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Novel iron-doped aluminogermanate nanotubes were obtained using

a single step, aqueous phase synthesis protocol. These nanotubes are

isostructural with imogolite, a natural occurring nanofiber, but are

obtained by-product free in substantially larger quantities with

aluminum substitution levels around 1%. Increasing the Fe concen-

trations led to higher substitution levels but also to the co-

precipitation of Fe (oxy)hydroxides.
Nano (structured) products carry great promise for a number of
application elds because of their potential specic properties.
Implementation or enhancement of these properties requires
manipulation of the materials at the molecular/atomic level to
tailor size, shape and surface chemistry to given needs. Nano-
tubular objects are of particular interest since, at this scale, all (or
nearly all) atoms are surface atoms, and thus potentially reactive.
In this context, aluminogermanate nanotubes (Al2GeO7H4) are
attractive on multiple levels: these Ge-analogues of the alumino-
silicate imogolite (Al2SiO7H4) (hereaer referred to as Ge–imo-
golite) are obtained with a low temperature, aqueous phase
nucleation-growth protocol.1,2 As opposed to the Si based tubes,
Ge–imogolite is formed quantitatively from molar Al and Ge
solutions.3 Recent studies led to a better understanding of the
formation mechanism and improved control over tube length
(approx. 10 to 1000 nm),4 and tube structure (crystallinity,5 single-
(SW) vs. double-walled (DW) nanotubes).6,7

Ge–imogolite is potentially well suited for a wide range of
industrial applications (e.g. chemical sorption,8–10 catalysis,11–13
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humidity control14 and gas adsorption, separation and
storage15–17). Some of these specic properties may be obtained
only with prior surface functionalization of the tubes. For
example, modications of the inner wall can cause changes in
the sorption properties, either by a better selectivity (e.g. CO2

sorption enhanced by one order of magnitude),18 or as side
effect of tube diameter changes which increased the space
between the imogolite bers.19 There have been attempts of
substituting Al by Fe in the structure of Si–imogolite to obtain a
modied reactivity.13,20 For instance, the addition of Fe(III)
during the synthesis of Si–imogolite resulted in a modied
imogolite with catalysis properties for the oxidation of organic
compounds such as cyclohexane, toluene, benzaldehyde and
chlorobenzenes.13 Another example is enhanced removal of
As(V) by an imogolite–magnetite hybrid.20 However, the status of
Fe atoms within the imogolite structure remains unclear.

The synthesis of by-product free, Fe-doped imogolite still
remains a challenge. Ab initio computations suggested that a 5
to 10% Al substitution by Fe in Si– or Ge–imogolite would
reduce the band gap value from 4.6 to 2.6 and from 4.2 to 1.0 eV
respectively,21 thereby conferring semi-conductor properties to
Fe-doped imogolite. The case of Ge–imogolite is particularly
interesting because of the ease of selectively synthesizing large
amounts of single- vs. double-walled nanotubes. However, there
is no experimental evidence of Al substitution by Fe in Ge–
imogolite in the literature. In the present study, we describe the
successful synthesis of a novel Fe-doped Ge–imogolite, where
iron is incorporated in the wall structure.

Fe-doped Ge–imogolite was obtained by modifying the
synthesis protocol of iron free DW Ge–imogolite3 as follows:
under strictly anoxic conditions (N2 lled glovebox), aluminum
perchlorate and iron(II) perchlorate were mixed (total concen-
tration 0.2 mol l�1) at molar ratios nFe/n(Al+Fe) ¼ 0, 0.02, 0.05 and
0.1 (hereaer referred to as 0p, 2p, 5p, and 10p respectively).
Iron II was used to ensure the presence of dissolved Fe mono-
mers for the nucleation process. Tetraethoxygermanium was
added (n(Al+Fe)/nGe ¼ 1.75) to the solution. This ratio deviates
from the theoretical value of 2 for a well crystallized system.
RSC Adv., 2014, 4, 49827–49830 | 49827
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Here, the strategy was to deliberately create octahedral vacan-
cies to facilitate the incorporation of the larger Fe(II) cation into
the gibbsite layer. The mixture was then slowly hydrolyzed with
NaOH to a hydrolysis ratio (nOH/n(Al+Fe)) of 2. The suspensions
were incubated at 95 �C and then dialyzed (10 kDa cutoff)
against ultrapure water to remove dissolved salts. The forma-
tion of tubular structures was ascertained with AFM observa-
tions (Bruker INOVA). Chemical composition (Al, Ge, and Fe)
was determined by ICP-AES (Horiba Ultima-C). Additional
characterization was performed on freeze-dried subsets of the
samples. X-ray diffraction patterns (PANalytical X'Pert Pro) were
recorded using a glass capillary sample holder. Extended X-ray
Absorption Fine Structure (EXAFS) is an element specic
probe of the molecular environment of a given atom. Fe K-edge
EXAFS spectra were collected in the transmission mode on
beamline 11.1 at the ELETTRA synchrotron (Trieste, Italy).
Calculated spectra were tted to the experimental signal using
the iXAFS soware.22

AFM images obtained conrmed the presence of nanotubes
within our samples. Typical AFM pictures of samples 0p and 2p
are shown in Fig. 1. Similar pictures were obtained for samples
5p and 10p (see ESI†). Tube diameter distributions were similar
for 0p and 2p sample (see Fig. 1C) but shied towards larger
values with increasing [Fe] (see ESI†).

