptations from the ones in continuous settings
and we include them only for completeness.

Definition 1. We define the (discrete) maximal function of a sequence u as

(Mu)n = sup
k

1

2k + 1

n+k∑

j=n−k

|uj |. (A.1)

The weak space l1w(hZ) is the set of sequences such that ∃ C > 0 : |{k : |uk| > α}| ≤ C/α.
Here |A| is h times the cardinal of A.

Proposition 21. The maximal function satisfies the following properties:

• for u ∈ l1(hZ), α > 0,
|{k : (Mu)k > α}| . ‖u‖1/α.

(i.e. M is continuous from l1 → l1w).

• For p > 1, M is continuous lp → lp.

Proof. The second point is obvious for p = ∞. If the first point is proved, the general case for
the second point is implied by the Marcinkiewicz interpolation theorem.
Thus we focus on the first point: fix N ∈ N∗, Aα,N = {|k| ≤ N : (Mu)k > α}. For k ∈ Aα,N ,
there exists nk such that

1

2nk + 1

k+nk∑

k−nk

|uk| > α

The set ∪k∈Aα,N
[k − nk, k + nk] contains Aα,N , from Vitali’s covering lemma there exists a

subset Ã of Aα,N such that ∪k∈Ã[k− 3nk, k+3nk] ⊃ Aα,N and the [k−nk, k+nk] are disjoint.
Therefore:

|Aα,N | ≤ 3h
∑

k∈Ã

2nk + 1 ≤ 3h
∑

k∈Ã

k+nk∑

k−nk

|uk|
α

≤ 3
‖u‖l1(hZ)

α
.

The estimate being uniform in N , this directly implies by letting N → ∞

|{k : (Mu)k ≤ α}| = |Aα,∞| .
‖u‖l1(hZ)

α
,

which is the continuity of M : l1 7→ l1w.
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Proposition 22. (discrete Hardy-Littlewood-Sobolev with parameter)
Let u ∈ lp(hZ), 1 < p < q <∞, 0 < γ < 1 where

1

q
=

1

p
− 1 + γ. (A.2)

We set
u ∗h v := h

∑

Z

un−kvk. (A.3)

If |v| ≤ C(
h(1 + |k|)

)γ , then (ũn) ∈ lq(hZ) with ‖ũ‖lq . C‖u‖lp .

Proof. We first reduce the proof to the case h = 1: we write ‖u‖p
lph

= h
∑ |un|p, while ‖u‖lp =∑

|un|p. With those notations, and if the result is proved for h = 1

‖u ∗h v‖qlq = h
∑

n

|h
∑

k

un−kvk|q = hq+1‖u ∗ v‖qlq ≤ hq+1‖u‖qlpCq/hγq

= Cqhq+1‖u‖q
lph
h−(γq+q/p)

= Cq‖u‖q
lph
.

Since |∑ un−kvk| ≤ C
∑ |un−k|/(1 + |k|)γ , we may assume un ≥ 0, vn = 1/(1 + |n|)γ .

Let us write for N ∈ N arbitrary

∑

Z

un−k
1

(1 + |k|)γ =
∑

|k|≤N

un−k
1

(1 + |k|)γ +
∑

|k|>N

un−k
1

(1 + |k|)γ .

The second term is bounded thanks to the Hölder inequality

∑

|k|>N

un−k
1

(1 + |k|)γ ≤ ‖u‖lp
( ∑

|k|>N

1

(1 + |k|)γp′
)1/p′

. ‖u‖lpN1/p′−γ .

For the first term, set





αj =
1

(1 + j)γ
− 1

(2 + j)γ
, 0 ≤ j < N

αN =
1

(1 +N)γ
.
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One has

∑

|k|≤N

un−k
1

(1 + |k|)γ =
∑

|k|≤N

N∑

j=|k|
un−kαj

=
N∑

j=0

∑

|k|≤j

αjun−k

≤
N∑

j=0

αj(2j + 1)(Mu)n

= (Mu)n

N∑

j=0

∑

|k|≤n

αj

= (Mu)n
∑

|k|≤N

N∑

j=|k|
αj = (Mu)n

1

(1 + |k|)γ . (Mu)nN
1−γ .

Thus
|ũn| . N1/p′−γ‖u‖lp +N1−γ(Mu)n, (A.4)

we optimize in N by chosing N1/p′−γ‖u‖lp ∼ N1−γ(Mu)n, which gives

N =

⌊( ‖u‖lp
(Mu)n

)p⌋
, where ⌊·⌋ denotes the integer part.

Note that (Mu)n ≤ ‖u‖l∞ ≤ ‖u‖lp is always true, thus N ≥ 1 and

1

2

⌊( ‖u‖lp
(Mu)n

)p⌋
≤ N ≤

⌊( ‖u‖lp
(Mu)n

)p⌋
.

