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Abstract. This paper is devoted to present an approximation of a Cauchy
problem for Friedrichs’ systems under convex constraints. It is proved the
strong convergence in L2

loc
of a parabolic-relaxed approximation towards the

unique constrained solution.

1. Introduction. The aim of this paper is to prove the convergence of a relaxation
approximation of weak solutions to Friedrichs’ systems under convex constraints.
The well-posedness has been established in [3] by means of a numerical scheme.
We present here another way to construct such weak solutions thanks to a model
that relaxes the constraints. We consider the following Cauchy problem: find W :
[0, T ]× R

n → R
m such that











∂tW +
∑n

j=1 Bj∂jW = 0 in ]0, T ]× R
n,

W (t, x) ∈ K if (t, x) ∈ [0, T ]× R
n,

W (0, x) =W 0(x) if x ∈ R
n,

(1)

where K is a fixed (i.e. independent of the time and space variables) non empty
closed and convex subset of Rm containing 0 in its interior, the matrices Bj are
m ×m symmetric matrices independent of time and space, and T > 0. The main
difficulty is due to the constraints which introduce nonlinear effects to the linear
Friedrichs’ system [5]. This type of hyperbolic problems has been introduced in [3]
where a notion of weak solutions to problem 1 has been defined.
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Definition 1.1. Let W 0 ∈ L2(Rn,K), and T > 0. A function W is a weak
constrained solution of 1 if W ∈ L2([0, T ]× R

n,K) satisfies

∫ T

0

∫

Rn

(

|W − κ|2∂tφ+
n
∑

j=1

〈W − κ;Bj(W − κ)〉 ∂jφ
)

dt dx

+

∫

Rn

|W 0(x) − κ|2φ(0, x) dx ≥ 0, (2)

for all κ ∈ K and φ ∈ C∞
c ([0, T [×R

n) with φ(t, x) ≥ 0 for all (t, x) ∈ [0, T [×R
n.

We recall here the main result of [3].

Theorem 1.2. Assume that W 0 ∈ L2(Rn,K). There exists a unique weak con-
strained solution W ∈ L2([0, T ]×R

n,K) to 1 in the sense of Definition 1.1. In addi-
tion, this solution belongs to C([0, T ], L2(Rn,K)), and if further W 0 ∈ H1(Rn,K),
then W ∈ L∞([0, T ], H1(Rn,K)).

As already mentioned, the well-posedness of problem 1 has been established in [3]
thanks to a numerical method. We relax here the constraints W (t, x) ∈ K for a.e.
(t, x) ∈]0, T [×R

n as

∂tWǫ +
n
∑

j=1

Bj∂xj
Wǫ =

PK(Wǫ)−Wǫ

ǫ
, (3)

where PK denotes the orthogonal projection onto the closed convex set K, and
ǫ > 0 is a small parameter. Formally, if we multiply equation 3 by ǫ, and let ǫ tend
to 0, we get that the “limit” of Wǫ, denoted by W , satisfies PK(W ) = W , which
ensures that W ∈ K. In addition, Definition 1.1 has been motivated in [3] by a
formal derivation from the relaxation system 3. To see it, it suffices to take the
scalar product of equation of (3) with Wǫ − κ, where κ ∈ K is arbitrary. We then
use the first order characterization of the projection which ensures that the right
hand side is non-positive, to get the inequality of Definition 1.1. The purpose of
this work is to rigorously justify these formal steps.

The relaxation model presented here is very similar to viscous approximation of
constrained models found in mechanics, and especially in plasticity. We start from
the system of dynamical linear elasticity in three space dimension which can be
written as

{

∂tF +∇xv = 0,
∂tv + div σ = 0,

(4)

for all t ∈ [0, T ] and x ∈ R
3. In the previous system, F (t, x) is a 3 × 3 matrix

which stands for the displacement gradient, v(t, x) ∈ R
3 is the velocity, i.e. the

displacement time derivative, and σ = µ
(

F + FT
)

+ λ (tr F ) I3 is the symmetric
Cauchy stress tensor (here λ and µ are the Lamé coefficients, and I3 is the idendity
matrix in R

3). This system can be rewritten (thanks to a change of variables -
see [6]) in the Friedrichs’ framework as

∂tU +A1∂x1
U +A2∂x2

U +A3∂x3
U = 0,

where U is a vector in R
9 (containing the three compononents of the velocity v, and

the six components of the stress σ) and A1, A2 and A3 are symmetric matrices.
We now introduce the convex contraint coming from plasticity, see [11]. Indeed,

the theory of perfect plasticity is characterized by the fact that the stress tensor σ is
constrained to stay inside a fixed closed convex set K of symmetric 3× 3 matrices.
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The total strain is then additively decomposed as the sum of (i) the elastic strain,
denoted by e, which is still related to the stress by the linear relation σ = λtre+2µe;
(ii) and the plastic strain, denoted by p, whose rate is oriented in a normal direction
to K at σ. Summarizing, one has

F + FT

2
= e+ p, σ = λtre+ 2µe ∈ K, ∂tp ∈ ∂IK(σ), (5)

where ∂IK(σ) denotes the subdifferential of IK , the indicator function of K, at the
point σ. Using Fenchel-Moreau regularization of IK (see [8]), the last condition in
5 can be relaxed as

∂tp =
1

ǫ
(PK(σ)− σ) ,

where ǫ > 0 is a viscosity parameter. We can now reformulate, at least formally,
the dynamical problem of visco-plasticity (see [9, 11]) as














∂tU +A1∂x1
U +A2∂x2

U +A3∂x3
U =

PK̃(U)− U

ǫ
on ]0, T ]× R

3,

U(t, x) ∈ K̃ if (t, x) ∈ [0, T ]× R
3,

U(0, x) = U0(x) if x ∈ R
3,

(6)

where, again, U ∈ R
9, and K̃ =

{

u ∈ R
9 : σ ∈ K

}

, and A1, A2 and A3 are the
same matrices than in the elasto-dynamic case. As ǫ tends to zero, one expects the
solution to 6 to converge to that of the model of perfect plasticity (see [12] in the
quasistatic case).

