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ABSTRACT: The heteroaggregation of engineered nanoparticles (ENPs) with
natural colloids (NCs), which are ubiquitous in natural surface waters, is a
crucial process affecting the environmental transport and fate of ENPs.
Attachment efficiencies for heteroaggregation, αhetero, are required as input
parameters in environmental fate models to predict ENP concentrations and
contribute to ENP risk assessment. Here, we present a novel method for
determining αhetero values by using a combination of laser diffraction
measurements and aggregation modeling based on the Smoluchowski equation.
Titanium dioxide nanoparticles (TiO2 NPs, 15 nm) were used to demonstrate
this new approach together with larger silicon dioxide particles (SiO2, 0.5 μm)
representing NCs. Heteroaggregation experiments were performed at different environmentally relevant solution conditions. At
pH 5 the TiO2 NPs and the SiO2 particles are of opposite charge, resulting in αhetero values close to 1. At pH 8, where all particles
are negatively charged, αhetero was strongly affected by the solution conditions, with αhetero ranging from <0.001 at low ionic
strength to 1 at conditions with high NaCl or CaCl2 concentrations. The presence of humic acid stabilized the system against
heteroaggregation.

■ INTRODUCTION

The challenges associated with assessing the risks of the
increased production and use of engineered nanoparticles
(ENPs) in a wide range of applications and consumer products
have been widely discussed.1,2 The new properties of ENPs
compared to “conventional” pollutants such as organic
chemicals and metals require a review of methods for studying
and predicting the behavior of ENPs in different environmental
systems. Numerous studies have shown that ENPs readily
undergo transformations in the environment and have a high
tendency to attach to each other and to other surfaces present
in the environment. The form in which ENPs are present in a
given environmental matrix (pristine, transformed, free,
aggregated, or attached) affects their toxicity, which makes it
important to understand transformation pathways of ENPs in
complex environmental systems.3−7

Until now, much emphasis has been placed on analyzing the
homoaggregation (i.e., the aggregation of ENPs among
themselves) of ENPs under a wide range of different
conditions.8−11 However, in realistic environmental situations,
the expected concentrations of ENPs, for example, in surface
waters, are so low12−15 that ENPs will be outnumbered by
natural colloids (NCs) (e.g., clays) and heteroaggregation of
ENPs with these NCs will be a far more important process than

homoaggregation. We demonstrated the importance of
heteroaggregation in comparison to other processes affecting
the fate of ENPs in a recent modeling case study of TiO2

nanoparticles (NPs) in a river.12

While methods of measuring the homoaggregation of ENPs
are well established, considerable challenges remain for
measurements of heteroaggregation. A binary system of one
ENP type and another particle species is more complex than a
single-particle system; heteroaggregation needs to be differ-
entiated from simultaneous homoaggregation and different
orders of magnitude in size and concentration between the NPs
and the NCs require a thoughtful choice of analytical tools. For
the results of heteroaggregation experiments to be used for
predictions of ENP fate, it is important to consider the required
format of the experimental output to be suitable as input for
environmental fate models. In this context, (hetero)aggregation
rates are not suitable, because they are concentration-
dependent. Instead, attachment efficiencies for heteroaggrega-
tion, αhetero, which represent the probability of two particles of
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different type to attach and form an aggregate upon collision,
need to be identified; they are suitable concentration-
independent input values for fate models. Attachment
efficiencies for aggregation (homo- and hetero-) depend
strongly on the surface interactions of the aggregating particles
and are therefore influenced by the characteristics of the
respective particles, as well as the properties of the surrounding
medium (i.e., pH, ionic strength and composition and presence
of natural organic matter (NOM)). It is therefore necessary to
determine αhetero values specifically for each NP−NC
combination of interest and under a wide range of solution
conditions.
Recently, a few different approaches have been presented

that attempt to determine the heteroaggregation kinetics of
ENPs.16−19 Huynh et al.17 studied the heteroaggregation of
oppositely charged multiwalled carbon nanotubes (CNTs) and
hematite nanoparticles (HemNPs) using time-resolved
dynamic light scattering (DLS) and cryogenic transmission
electron microscopy (cryo-TEM) to determine aggregation
rates and elucidate aggregation mechanisms. In their study,
heteroaggregation rates were determined as a function of the
relative CNT and HemNP concentrations, but attachment
efficiencies could only be derived for the homoaggregation
experiments, not for heteroaggregation. Furthermore, they
worked at one pH value (pH 5.2) and at low ionic strength (0.1
mM NaCl), conditions that are not representative of most
environmental systems.
The study by Afrooz et al.18 was conducted under