Injecting this in (A.4) we find

|ũn| . (Mu)n
(
‖u‖p(1−γ)

lp (Mu)p(γ−1)
n

)
+ ‖u‖lp(Mu)−p(1/p′−γ)

n ‖u‖p(1/p
′−γ)

lp

. ‖u‖p(1−γ)
lp (Mu)p/qn .

Proposition 21 finally gives:

‖ũn‖lq . ‖u‖p(1−γ)
lp ‖Mu‖p/qlp . ‖u‖lp .

Proposition 23. Let F be the usual Fourier transform on L2(R). For p > 1, the operator
I : (un) → F−1(û1[−π/h,π/h]) is continuous lp(hZ) → Lp(R).
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Proof. (Sketch of) Note that the case p = 2 is simply the Parseval identity. By homogeneity
we are reduced to the case h = 1, and we prove that I is continuous from l1 to L1

w, this implies
the strong Lp continuity thanks to the Marcinkiewicz interpolation theorem for 1 < p < 2 and
then by duality for p > 2. The proof is derived from the continuity of the Hilbert transform,
however the result goes back at least to Plancherel and Polya [15], 1937. A basic calculus
shows that for (un) rapidly decaying

Iu(x) =
1

π

∑

n

un
sinπ(x− n)

π(x− n)
.

For λ fixed we use the decomposition Z = (⊔Ik) ⊔ (Z \ (⊔Ik)) such that

• for any k, λ ≤ 1/|Ik|
∑

Ik
|un| ≤ 2λ, in particular | ⊔ Ik| ≤ ‖u‖1/λ,

• for any n /∈ ⊔Ik, |un| ≤ λ.

(this is a discrete Calderon-Zygmund decomposition, see for example Stein [17] I.3).

We define gn = un if n /∈ ⊔Ik, einπ/|Ik|
∑

IK

eijπuj if n ∈ Ik. Clearly, |gn| ≤ 2λ, ‖gn‖l1 ≤ ‖un‖l1 ,

and we may write
un = bn + gn,

where bn = 0 if n /∈ ⊔Ik and

bn = un − einπ/|Ik|
∑

Ik

eijπuj for n ∈ Ik.

In particular ‖b‖l1 ≤ 2‖u‖l1 and for any k,
∑

Ik
e±inπbn = 0. We remark then

|{x ∈ R : |Iu| ≥ λ}| ≤ |{x ∈ R : |Ig| ≥ λ/2}|+ |{x ∈ R : |Ib| ≥ λ/2}|.

Using Chebychev’s inequality for p = 2 and the L2 continuity, we obtain for the first set

|{x ∈ R : |Ig| ≥ λ/2}| ≤ 4‖Ig‖2L2/λ
2 ≤ 8λ‖u‖1/λ2 = 8‖u‖1/λ.

We note ck the center of Ik and we write abusively 2Ik for the interval of center ck and twice
larger than Ik. Chebychev’s inequality implies for the second term

|{x ∈ R : |Ib| ≥ λ/2}| ≤ 2
∑

|Ik|+ |{x ∈ R \ (⊔2Ik) : |Ib| ≥ λ/2}|

≤ 2
∑

|Ik|+
2

λ

∫

R\(⊔Ik)
|Ib|dx

≤ 2

λ
‖u‖1 +

2

λ

∑

k

∫

R\Ik

∣∣∑

Ik

bn
sinπ(x− n)

π(x− n)

∣∣dx.
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Using now
∑

Ik
e±inπbn = 0 we obtain

∫

R\Ik
|
∑

Ik

bn
sinπ(x− n)

π(x− n)

∣∣dx =
1

2

∫

R\Ik

∣∣∑

Ik

bn

(
eiπ(x−n)

π(x− n)
− e−iπ(x−n)

π(x− n)

)∣∣dx

=
1

2

∫

R\2Ik

∣∣∣∣
∑

Ik

bkn

(
e−iπn

π(x− n)
− e−iπn

π(x− ck)
− eiπn

π(x− n)

+
eiπn

π(x− ck)

)∣∣∣∣dx

≤
∫

R\2Ik

∑

Ik

|bn|
∣∣∣∣

ck − n

π(x− n)(x− ck

∣∣∣∣dx

≤ 2
∑

Ik

|bn|
∫

R\2Ik

|Ik|
π(x− ck)2

dx

=
4

π

∑

Ik

|bn|.

So that by summing it all

|{x ∈ R : |Iu| ≥ λ}| ≤ 4 + 8/π

λ
‖u‖1.