Notation. In the sequel, we denote by 〈 | 〉 the scalar product of L2(Rn,Rm) and
by 〈;〉 the canonical scalar product of Rm (and |.| the associated norm). Also, to
shorten notation, we write L2

t,x (resp. H1
t,x) instead of L2(0, T ;L2(Rn,Rm)) (resp.

H1((0, T )× R
n,Rm)), L2

x instead of L2(Rn,Rm).

This paper is organized as follows. In the first section, we establish the existence
and uniqueness of the relaxation model thanks to a parabolic approximation. In the
second section, we prove that the relaxed solution Wǫ to 3 satisfies the inequalities
of Definition 1.1. Finally, to get the existence of a solution as a limit when ǫ tends
to zero of relaxed solutions Wǫ, we prove the strong convergence of the sequence
(Wǫ)ǫ>0 in the space L2((0, T )× ω), where ω is a open bounded subset of Rn, to a
weak solution to the contrained Friedrichs’ systems.

2. Parabolic approximation. In order to find a solution to the relaxation prob-
lem 3, we use a parabolic type regularization. To this aim, we consider a classical
sequence of mollifiers in R

n, denoted by (ρη)η>0.

Theorem 2.1. Let W 0 ∈ H1(Rn,K). For every ǫ > 0 and η > 0, the system










∂tWǫ,η − η∆Wǫ,η +

n
∑

j=1

Bj∂jWǫ,η =
PK(Wǫ,η)−Wǫ,η

ǫ
, on ]0, T ]× R

n,

Wǫ,η(0, x) =W 0(x) ∗ ρη, if x ∈ R
n,

(7)

admits a unique solution Wǫ,η with the following properties:

Wǫ,η ∈ L2(0, T ;H2(Rn,Rm)), ∂tWǫ,η ∈ L2(0, T ;H1(Rn,Rm)),

and

∂ttWǫ,η ∈ L2(0, T ;H−1(Rn,Rm)).
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Furthermore, we have the following estimates

sup
0≤t≤T

‖Wǫ,η(t)‖2L2
x

≤
∥

∥W 0
∥

∥

2

L2
x

, (8)

sup
0≤t≤T

‖Wǫ,η(t)‖H1
x

≤ Cǫ

∥

∥W 0
∥

∥

H1
x

, (9)

sup
0≤t≤T

‖∂tWǫ,η(t)‖L2
x

≤ Cǫ

∥

∥W 0
∥

∥

H1
x

, (10)

for some constant Cǫ > 0 independent of η.

Proof. The proof essentially follows that of Theorem 1, Part II, Section 7.3.2 in [4].
Let X = L∞(0, T ;H1(Rn,Rm)) and V ∈ X . We consider the problem











∂tU − η∆U =
PK(V )− V

ǫ
−

n
∑

j=1

Bj∂jV, on ]0, T ]× R
n,

U(0, x) =W 0(x) ∗ ρη, if x ∈ R
n.

(11)

Since 0 ∈ K, we have the following inequality

∀k ∈ R
m, |(PK(k)− k)| ≤ |k|

which shows that PK(V )−V

ǫ
−∑n

j=1 Bj∂jV ∈ L2(0, T ;L2(Rn,Rm)). Using the theory
of parabolic equations, we get that equation 11 admits a unique solution U with
U ∈ L2(0, T ;H2(Rn,Rm)) and ∂tU ∈ L2(0, T ;L2(Rn,Rm)). Let Ṽ ∈ X and Ũ be

the solution to 11 associated with Ṽ . The function Û = U − Ũ is a solution to










∂tÛ − η∆Û =
PK(V )− PK(Ṽ )− (V − Ṽ )

ǫ
−

n
∑

j=1

Bj∂j(V − Ṽ ), on ]0, T ]× R
n,

Û(0, x) = 0, if x ∈ R
n.

(12)
Thanks to the theory of parabolic equations, we have the following estimate, we
obtain the following estimate

ess-sup
0≤t≤T

∥

∥

∥
Û(t)

∥

∥

∥

H1
x

≤ C(η)

∥

∥

∥

∥

∥

∥

PK(V )− PK(Ṽ )− (V − Ṽ )

ǫ
−

n
∑

j=1

Bj∂j(V − Ṽ )

∥

∥

∥

∥

∥

∥

L2

t,x

≤ C(η)max

(

2

ǫ
, ‖Bj‖

)

∥

∥

∥
V − Ṽ

∥

∥

∥

L2

tH
1
x

≤ C(η)max

(

2

ǫ
, ‖Bj‖

)√
T ess-sup

0≤t≤T

∥

∥

∥
V (t)− Ṽ (t)

∥

∥

∥

H1
x

.