environmentally more relevant conditions (at pH 6.2 and in a
wider range of electrolyte concentrations) with gold nano-
spheres and plutonic acid (PA) modified single-walled carbon
nanotubes (PA-SWNTs), where both NP types are negatively
charged, but the PA-SWNTs do not homoaggregate due to the
PA coating. Nevertheless, it was also not possible in this study
to determine αhetero values. While αhomo was determined by the
classic approach of normalizing the given homoaggregation rate
(obtained by time-resolved DLS) with the maximum
homoaggregation rate (above the critical coagulation concen-
tration (CCC) of the given electrolyte), this approach could
not be employed for the determination of αhetero because a
maximum heteroaggregation rate could not be determined even
at high electrolyte concentrations in the experiments
performed.
Zhou et al.16 are the first to present attachment efficiencies

for heteroaggregation (αhetero), for the interaction of TiO2 and
Ag NPs with montmorillonite (a natural clay mineral). This
study also employed time-resolved DLS to measure aggregation
rates at pH 4 and pH 8 in a wide range of NaNO3
concentrations. Their method to determine αhetero values is
based on the same approach used for homoaggregation, by
normalizing the measured aggregation rate with the fastest
aggregation rate. However, the “αhetero” obtained in this way is
dependent on the relative NP and clay particle concentrations
in the system20 and is therefore not suitable as a concentration-
independent input value for ENP fate models.
Finally, Loosli and Stoll19 examined the interaction of TiO2

NPs with micron-sized latex particles in three different pH
regimes (3.7, 6.2, and 10) at low ionic strength, measuring the
aggregation kinetics by following the decrease of free latex
particles with a particle sizer (Coulter Counter Multisizer). In
this study the electrostatic interactions between the nano- and
micron-sized particles at different solution conditions and
aggregation mechanisms in these binary systems were studied

and discussed in detail, but no attachment efficiencies were
reported.
While contributing to an increased understanding of

interactions of ENPs in binary systems, none of these studies
provides a generalizable method for determining concentration-
independent attachment efficiencies for heteroaggregation,
αhetero, in a range of environmentally relevant conditions and
applicable to different combinations of ENPs and (natural)
colloid particles, which are typically several orders of magnitude
larger in size. Here we present a new method for determining
the attachment efficiency for heteroaggregation, αhetero, between
ENPs and natural colloids (NCs) using a combination of laser
diffraction and a Smoluchowski-based aggregation model. A
first application of the method is demonstrated for the
heteroaggregation of TiO2 NPs with SiO2 particles (represent-
ing model NCs) at pH 5 and pH 8, where the particles are of
opposite and equal surface charge, respectively. The experi-
ments were conducted in a wide range of electrolyte conditions
and the effect of humic acid on αhetero was investigated.

■ GENERAL CONCEPT
Our method is designed to work for NPs in the nanometer size
range and NCs in the micrometer size range and can be used in
a large range of (environmentally relevant) hydrochemical
conditions. The general approach is outlined in Figure 1. We
differentiate between two generations of heteroaggregates:
“primary heteroaggregates” consist of one NC with one or
more attached NPs, their size remaining similar to that of the
bare and dispersed NCs. “Secondary heteroaggregates” result
from the further aggregation of primary heteroaggregates and
involve at least two NCs. The secondary heteroaggregates thus
display a size significantly larger than dispersed primary
heteroaggregates or bare NCs (Figure 1a).
Under most environmentally relevant situations, the NPs and

NCs will differ by at least one order of magnitude both in size
and concentration, which makes a direct, time-resolved
measurement of the attachment of the NP and NC and
formation of primary heteroaggregates nearly impossible.
Instead, we measure the aggregation rate of the primary
heteroaggregates to form secondary heteroaggregates and then
use a numerical method to determine the original attachment
efficiency between the NPs and NCs, αhetero.
The aggregation kinetics are measured by time-resolved laser

diffraction (Figure 1b). The scattered intensity of the laser
diffractometer decreases strongly (by the power of 6) with
decreasing size, therefore the signal is blind to the NPs (also
present at much lower concentration than the NCs) and only
the aggregation of NCs or primary heteroaggregates is
measured. The experiments are carried out in a system of
well controlled hydrological conditions (see Materials and
Method section), which is connected by a pump to the
measuring cell of the laser diffractometer, and the aggregation
of the suspension of NPs and NCs is measured as a function of
time (Figure 1b). The NC concentration is kept constant and
different NP concentrations are tested until heteroaggregation
of NPs and NCs leads to the formation of measurable
secondary heteroaggregates.
The experimental output is then analyzed by a Smoluchow-