The lengths of tubes vary between 30 to 150 nm for each
sample. Within the samples with the highest Fe concentrations
(5p and 10p), large globular solids of about 100–200 nm height
and 500 nm length, were observed (see ESI†) and are assumed to
be co-precipitated Fe (oxy)hydroxides. The XRD patterns dis-
played the expected bands characteristic of the structure of well
crystallized Ge–imogolite structure5 (see ESI†) without addi-
tional features.
Fig. 1 AFM observation in tapping mode for samples 0p (A) and 2p (B)
and diameter height distribution (C): solid (sample 0p) and dotted line
(sample 2p). Height distributions were obtained with ImageJ soft-
ware,23 based on the analysis of a minimum of 200 nanotubes,
aggregates excluded.

49828 | RSC Adv., 2014, 4, 49827–49830
The n(Al+Fe)/nGe ratio of 1.6 for the iron free sample (Table 1)
indicates the presence of octahedral vacancies in the wall
structure as expected. In the sample with the lowest Fe
concentration, the examination of the coordination environ-
ment using EXAFS spectra analysis revealed that no Fe(II) is le
in the samples. Indeed typical Fe(II)–O distances are around
2.10 Å; however for sample 2p, the ligand sphere of iron con-
sisted of 6 O atoms at 1.99 Å (Fig. 2 and Table 2), which is
indicative of an octahedral coordination of Fe(III). Oxidation of
the initially introduced Fe(II) most likely occurred during the
incubation phase, i.e. when the containers, although closed,
were removed from the anoxic environment to be placed in the
oven. Chemical analyses (Table 1) indicated that only half of the
initially introduced Fe was recovered in the formed tubes.

The second coordination shell around Fe was tted with 2.1
� 0.3 Al atoms at 2.96 � 0.01 Å (Table 2). This result demon-
strates that Fe is incorporated into the structure of Ge–imogo-
lite. The NAl coordination number is signicantly lower than the
theoretical 3 Al neighbors in the case of an isomorphic substi-
tution in a well crystallized system. In our case however, the
initial (Al + Fe)/Ge ratio was deliberately set below 2 in order to
create tube-wall defects capable of accommodating the larger
Fe(II)O6 octahedron (Fe(II)–O: 2.12 Å vs. 1.88 Å for Al–O).24–26 The
measured n(Al+Fe)/nGe ratios in the nal products were below 2 as
expected (Table 1), indicating the presence of octahedral
vacancies in the wall structure for all samples. The Fe(III) in the
nal tubes is adjacent to a vacant site. It is likely that iron is
incorporated into the tube wall structure in the form of Fe(II)
cations during the initial nucleation phase under anoxic
conditions. In this context, the present data suggest that (i)
Fe(II), which requires more than 10% additional space
compared to Al(III), is added into pre-existing wall defects with
the size of two neighboring Al vacancies, or (ii) the nucleation
around Fe(II) proceeded no further than 2 Al neighbors so as to
avoid structural constraints, (iii) or both. The oxidation of iron
during the incubation phase eases steric constraints due the
smaller size of the Fe(III) octahedra. The formation of 3 Fe–O–Al
linkages with subsequent bond breakage during oxidation, as
well as the exchange of a structural Al with a Fe octahedron are
unlikely to form from an energy point of view. Fig. 3 shows a
tentative structural model of the Fe-doped Ge–imogolite derived
from the present data. The absence of Fe–Fe contribution
indicates the absence of Fe clusters/polymers, which suggests
that all the detected iron is within the imogolite structures; this
translates to a substitution level of about 1% (Table 1).

At higher Fe content (samples 5p and 10p), shell tting as
performed previously with 2p sample yielded poor results.
Adding a Fe–Fe contribution did not improve the ts to a
satisfactory level. The obtained high values of chi-square and
sigma suggest a complex multi-phasic system certainly due to
the precipitation of iron (oxy)hydroxide. This hypothesis is
consistent with the observation of globular phases on the AFM
pictures (see ESI†). To get a more detailed view of the Fe
speciation in these systems, linear combination tting (LCF)
was performed using the spectrum of sample 2p as reference for
Fe containing imogolite (i.e. assuming that the coordination
environment of Fe within the tube structure does not evolve
This journal is © The Royal Society of Chemistry 2014
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Table 1 Element recovery in the formed Ge–imogolite samples as measured by ICP-AES and corrected for non tubular solids (samples 5p and
10p) obtained using EXAFS LCF (see Fig. 4). Recovery rates are expressed as % of initial amounts X0

Sample Altubes/Al0 (%) Fetubes/Fe0 (%) Getubes/Ge0 (%) (Al + Fe)/Ge in tube Fe in tube (%)

0p 73 0 88 1.6 0
2p 85 48 84 1.7 1
5p 65 29 70 1.6 2
10p 75 31 73 1.7 3

Fig. 2 EXAFS spectra k3c(k) (A) and Fourier transform (B) of 2p sample
at Fe-K edge. Experimental (solid lines) and calculated signal (dotted
lines) (see Table 2 for fitting details).