Therefore, the mapping

ψ :

{

X →
{

U ∈ L2
tH

2
x and ∂tU ∈ L2

t,x

}

⊂ X

V̂ 7→ Û

is Lipschitz-continuous with Lipschitz constant bounded by C(η)max
(

2
ǫ
, ‖Bj‖

)√
T .

We now divide [0, T ] into sub-intervals [0, T1], [T1, 2T1], [2T1, 3T1], . . . , [NT1, T ]
such that

C(η)max

(

2

ǫ
, ‖Bj‖

)

√

max(T1, T −NT1) < 1.
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For every i ∈ {0, . . .N − 1}, the Banach fixed-point Theorem ensures the existence
and uniqueness of a solution to 7 on the interval [iT1, (i+1)T1] (with initial condition
W 0 ∗ ρη if i = 0, and Wǫ,η(iT1) if i ≥ 1 obtained at the previous step). We
then obtain a solution Wǫ,η on the entire interval [0, T ] by gluing the solutions on
each sub-intervals, so that Wǫ,η ∈ L2(0, T ;H2(Rn,Rm)). According to the initial
condition on each sub-intervals, the function t 7→ Wǫ,η(t) is continuous in L2

x at
every t = iT1, so that ∂tWǫ,η ∈ L2(0, T ;L2(Rn,Rm)), and, in particular Wǫ,η ∈
H1(]0, T [×R

n,Rm).
To obtain the announced regularity, we use the following result (whose proof

relies on the chain rule in Sobolev spaces).

Lemma 2.2. Let U ∈ H1(]0, T [×R
n,Rm). Then the function PK ◦ U − U also

belongs to H1(]0, T [×R
n,Rm), and there exists a constant M > 0, independent of

U , such that
‖PK ◦ U − U‖H1

t,x
≤M ‖U‖H1

t,x
.

This result ensures that
PK(Wǫ,η)−Wǫ,η

ǫ
∈ H1(]0, T [×R

n,Rm) and then, using
again to the regularity theory of parabolic equations, we obtain that

Wǫ,η ∈ L2(0, T ;H2(Rn,Rm)), ∂tWǫ,η ∈ L2(0, T ;H1(Rn,Rm)),

and
∂ttWǫ,η ∈ L2(0, T ;H−1(Rn,Rm)).

Now we derive the estimates. We are going to use the following result (see [4]).

Lemma 2.3. Let U ∈ L2(0, T,H1(Rn,Rm)) with ∂tU ∈ L2(0, T ;H−1(Rn,Rm)).
Then, the function

t 7→ ‖U(t)‖2L2
x
,

is absolutely continuous, and for a.e. t ∈ [0, T ],

d

dt

(

1

2
‖U(t)‖2L2

x

)

= 〈U(t), ∂tU(t)〉H1
x,H

−1

x
.

Applying this result to Wǫ,η, we get that for a.e. t ∈ [0, T ],

d

dt

(

1

2
‖Wǫ,η(t)‖2L2

x

)

= 〈Wǫ,η(t) | ∂tWǫ,η(t)〉L2
x

=

〈

Wǫ,η(t)

∣

∣

∣

∣

∣

∣

PK(Wǫ,η)(t) −Wǫ,η(t)

ǫ
−

n
∑

j=1

Bj∂jWǫ,η(t) + η∆Wǫ,η(t)

〉

, (13)

where we used the fact that Wǫ,η is a solution to the partial differential equation 7.
Since 0 ∈ K, we have

〈Wǫ,η(t) |PK(Wǫ,η)(t)−Wǫ,η(t)〉L2
x

= 〈PK(Wǫ,η)(t) |PK(Wǫ,η)(t)−Wǫ,η(t)〉 − ‖PK(Wǫ,η)(t) −Wǫ,η(t)‖2L2
x
≤ 0. (14)

On the other hand, if v ∈ C∞
c (Rn,Rm), an integration by parts shows that

〈v | η∆v〉L2 = −η ‖Dv‖2L2
x
≤ 0,

and
〈

v

∣

∣

∣

∣

∣

∣

n
∑

j=1

Bj∂jv

〉

= 0,
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since the matrices Bj are symmetric and independent of the space variables. By
approximation, these formulas are true for v ∈ H1(Rn,Rm) as well, and in partic-
ular,

〈

Wǫ,η(t)

∣

∣

∣

∣

∣

∣

n
∑

j=1

Bj∂jWǫ,η(t) + η∆Wǫ,η(t)

〉

≤ 0. (15)

Gathering 13, 14 and 15, we obtain that

d

dt

(

1

2
‖Wǫ,η‖2L2

x

)

≤ 0,

and using Gronwall’s Lemma, we derive the first estimate 8.

sup
0≤t≤T

‖Wǫ,η(t)‖2L2
x
=
∥

∥W 0 ∗ ρη
∥

∥

2

L2
x

≤
∥

∥W 0
∥

∥

2

L2
x

. (16)

We apply the same argument to the spatial weak derivates ∂kWǫ,η of Wǫ,η. De-
riving the partial differential equation 7 in the sense of distribution, we infer that

∂t∂kWǫ,η − η∆∂kWǫ,η +
n
∑

j=1

Bj∂j∂kWǫ,η = ∂k
PK(Wǫ,η)−Wǫ,η

ǫ
.

