
HAL Id: hal-01157509
https://hal.science/hal-01157509v1

Preprint submitted on 1 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code Synthesis to Optimize Accuracy and Execution
Time of Floating-Point Programs

Laurent Thévenoux, Matthieu Martel, Philippe Langlois

To cite this version:
Laurent Thévenoux, Matthieu Martel, Philippe Langlois. Code Synthesis to Optimize Accuracy and
Execution Time of Floating-Point Programs. 2015. �hal-01157509�

https://hal.science/hal-01157509v1
https://hal.archives-ouvertes.fr


Code Synthesis to Optimize Accuracy and
Execution Time of Floating-Point Programs∗

Laurent Thévenoux1, Matthieu Martel2, and Philippe Langlois2

1Inria – Laboratoire LIP, (CNRS, ENS de Lyon, Inria, UCBL), Univ. de Lyon, France
2UPVD – Équipe DALI, (CNRS, LIRMM, UPVD, UM2), Univ. de Perpignan, France

laurent.thevenoux@ens-lyon.fr, {matthieu.martel, langlois}@univ-perp.fr

Keywords: code synthesis, compensation, execution-time performance, floating-point
arithmetic, multi-criteria optimization, numerical accuracy.

Since the precision of standard floating-point arithmetic [6] is finite, numerical pro-
grams based on it can suffer from rounding errors. To avoid such accuracy losses, code
writers must be careful by using floating-point numbers. Unfortunately, they can not
take care of every accuracy issues, even if they are floating-point experts. Neverthe-
less, several methods have been proposed to help developers to improve the accuracy
of their floating-point programs [2, 3, 5].

As the numerical accuracy, execution time is a critical matter for programs, espe-
cially in embedded systems where less execution time means less energy consumption
or better reactivity. Taking into account both accuracy and execution time simultane-
ously is a difficult problem because these two criteria do not cohabit well: improving
accuracy may be costly (execution-time improvement can impact accuracy as well).
Our proposed solution is to allow tradeoffs between accuracy and time [4].

We present the SyHD software developed to perform source-to-source transforma-
tion improving accuracy without impacting execution time too much. SyHD synthe-
sizes C source code for both accuracy and execution-time criteria. It uses compensation
for improving accuracy and transformation strategies for reducing the impact of this
improvement on execution time. The automatic compensation is provided by another
software, CoHD [8]. Compensated algorithms are efficient but difficult to implement,
so we automate this process with CoHD to benefit from a good execution time com-
pared to other methods. Experimental results show that our automatically transformed
programs have roughly the same accuracy and execution time than the existing com-
pensated ones when the latter exist. To improve execution time, we have implemented
several strategies of partial compensation. SyHD synthesizes a new program by auto-
matically analyzing a set of transformed programs implementing these strategies for
a given environment (defined by a target, some data, as well as some accuracy and

∗Abstract of a manuscript in preparation.

1



execution-time constraints). Two kinds of transformation strategies are proposed: the
ones which compensate the floating-point computations that generate the largest errors,
and the ones which do loop transformations, such as loop fission [1].

We apply this approach to a significant set of examples, ranging from recursive
summation, to polynomial evaluations, to iterative refinement for linear system solving.
We successfully generate programs with accuracy and execution-time tradeoffs in a
reasonable amount of time [7].

25

30

35

40

45

50

55

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45

original transformed

25

30

35

40

45

50

55

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45

original transformed

The following example illustrates the potential of our approach (results are auto-
matically obtained by CoHD and SyHD). The figure above presents the number of
significant bits when evaluating the polynomial p(x) = (x − 0.75)5(x − 1)11 with
the Horner’s scheme, where x ∈ [0.35, 0.45]. The leftmost part shows the result of
the original and transformed programs when no tradeoff is allowed. We recover the
full accuracy (53 bits for double precision) for approximately 300 cycles (more than
3 times better than an algorithm using double-double expansions). The rightmost part
shows same results when tradeoff between accuracy and execution time is required. By
sacrificing accuracy we can save here 50 more cycles for this polynomial evaluation.

References

[1] A. W. Appel. Modern Compiler Implementation: In ML. Cambridge University Press, New York, NY,
USA, 1998.

[2] T. J. Dekker. A floating-point technique for extending the available precision. Numer. Math., 18:224–
242, 1971.

[3] S. Graillat, P. Langlois, and N. Louvet. Algorithms for accurate, validated and fast polynomial evalua-
tion. Japan Journal of Industrial and Applied Mathematics, 26(2-3):191–214, 2009.

[4] P. Langlois, M. Martel, and L. Thévenoux. Automatic code transformation to optimize accuracy and
speed in floating-point arithmetic. In SCAN 2012 – 15th GAMM-IMACS International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics, 2012.

[5] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.
Springer Disc. & Comp. Geometry, 18(3):305–363, 1997.

[6] IEEE Computer Society. IEEE 754 Standard for Floating-Point Arithmetic. The Institute of Electrical
and Electronics Engineers, Inc., 2008.

[7] L. Thévenoux. Synthèse de code avec compromis entre performance et précision en arithmétique flot-
tante IEEE 754. PhD thesis, Université de Perpignan Via Domitia, Perpignan, France, July 2014. URL:
https://tel.archives-ouvertes.fr/tel-01143824.

[8] L. Thévenoux, P. Langlois, and M. Martel. Automatic source-to-source error compensation of floating-
point programs. Submitted to the 18th IEEE International Conference on Computational Science and En-
gineering (CSE 2015), Porto, Portugal., May 2015. URL: https://hal.archives-ouvertes.
fr/hal-01158399.

2