ski-based aggregation model (referred to as the Smolu-Model).
This model can simulate homoaggregation kinetics and is
parametrized with the specific experimental conditions of a
given aggregation experiment. Model output is presented as the
variation of the volume-weighted median particle size (Dv,50) as
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a function of time, which can be directly compared to the
experimental output from the laser diffractometer. From this
comparison one can then obtain the attachment efficiency
(αglobal) that best corresponds to the observed aggregation of
the primary to secondary heteroaggregates (Figure 1c) and in a
next step calculate the attachment efficiency of heteroaggrega-
tion between the NPs and the NCs (αhetero).
In this study we use TiO2 NPs (5−30 nm) and 0.5 μm SiO2

particles to represent model NCs. Commercial SiO2 particles
with a narrow size distribution were chosen for this initial study
to enable a specific model parametrization and assess the
validity of this new method. At the same time, SiO2 particles are
a good first approximation of natural NCs, which are typically
composed, among others, of a large fraction of SiO2 minerals.
The heteroaggregation experiments are conducted at pH 5,

where the NPs and NCs have an opposite surface charge and
αhetero is expected to be close to 1, which enables us to constrain
and validate the approach, and at pH 8, which is more
representative of realistic environmental conditions and where
both the NPs and NCs are negatively charged and are likely to
undergo more repulsive interactions, that is, lower αhetero.

■ MATERIALS AND METHODS

Preparation of SiO2 and TiO2 Suspensions. Mono-
disperse spherical silicon dioxide (SiO2) particles with a narrow
size distribution around 0.5 μm were purchased from Alfa Aesar
(Silicon(IV) oxide, powder, 0.5 μm, 99.9%) in powder form. A
stock suspension of 0.5 g/L SiO2 was prepared by ultra-
sonication of the SiO2 powder in Milli-Q water for 15 min and
stirring the suspension at room temperature until use. Fresh

Figure 1. Overview of the general concept developed in this study to determine attachment efficiencies for heteroaggregation, αhetero. (a) The
aggregation of small NPs with larger NCs, first forming NP-NC primary heteroaggregates which then further aggregate with each other to form
larger secondary heteroaggregates. (b) Experimental setup. (c) The data interpretation with an aggregation model and calculation of αhetero is
visualized.
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stock suspension was prepared not more than 24 h before each
experiment.
Titanium dioxide nanoparticles (TiO2 NPs) (65% anatase,

35% brookite) with a primary particle size of 5−30 nm were
obtained from Nanostructured and Amorphous Material Inc.
(titanium oxide (anatase 5−30 nm) in water). The TiO2 NPs
were pure, not coated and were purchased dispersed in an
aqueous suspension at acidic pH, with a concentration of 170
g/L and a specific surface area of 193 m2/g.
Solution Chemistry. Suwanee River Humic Acid (SRHA,

Standard II) was purchased from the International Humic
Substances Society. A stock solution of 0.5 g/L was prepared by
dissolving SRHA in Milli-Q water (stirring 12 h, r.t., in the
dark) and adjusting the pH to 8.0 by addition of 0.2 M NaOH.
The stock solution was stored at 4 °C in the dark until further
use.
All suspensions were prepared with ultrapure Milli-Q water

(18.2 MΩ cm−1). Hydrochloric acid (HCl, 0.1 M) and sodium
hydroxide (NaOH, 0.2 M) were used to adjust the pH of the
experiment suspensions. All experiments at pH 8 were prepared
with a background concentration of 1 mM sodium bicarbonate
(NaHCO3) to facilitate pH adjustment. Sodium chloride
(NaCl) and calcium chloride (CaCl2) were used to adjust the
solution ionic strength.
Electrophoretic Mobility Measurements. A Malvern

Zetasizer NanoZS was used to determine the electrophoretic
mobility (EPM) of the SiO2 and TiO2 at different solution
conditions. The EPM of SiO2 was measured at a concentration
of 100 mg/L and for the TiO2 NPs at a concentration of 1 mg/
L. In both cases, the NaCl/CaCl2, SRHA concentration and pH
were adjusted as required for each experiment.
Size Distribution Measurements and Homoaggrega-

tion Kinetics of TiO2 NPs. The initial size distribution and
homoaggregation kinetics of the TiO2 NPs were measured by
time-resolved DLS on the Malvern Zetasizer NanoZS under
different solution conditions. The measurements were
performed at a TiO2 concentration of 10 mg/L, which is 1
order of magnitude higher than used in the heteroaggregation
experiments but was required to reach a sufficiently strong
signal on the DLS.
SiO2 Homo- and Heteroaggregation Kinetics Deter-