The previous equality actually holds in L2(0, T, L2(Rn,Rm)) thanks to the regular-

ity of Wǫ,η, and we can apply Lemma 2.3 to obtain that Êfor a.e. t ∈ [0, T ],

d

dt

(

1

2
‖∂kWǫ,η(t)‖2L2

x

)

= 〈∂kWǫ,η(t), ∂t∂kWǫ,η(t)〉L2
x

=

〈

∂kWǫ,η(t)

∣

∣

∣

∣

∣

∣

∂k
PK(Wǫ,η)(t)−Wǫ,η(t)

ǫ
−

n
∑

j=1

Bj∂j∂kWǫ,η(t) + η∆∂kWǫ,η(t)

〉

.

Arguing as in 15, we get

d

dt

(

1

2
‖∂kWǫ,η(t)‖2L2

x

)

≤
〈

∂kWǫ,η(t)

∣

∣

∣

∣

∂k
PK(Wǫ,η(t))−Wǫ,η(t)

ǫ

〉

≤ M

ǫ
‖∂kWǫ,η(t)‖2L2

x
,

where we used Lemma 2.2. Using again Gronwall’s Lemma, it yields

sup
0≤t≤T

‖∂kWǫ,η(t)‖2L2
x

≤ exp

(

2TM

ǫ

)

∥

∥∂kW
0 ∗ ρη

∥

∥

2

L2
x

≤ exp

(

2TM

ǫ

)

∥

∥∂kW
0
∥

∥

2

L2
x

, (17)

which completes the proof of estimate 9.
We finally derive the last estimate for ∂tWǫ,η. Again, we derive the partial

differential equation 7 with respect to t in the distributional sense to get

∂ttWǫ,η − η∆∂tWǫ,η +
n
∑

j=1

Bj∂j∂tWǫ,η = ∂t
PK(Wǫ,η)−Wǫ,η

ǫ
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in L2(0, T,H−1(Rn,Rm)). Using again Lemma 2.3, we get that for a.e. t ∈ [0, T ],

d

dt

(

1

2
‖∂tWǫ,η(t)‖2L2

x

)

= 〈∂tWǫ,η(t) | ∂ttWǫ,η(t)〉H1
x,H

−1

x

=

〈

∂tWǫ,η(t)

∣

∣

∣

∣

∣

∣

η∆∂tWǫ,η(t)−
n
∑

j=1

Bj∂j∂tWǫ,η(t) + ∂t
PK(Wǫ,η)(t)−Wǫ,η(t)

ǫ

〉

H1
x,H

−1

x

.

As before, we infer that
〈

∂tWǫ,η(t)

∣

∣

∣

∣

∣

∣

n
∑

j=1

Bj∂j∂tWǫ,η(t)

〉

L2
x

= 0, 〈∂tWǫ,η(t) | η∆∂tWǫ,η(t)〉H1
x,H

−1

x
≤ 0,

which shows, thanks to Lemma 2.2, that

d

dt

(

1

2
‖∂tWǫ,η(t)‖2L2

x

)

≤ 1

ǫ
‖∂tWǫ,η(t)‖L2

x
‖∂t(PK(Wǫ,η)(t)−Wǫ,η(t))‖L2

x

≤ M

ǫ
‖∂tWǫ,η(t)‖2L2

x
.

At this point, we would like to use Gronwall’s Lemma. To do that, we need to
know the value of ∂tWǫ,η at t = 0. To this aim, let us take a test function φ ∈
C∞
c (R×R

n,Rm) with φ(T, ·) = 0. On the one hand, according to Fubini’s Theorem

and Green’s formula on [0, T ], Êwe have

∫ T

0

∫

Rn

〈∂tWǫ,η; ∂tφ〉 =
∫

Rn

[

−〈∂tWǫ,η(0, ·);φ(0, ·)〉 −
∫ T

0

〈∂ttWǫ,η;φ〉
]

,

since ∂tWǫ,η ∈ H1(0, T ;H−1(Rn,Rm)) and φ is smooth. On the other hand, ac-
cording to equation 7

∫ T

0

∫

Rn

〈∂tWǫ,η; ∂tφ〉

=

∫ T

0

∫

Rn

〈

η∆Wǫ,η −
n
∑

j=1

Bj∂jWǫ,η +
PK(Wǫ,η)−Wǫ,η

ǫ
; ∂tφ

〉

=

∫

Rn







−
∫ T

0

〈

∂t



η∆Wǫ,η −
n
∑

j=1

Bj∂jWǫ,η +
PK(Wǫ,η)−Wǫ,η

ǫ



 ;φ

〉

−
〈

η∆W 0 ∗ ρη −
n
∑

j=1

Bj∂jW
0 ∗ ρη +

PK(W 0 ∗ ρη)−W 0 ∗ ρη
ǫ

;φ(0, ·)
〉







.

Since φ(0, ·) is arbitrary, we obtain that

∂tWǫ,η(0, ·) = η∆W 0 ∗ ρη −
n
∑

j=1

Bj∂jW
0 ∗ ρη +

PK(W 0 ∗ ρη)−W 0 ∗ ρη
ǫ

.

We are now in position to apply Gronwall’s Lemma which implies that

sup
0≤t≤T

‖∂tWǫ,η(t)‖2L2
x
≤ exp

(

2TM

ǫ

)

‖∂tWǫ,η(0, ·)‖2L2
x
.