Fig. 3 Model of Ge imogolite with structural substitution of Al by Fe
and interatomic distances: (a) Fe–O ¼ 1.99 Å; (b) Fe–Ge ¼ 3.34 Å (c)
Fe–Al ¼ 2.96 Å. Generated by using the CrystalMaker software (blue:
Al; purple: Ge; red: O; gold: Fe).
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with Fe concentration), and the following model Fe-phases:
poorly ordered ferrihydrite, 6-L-ferrihydrite, magnetite, lep-
idocrocite, maghemite, nontronite and goethite. The best ts
were obtained with combinations of the Fe-doped Ge–imogolite
and 6-L-ferrihydrite (Fig. 4). Adding additional Fe compounds
did not improve the t.

Ferrihydrite is a minor species for sample 5p, but accounts
for 40% of the signal when the Fe concentration is doubled.
This non linear increase of the proportion of 6-L-ferrihydrite in
the system may be the consequence of a “saturation” of the
available sites (although octahedral vacancies are still detected
at the highest Fe concentration) and/or slow Fe incorporation.
The Al substitution levels calculated from the LCF proportions
(see Fig. 4) and ICP-AES measurements indicate that the Fe
incorporation increases with the initial iron concentration
(Table 1). However one needs to keep inmind that the values for
the two highest Fe concentration are no more than crude esti-
mates because of the imprecision of LCF tting and the
assumption that the Fe binding environment, and in particular
the value of NAl, is constant irrespective of the Al substitution
Table 2 Structural parameters for sample 2p derived from R-space fitting
generated by FEFF 6.2. Amplitude factor ¼ 0.77 � 0.03 and DE ¼ �2.80 �
Rx (Å): interatomic distance; Nx: number of neighbors; sx (Å): Debye-Wa

Fe–O shell Fe–Al shell

RO (Å) NO sO (Å) RAl (Å) NAl

1.99 � 0.01 6.0 � 0.2 0.07 � 0.02 2.96 � 0.01 2.1 �

This journal is © The Royal Society of Chemistry 2014
level. Whether Fe addition into pre-existing wall defects or Al
polymerization around Fe is the prevailing incorporation
mechanism, the present data suggest that the proportion of
structural Fe within the tube may be increased beyond the 3%
measured here, although it is questionable if signicantly
higher proportions can be achieved since the incorporation of
Fe does not increase linearly with its initial concentration.
Factors controlling the maximum proportion of Fe within the
tube are probably the size difference between the FeO6 and AlO6

octahedra potentially causing lattice strain and/or the decit of
charge in the initial nucleation stage caused by the substitution
of an Al3+ by a Fe2+. Both can potentially lead to growth inhi-
bition above a certain substitution rate. From an engineering
point of view, however, increasing the Fe proportion is useful
only if a cost-effective separation of the tube from the Fe (oxy)
hydroxide by-products is possible.

The chemical analysis revealed another interesting feature:
not all the introduced Fe are recovered in the precipitated solids
(Table 1). A similar phenomenon has been reported previously
during the synthesis of Fe free Ge–imogolite where unreacted Al
(from 1.052 to 3.360 Å) using theoretical Fe–O, Fe–Al and Fe–Ge paths
0.52; Chi-square ¼ 1071, reduced Chi-square ¼ 82, R-factor ¼ 0.014.
ller factor

Fe–Ge shell

sAl (Å) RGe (Å) NGe sGe (Å)

0.3 0.05 � 0.03 3.34 � 0.01 3.1 � 0.33 0.08 � 0.03

RSC Adv., 2014, 4, 49827–49830 | 49829
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Fig. 4 Linear combination fitting of samples 5p and 10p and its results.
A: EXAFS spectra k3c(k); B: Fourier transform. Solid line: experimental;
dotted line: calculated.
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represented approx. 30% of the initial concentration;27 in the
present work this proportion was in a ca. 15–35% range. For Fe,
the proportion of unreacted metal cation appears to be even
larger (in order of 50%). As opposed to Al, it is very unlikely that
the “missing” Fe is in monomers form. Our results suggest that
the Fe clusters formed at low Fe concentration are smaller than
the cutoff size of the dialysis membrane. However the size of
these Fe phases increases with the concentration as demon-
strated by the increasing proportion of non-imogolite phases in
the recovered solids.

Conclusions

Novel Fe-doped Ge–imogolite nanotubes were obtained in large
amounts with a simple one step synthesis in aqueous systems.
Fe is incorporated in the structure by occupying octahedral
vacancies in the curve gibbsite layer. Tubes 1% Fe doping were
obtained by-product free. Higher levels of Fe incorporation were
achieved at the cost of co-precipitation of Fe (oxy)hydroxides
which complicates the purication process. The present results
demonstrate the potential of inexpensive synthesis protocol for
obtaining nanotubular structures with a variety of compositions
adapted for specic applications.
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