B Dispersive smoothing and rate of convergence

We did not manage to obtain a version with rates of convergence for the estimate (7.8)

‖|D|2
∫ t

0
V (t− t′)Πg(t′)dt′‖l∞L2 . ‖Πg‖l1L2 ,

which is one of the main points that prevented us from obtaining rates of convergence for the
approximation of the cKdV equation. It seems like the deep technical problem is the fact that
in the proof of (7.8), t lies in an unbounded set and thus Vh(t) − V (t) is certainly not small.
More modestly this section describes how - by using basic Littlewood-Paley analysis - one may
obtain a non optimal rate of convergence on

‖Th∂xV (t)u0 − ∂hVh(t)ΠTNhu0)‖l∞L2 .

To do so, we outline rapidly the main features of the Littlewood-Paley decomposition for
sequences of hZ , which are similar to the usual properties for functions. Let ψ be a smooth
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compactly supported function such that supp(ψ) ⊂ [−2, 2] and ∀ |x| ≤ 1, ψ(x) = 1. We set
ϕ0 = ψ and for j ≥ 1

ϕj := ψ(2−j ·)− ψ(2−j+1·).
For u ∈ S(hZ), the operators ∆j are defined by

∆̂ju|[−π/h,π/h] = ϕj û, (B.1)

as for interpolation operators we chose not to emphasize the dependance on h (which appears
notably in the fact that for 2j ≥ 4π/h, ∆ju = 0).
Using the “quasi-orthogonality” |j − k| ≥ 2 ⇒ ∆j∆k = 0, it is easily seen that ‖u‖2l2 ≍∑

‖∆ju‖2l2 , and more deeply a key feature of this decomposition are the so-called Bernstein
inequalities.

Proposition 24. (Bernstein inequalities) The following estimates hold:

∀ p ≥ 2, ‖∆ju‖lp ≤ C2j(1/2−1/p)‖∆ju‖l2 , (B.2)

∀ s ≥ 0, ‖|D|s∆ju‖l2 ≤ Cs2
js‖∆ju‖l2 , (B.3)

with C, Cs independant of h, and the constant C is also independent of p ∈ [2,∞].

The main result of this section is the following.

Proposition 25. Let Π be an interpolator as in theorem 6. For u0 ∈ L2, we have the homo-
geneous estimate

∀ ε > 0, ‖∂xV (t)Thu0 − ∂hVh(t)ΠTNhu0‖l∞L2([0,T ]) ≤
Ch4s/13(1 + T )√

ε
‖u0‖Hs+ε(R). (B.4)

(B.5)

The constant C only depends on Π.

Proof. We first split

‖∂xV (t)Thu0 − ∂hVh(t)ΠTNhu0‖l∞L2([0,T ]) ≤ ‖
(
V (t)− Vh(t)

)
∂hΠTNhu0‖l∞L2([0,T ])

+‖V (t)(∂xTh − ∂hΠTNh)u0‖l∞L2([0,T ])

= M1 +M2.

We will only focus on the derivation of an estimate for M1, the other one being similar and
simpler. For any f defined on hZ× [0, T ],

‖f‖2l∞L2
T
= sup

n

∫ T

0
(
∑

j

∆jfn)
2dt .

1

ε
sup
n

∫ T

0

∑

j

22εj |∆jfn|2dt

≤ 1

ε

∑

j

22εj sup
n

∫ T

0
|∆jfn|2dt =

1

ε

∑

j

22εj‖∆jfn‖2l∞L2
T
.
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Applying it to M1 we have

‖
(
V (t)− Vh(t)

)
∂hΠTNhu0‖2l∞L2([0,T ]) .

1

ε

∑

j

22εj‖
(
V (t)− Vh(t)

)
∂h∆jΠTNhu0‖2l∞L2

T
.

On one side the dispersive estimate (2.3) gives

‖
(
V (t)− Vh(t)

)
∂h∆jΠTNhu0‖l∞L2

T
. ‖∆jΠTNhu0‖l2 , (B.6)

while Bernstein’s inequality (B.2) combined with the inequality |eitξ3−eitph(ξ)| . t|ξ|5h2 implies

‖
(
V (t)− Vh(t)

)
∂h∆jΠTNhu0‖l∞L2

T
. ‖

(
V (t)− Vh(t)

)
∂h∆jΠTNhu0‖L∞

T l∞

≤ 2j/2 sup
[0,T ]

‖
(
V (t)− Vh(t)

)
∂h∆jΠTNhu0‖l2

≤ 2j/2+6jh2T‖∆jΠTNhu0‖l2 , (B.7)

so that by (7.3) with α = 2s/13 applied to (B.7), (B.6),

‖
(
V (t)− Vh(t)

)
∂h∆jΠTNhu0‖l∞L2

T
≤ h4s/132js‖∆jΠTNhu0‖l2 . (B.8)

By summing and using lemma 1 we find as expected

M2
1 ≤

∑

j

h8s/13
22j(s+ε)

ε
‖∆jΠTNhu0‖2l2 .

h8s/13

ε
‖u0‖2Hs+ε . (B.9)
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