8 J.-F. BABADJIAN, C. MIFSUD AND N. SEGUIN

Since,
∥

∥∆W 0 ∗ ρη
∥

∥

L2
x

≤ C

η

∥

∥∇W 0
∥

∥

L2
x

,

for some constant C > 0 independent of η, we deduce that

sup
0≤t≤T

‖∂tWǫ,η(t)‖L2
x
≤ Cǫ

∥

∥W 0
∥

∥

H1
x

,

where Cǫ > 0 is another constant independent of η, which completes the proof of
the last estimate 10.

3. Approximation of the convex constraints. We now consider the relaxation
problem











∂tWǫ +

n
∑

j=1

Bj∂jWǫ =
PK(Wǫ)−Wǫ

ǫ
, on ]0, T ]× R

n,

Wǫ(0, x) =W 0(x), if x ∈ R
n.

(18)

Thanks to Theorem 2.1, we will construct the solution to the previous problem as
the limit of the solution of the parabolic problem 7 when η tends to zero.

Theorem 3.1. There exists a unique solution Wǫ ∈ H1(]0, T [×R
n,Rm)) to 18

satisfying, for all φ ∈ C∞
c (R× R

n,Rm),
∫ T

0

∫

Rn

〈

∂tWǫ +

n
∑

j=1

Bj∂jWǫ;φ

〉

dx dt =

∫ T

0

∫

Rn

〈

PK(Wǫ)−Wǫ

ǫ
;φ

〉

dx dt, (19)

and Wǫ(0, ·) =W0 in L2(Rn,Rm). In addition,

sup
0≤t≤T

‖Wǫ(t)‖2L2
x
≤
∥

∥W 0
∥

∥

2

L2
x

. (20)

Proof. Thanks to Theorem 2.1, the sequence (Wǫ,η)η>0 is bounded in the space
H1(]0, T [×R

n,Rm). We can thus extract a subsequence (not relabeled) such that

Wǫ,η ⇀Wǫ weakly in H1(]0, T [×R
n,Rm).

In particular, 20 is a consequence of 8 by the lower semicontinuity of the norm
with respect to weak convergence. Since the embedding of H1(]0, T [×R

n,Rm) into
L2
loc([0, T ]× R

n,Rm) is compact (cf [1]), we deduce that

Wǫ,η → Wǫ strongly in L2(]0, T [×]−R,R[n,Rm),

for each R > 0. Let φ ∈ C∞
c (R × R

n,Rm) and R such that the support of φ is
contained in [−R,R]n+1. Since Wǫ,η is a weak solution of 11, we have

∫ T

0

∫

Rn

(

〈∂tWǫ,η;φ〉+ η

n
∑

j=1

〈∂jWǫ,η; ∂jφ〉+
n
∑

j=1

〈Bj∂jWǫ,η;φ〉
)

dx dt

=

∫ T

0

∫

Rn

〈

PK(Wǫ,η)−Wǫ,η

ǫ
;φ

〉

dx dt.

Using the weak convergence, we infer that

∫ T

0

∫

Rn

(

〈∂tWǫ,η;φ〉+ η

n
∑

j=1

〈∂jWǫ,η; ∂jφ〉+
n
∑

j=1

〈Bj∂jWǫ,η;φ〉
)

dx dt

→
∫ T

0

∫

Rn

(

〈∂tWǫ;φ〉+
n
∑

j=1

〈Bj∂jWǫ;φ〉
)

dx dt.
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On the other hand, the strong convergence yields
〈

PK(Wǫ,η)−Wǫ,η

ǫ
;φ

〉

→
〈

PK(Wǫ)−Wǫ

ǫ
;φ

〉

strongly in L1(]0, T [×R
n),

and consequently, we obtain that
∫ T

0

∫

Rn

〈

∂tWǫ +

n
∑

j=1

Bj∂jWǫ;φ

〉

dx dt =

∫ T

0

∫

Rn

〈

PK(Wǫ)−Wǫ

ǫ
;φ

〉

dx dt. (21)

We next focus on the initial condition. We take φ ∈ C∞
c (] − ∞, T [×R

n,Rm) (in
particular φ(T ) = 0). An integration by parts shows that

−
∫ T

0

∫

Rn

〈Wǫ,η; ∂tφ〉 dx dt+
∫

Rn

〈

W 0 ∗ ρη(x);φ(0, x)
〉

dx

=

∫ T

0

∫

Rn

〈∂tWǫ,η;φ〉 dx dt.

Letting η tend to zero, and using 21 leads to

∫ T

0

∫

Rn

(

− 〈Wǫ; ∂tφ〉+
n
∑

j=1

〈Bj∂jWǫ;φ〉
)

dx dt

+

∫

Rn

〈

W 0(x);φ(0, x)
〉

dx =

∫ T

0

∫

Rn

〈

PK(Wǫ)−Wǫ

ǫ
;φ

〉

dx dt, (22)

since W 0 ∗ ρη → W 0 strongly in L2
loc(R

n,Rm). We now integrate by parts in 21,
using the fact that Wǫ ∈ H1(0, T, L2(Rn,Rm)),

∫ T

0

∫

Rn

(

〈Wǫ; ∂tφ〉+
n
∑

j=1

〈Bj∂jWǫ;φ〉
)

dx dt

+

∫

Rn

〈Wǫ(0, x);φ(0, x)〉 dx =

∫ T

0

∫

Rn

〈

PK(Wǫ)−Wǫ

ǫ
;φ

〉

dx dt. (23)

Using the equations 22 and 23, it gives that
∫

Rn

〈Wǫ(0, x);φ(0, x)〉 dx =

∫

Rn

〈

W 0(x);φ(0, x)
〉

dx,

and consequently the initial condition is satisfied in L2(Rn,Rm).

It remains to show the uniqueness. Let us consider two solutions Wǫ and W̃ǫ as-
sociated with the same initial condition W 0. Using the partial differential equation
18, we obtain that

∂t

(

Wǫ − W̃ǫ

)

+

n
∑

j=1

Bj∂j

(

Wǫ − W̃ǫ

)

=
PK(Wǫ)−Wǫ − PK(W̃ǫ) + W̃ ǫ

ǫ
.

As already observed, we know that for a.e. t ∈ [0, T ],
∫

Rn

n
∑

j=1

〈

Bj∂jWǫ(t)− W̃ǫ(t);Wǫ(t)− W̃ǫ(t)
〉

dx = 0,

and also

1

2

d

dt

∥

∥

∥
Wǫ(t)− W̃ǫ(t)

∥

∥

∥

2

L2
x

=
〈

∂tWǫ(t)− ∂tW̃ǫ(t)
∣

∣

∣
Wǫ(t)− W̃ǫ(t)

〉

.
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Consequently, we have that

1

2

d

dt

∥

∥

∥
Wǫ(t)− W̃ǫ(t)

∥

∥

∥

2

L2
x

=

〈

PK(Wǫ)(t)−Wǫ(t)− PK(W̃ǫ)(t) + W̃ǫ(t)

ǫ

∣

∣

∣

∣

∣

Wǫ(t)− W̃ǫ(t)

〉

≤ 2

ǫ

∥

∥

∥
Wǫ(t)− W̃ǫ(t)

∥

∥

∥

2

L2
x

,

since the projection is 1-Lipschitz. Gronwall’s Lemma thus implies that Wǫ = W̃ǫ

since they satisfy the same initial condition. As a consequence of the uniqueness,
we deduce that there is no need to extract a subsequence from (Wǫ,η)η>0 to get the
convergences as η → 0.

4. Convergence of the relaxed formulation. In this section, we first show that
the solutionWǫ to the relaxation problem 18 satisfies the inequality of Definition 1.1,
and then we prove that we can pass to the limit in this inequality to get a solution
to the initial problem 1.

Lemma 4.1. Let Wǫ be the unique solution to 18. For all κ ∈ K and for all
φ ∈ W 1,∞((−∞, T )× R

n,R+) with compact support in ]−∞, T [×R
n, one has

∫ T

0

∫

Rn

(

|Wǫ − κ|2∂tφ+
n
∑

j=1

〈Wǫ − κ;Bj(Wǫ − κ)〉 ∂jφ
)

dt dx

+

∫

Rn

|W 0(x)− κ|2φ(0, x) dx ≥ 0. (24)

Proof. Since Wǫ is a solution to 18, we know that

∫ T

0

∫

Rn

〈

∂tWǫ +

n
∑

j=1

Bj∂jWǫ −
PK(Wǫ)−Wǫ

ǫ
;Wǫ − κ

〉

dx dt = 0.

By the first order characterization of the projection, one has
〈

PK(Wǫ)−Wǫ

ǫ
;Wǫ − κ

〉

(t, x) ≤ 0

for a.e. (t, x) ∈ [0, T ]× R
n. On the other hand, since Wǫ ∈ H1(0, T ;L2(Rn,Rm))

and Wǫ ∈ L2(0, T ;H1(Rn,Rm))) we can integrate by parts to obtain the desired
result.

Remark 1. Let us stress that, although the function Wǫ satisfies the same inequal-
ity than the weak constrained solution, it is not a weak constrained solution in the
sense of Definition 1.1 because it does not a priori belong to K.

To get a weak constrained solution from the sequence of solutions (Wǫ)ǫ>0 to
the relaxation problem 18, we need to pass to the limit as ǫ → 0 in the previous
inequality. This is the purpose of the following result.

Theorem 4.2. For every bounded open set ω ⊂ R
n, the sequence (Wǫ)ǫ>0 converges

strongly in L2((0, T ) × ω,Rm) to some function W which is a weak constrained
solution to problem 1.
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Proof. Let ω be an open bounded subset of Rn. We are going to prove the existence
of a subsequence of (Wǫ)ǫ>0 (associated with the same initial data W 0) which
converges in L2(0, T, L2(ω,Rm)). We will use the following compactness criterion
(see [10]).

Theorem 4.3. Let B be a Banach space. A subset F of L2(0, T ;B) is relatively
compact if and only if both conditions are fulfilled:

• the set
{

∫ t2

t1
f(t) dt : f ∈ F

}

is relatively compact in B for all 0 < t1 < t2 < T ;

• we have

sup
f∈F

‖τhf − f‖L2(0,T−h;B) →
h→0

0,

where τhf : (t, x) 7→ τhf(t, x) := f(t+ h, x).

We are going to apply this result to F = (Wǫ|ω)ǫ where Wǫ|ω is the restriction

to [0, T ] × ω of Wǫ. We first show that the set F =
{

∫ t2

t1
Wǫ|ω(t, ·) dt : ǫ > 0

}

is

relatively compact in L2(ω,Rm) for all 0 < t1 < t2 < T . We first observe that
F is bounded in L2(ω,Rm) by (t2 − t1)

∥

∥W 0
∥

∥

L2
x

thanks to estimate 20. To show

that F is relatively compact in L2(ω,Rm), it is enough to check the validity the
Riesz-Fréchet-Kolmogorov compactness criterion (see [2] remark 13 page 74), i.e.,

lim
h→0

sup
ǫ>0

∥

∥

∥

∥

∫ t2

t1

(Wǫ(t, x + h)−Wǫ(t, x)) dt

∥

∥

∥

∥

L2
x

= 0. (25)

Note that Wǫ,h := Wǫ(·, · + h) is a solution to the problem 18 associated with the
initial condition W 0(· + h). Consequently, since the projection is 1-Lipschitz, we
have for all φ ∈ W 1,∞((−∞, T )×R

n,R+) with compact support in ]−∞, T [×R
n,

∫ T

0

∫

Rn

〈

∂t(Wǫ,h −Wǫ) +

n
∑

j=1

Bj∂j(Wǫ,h −Wǫ),Wǫ,h −Wǫ

〉

ϕdt dx

=
1

ǫ

∫ T

0

∫

Rn

〈PK(Wǫ,h)− PK(Wǫ)− (Wǫ,h −Wǫ),Wǫ,h −Wǫ〉ϕdt dx ≤ 0,

which implies that

∫ T

0

∫

Rn

(

|Wǫ,h −Wǫ|2∂tϕ+
n
∑

i=1

〈Wǫ,h −Wǫ, Bi(Wǫ,h −Wǫ)〉 ∂xi
ϕ
)

dt dx

+

∫

Rn

|W 0 −W 0
h |2(x)ϕ(0, x) dx ≥ 0, (26)

where W 0
h =W 0(·+ h). Let r > 0, we define the function ϕ as

ϕ(t, x) =







T−t
T

+ r−|x|
nLT

, if t ∈ [0, T ] and r ≤ |x| ≤ r + nL(T − t),
T−t
T
, if t ∈ [0, T ] and x ∈ B(0, r),

0, otherwise,

where L is the maximum of the spectral radii of the matrices Bi. We claim that for
a.e. (t, x) ∈ [0, T ]× R

n

(

|Wǫ,h −Wǫ|2∂tϕ+

n
∑

i=1

〈Wǫ,h −Wǫ, Bi(Wǫ,h −Wǫ)〉 ∂xi
ϕ

)

(t, x) ≤ 0.
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This inequality is obviously satisfied as soon as x ∈ B(0, r) and t ∈ [0, T ]. In the
case where r ≤ |x| ≤ r + nL(T − t), we get for all 1 ≤ i ≤ n

〈Wǫ,h −Wǫ, Bi(Wǫ,h −Wǫ)〉 (t, x) ≥ −L|Wǫ,h −Wǫ|2(t, x).
Consequently multiplying by ∂xi

ϕ, it yields
(

n
∑

i=1

〈Wǫ,h −Wǫ, Bi(Wǫ,h −Wǫ)〉 ∂xi
ϕ

)

(t, x) ≤ −|Wǫ,h −Wǫ|2(t, x)∂tϕ(t, x),

and the inequality is true also in that case. According to 26, we obtain that
∫

Rn

|W 0 −W 0
h |2(x)ϕ(0, x) dx

≥ −
∫ T

0

∫

B(0,r)

(

|Wǫ,h −Wǫ|2∂tϕ+

n
∑

i=1

〈Wǫ,h −Wǫ, Bi(Wǫ,h −Wǫ)〉 ∂xi
ϕ
)

dt dx.

Thanks to the definition of ϕ, we get
∫ T

0

∫

B(0,r)

|Wǫ,h −Wǫ|2 dx dt ≤ T

∫

B(0,r+nLT )

|W 0 −W 0
h |2 dx,

and the regularity of W0 together with [2, Proposition 9.3] yields
∫ T

0

∫

B(0,r)

|Wǫ,h −Wǫ|2 dx dt ≤ T |h|2
∫

Rn

|∇W 0|2 dx.

Therefore, 25 holds, and consequently the set F is relatively compact in L2(ω,Rm)
for all 0 < t1 < t2 < T .

It remains to show that

lim
h→0

sup
ǫ>0

‖τhWǫ −Wǫ‖L2(0,T−h;L2(ω,Rm)) 0.

For all φ ∈ W 1,∞(]−∞, T−h[×R
n,R+) with compact support in ]−∞, T−h[×R

n,
one has

∫ T−h

0

∫

Rn

〈∂t(τhWǫ −Wǫ), (τhWǫ −Wǫ)〉ϕdt dx

+

∫ T−h

0

∫

Rn

〈

n
∑

j=1

Bj∂j(τhWǫ −Wǫ), (τhWǫ −Wǫ)

〉

ϕdt dx

=
1

ǫ

∫ T−h

0

∫

Rn

〈PK(τhWǫ)− PK(Wǫ)− (τhWǫ −Wǫ), τhWǫ −Wǫ〉ϕdt dx ≤ 0,

since the projection is 1-Lipschitz. Arguing as before, we obtain

∫ T−h

0

∫

Rn

|τhWǫ −Wǫ|2∂tϕdt dx

+

∫ T−h

0

∫

Rn

n
∑

i=1

〈τhWǫ −Wǫ, Bi(τhWǫ −Wǫ)〉 ∂xi
ϕdt dx

+

∫

Rn

|Wǫ(h, x) −W 0(x)|2ϕ(0, x) dx ≥ 0.
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Using a similar test function

ϕ(t, x) =











T−h−t
T−h

+ r−|x|
nL(T−h) , if t ∈ [0, T − h] and r ≤ |x| ≤ r + nL(T − t),

T−h−t
T−h

, if t ∈ [0, T − h] and x ∈ B(0, r),

0, otherwise,

we get that for a.e. (t, x) ∈ [0, T − h]× R
n,

(

|τhWǫ −Wǫ|2∂tϕ+

n
∑

i=1

〈τhWǫ −Wǫ, Bi(τhWǫ −Wǫ)〉 ∂xi
ϕ

)

(t, x) ≤ 0,

and then

∫ T−h

0

∫

B(0,r)

|τhWǫ −Wǫ|2 dx dt

≤ (T − h)

∫

B(0,r+nL(T−h))

|Wǫ(h, x) −W 0(x)|2ϕ(0, x) dx

≤ T

∫

B(0,r+nLT )

|Wǫ(h, x)−W 0(x)|2 dx. (27)

The conclusion then follows from the following result whose proof is very close to
that of [3, Proposition 7].

Lemma 4.4. For all ξ ∈ C∞
c (Rn,R+), one has

lim
h→0

sup
ǫ>0

∫

Rn

|Wǫ(h, x)−W 0(x)|2ξ(x) dx = 0.

According to Theorem 4.3 and estimate 20, the sequence (Wǫ)ǫ>0 admits a sub-
sequence (not relabeled) which converges strongly in L2([0, T ];L2(ω,Rm)) to some

W̃ and weakly in L2([0, T ];L2(Rn,Rm)) to some W ∈ L2([0, T ];L2(Rn,Rm)). By

uniqueness of the limit, we infer that W̃ =W ∈ L2([0, T ];L2(Rn,Rm). Let us take
a test function φ ∈ C∞

c (]0, T [×R
n) in 19. Multiplying this inequality by ǫ and pass-

ing to the limit as ǫ → 0 yields W = PK(W ) a.e. in ]0, T [×R
n which shows that

W ∈ L2([0, T ];L2(Rn,K)). Finally, passing to the limit as ǫ → 0 in 24 shows that
W is a solution in the sense of Definition 1.1 to the problem 1. Note finally that,
by uniqueness of the solution to 1 (see [3, Lemma 9]), there is no need to extract a
subsequence to get the above convergences as ǫ→ 0.

The construction of the solution W to 1 rests on the assumption that the initial
data W0 ∈ H1(Rn,K). Let us now explain how to construct a solution W when
W0 only belongs to L2(Rn,K). We use here the following result whose proof can
be found in [3]

Theorem 4.5. Let W 0 and W̃ 0 ∈ H1(Rn,K). We denote by W (resp. W̃ ) the
solution in L2(0, T ;L2(Rn,K)) to problem 1 in the sense of Definition 1.1 associated

with W 0 (resp. W̃ 0). Then, W and W̃ belong to C([0, T ];L2(Rn,K)), and, in
addition, we have the following estimate

∀t ∈ [0, T ], ∀r > 0,
∥

∥

∥
W (t, ·)− W̃ (t, ·)

∥

∥

∥

L2(B(0,r))
≤
∥

∥

∥
W 0 − W̃ 0

∥

∥

∥

L2(B(0,r+nLT ))
,

where L is the maximum of the spectral radii of the matrices Bi.
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By mollification, let us construct a sequence (W 0
k )k∈N such thatW 0

k ∈ H1(Rn,K)
for all k ∈ N, which converges to W 0 in L2(Rn,K). The estimates of Theorem 4.5
imply that

sup
t∈[0,T ]

‖Wk(t, ·)−Wl(t, ·)‖L2(Rn) ≤
∥

∥W 0
k −W 0

l

∥

∥

L2(Rn)
, (28)

where Wk (resp. Wl) is the solution to 1 associated with the initial condition
W 0

k (resp. W 0
l ). It follows that the sequence (Wk)k∈N is of Cauchy type in

L∞(0, T ;L2(Rn,Rm)), and therefore it converges strongly in L∞(0, T ;L2(Rn,Rm))
to some function W ∈ L∞(0, T ;L2(Rn,Rm)). Thanks to the strong convergence,
we find that W satisfies the inequality 2. In addition, since Wk = PK(Wk) for all
k ∈ N, we deduce that W = PK(W ) which ensures that W ∈ L∞(0, T ;L2(Rn,K)).
The following result has thus been established.

Theorem 4.6. Let W 0 ∈ L2(Rn,K), then there exists a unique solution W ∈
L∞(0, T, L2(Rn,K)) to 1 in the sense of Definition 1.1.

5. Conclusion. In definitive, the relaxed problem 18, that was used in [3] to derive
formally a definition of weak solutions of hyperbolic constrained problems, is in fact
a rigorous way to construct weak solutions of hyperbolic constrained problems. It is
worth noting that this relaxation procedure is deeply related to viscoplastic models.
In order to fully apply this theory to mechanical problems, one should consider
problems that are posed in bounded spatial domain. To do so, a new formulation of
weak solutions to Friedrichs’ systems posed in bounded domains is proposed in [7],
without constraints. It remains now to investigate the interactions between the
boundary conditions which are considered in [7] and the convex constraints.
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mention that they have benefited from the unrivaled working atmosphere of the
2D24.
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