mination. The initial size distribution of the SiO2 suspensions,
as well as the homoaggregation kinetics of the SiO2 particles
and the heteroaggregation kinetics of the SiO2 particles in the
presence of TiO2 NPs were measured by laser diffractometry,
using the Malvern Mastersizers S and 3000. The experimental
setup is illustrated in Figure 1b. The experiments were carried
out in a system of well-controlled hydrological conditions in a
1-L beaker connected to the measurement cell of the laser
diffractometer. The beaker contained four equally spaced baffles
and a calibrated agitator to achieve an average velocity gradient
G of 100 s−1 in the beaker.21 While the shear in the tubes
connecting the beaker to the measurement cell could not be
precisely adjusted, the experimental suspension was continu-
ously pumped through the system at a constant speed of 100
mL/min and the tubes were kept as short as possible to ensure
reproducible conditions between different experiments and
minimize the effect of the shear in the tube on the overall
aggregation kinetics of the system.
For each aggregation experiment, the SiO2 and TiO2

suspensions were freshly prepared. If not otherwise noted,
the heteroaggregation experiments were performed at an SiO2
concentration of 100 mg/L and a TiO2 concentration of 0.8

mg/L. The SiO2 suspensions were prepared by diluting the 0.5
g/L SiO2 stock suspension with Milli-Q water to reach 400 mL
of suspension at the desired concentration, applying ultra-
sonication for 20 min to ensure full dispersion, adding the
electrolyte and, if required, a given volume of the SRHA stock
solution and adjusting the pH (the pH was then monitored
during the experiment to ensure any observed aggregation is
not a pH effect). The TiO2 suspensions were prepared by
diluting the 170 g/L TiO2 stock suspension with Milli-Q water
to reach 400 mL of suspension at the desired concentration and
adjusting the pH. This approach of mixing equal volumes of NP
and NC suspensions was chosen to favor rapid and
homogeneous mixing of the system. For the SiO2 homoag-
gregation experiments the 400 mL of TiO2 suspension were
replaced by 400 mL NaCl or CaCl2 solutions. The SiO2
suspension was mixed with the TiO2 suspension or electrolyte
solution in the experiment beaker at time t0 and the change in
size distribution was measured over time.

Determination of Attachment Efficiencies with the
Smolu-Model. The aggregation data were analyzed with a
numerical aggregation model based on the Smoluchowski
equation.22 The Smolu-Model, which was developed pre-
viously22 and is briefly described in the Section S1 of the
Supporting Information, was parametrized to match the
experimental conditions (particle characteristics, hydrological
conditions, temperature etc.) and was used to determine the
attachment efficiency, αglobal, which describes the aggregation
process of primary to secondary heteroaggregates (Figure 1a),
for each experiment. A list of the most important model
parameters is given in Table S1 in the Supporting Information,
along with an overview of the specific parameters for the
different aggregation experiments in Supporting Information
Table S2. Note that the Smolu-Model predicts aggregation of
one type of particles (homoaggregation) and was parametrized
for the SiO2 particles to fit the SiO2 homoaggregation
experiments and for the TiO2−SiO2 primary heteroaggregates
for the heteroaggregation experiments. Knowing the surface
fraction of NCs covered by NPs, f NP, and the attachment
efficiencies for homoaggregation for both the NPs (αhomo

NP ) and
the NCs (αhomo

NC ) under the given hydrochemical conditions it is
possible to estimate the attachment efficiency of heteroag-
gregation between NPs and NCs (αhetero) according to eq 1.

α
α α α

=
− · − − ·

· − ·
f f

f f

(1 )

2 (1 )hetero
global NP

2
homo
NP

NP
2

homo
NC

NP NP (1)

A derivation of eq 1 is given in section S2 of the Supporting
Information. The use of eq 1 in combination with the Smolu-
Model is based on the assumption that the NPs rapidly attach
to the NCs’ surface (due to high collision frequencies as a result
of high particle concentrations) and distribute uniformly on the
NC surface. Furthermore, we assume that the attachment
efficiencies (αhomo

NP , αhomo
NC , and αhetero) remain unaffected by the

aggregation state of the particles and therefore the attachment
efficiencies derived from the aggregation behavior of the
secondary heteroaggregates are assumed to correspond well to
the attachment efficiencies of the free particles. This is based on
the assumption that the surface properties (e.g., surface charge)
do not change significantly upon aggregation.23

Determination of Aggregate Fractal Dimension. The
fractal dimension, Df, of the aggregates is an important input
parameter to the aggregation model as it describes the
aggregate structure and strongly affects the collision mode
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and aggregate growth rate. For each experiment, Df was
determined from the laser diffraction data by plotting the raw
data in terms of the scattered intensity as a function of the wave
vector, as described elsewhere.24

■ RESULTS AND DISCUSSION

Material Properties at Different Solution Conditions.
The SiO2 particles form a stable suspension with a narrow size
distribution around 0.5 μm at pH 5 and 8 (Figure S4A,
Supporting Information). The SiO2 particles are of neutral
charge at pH 1.3 and display an increasingly negative
electrophoretic mobility (EPM) at higher pH values (Support-
ing Information Figure S2).
The TiO2 NPs form a suspension around 15 nm average

diameter (Figure S4A, Supporting Information). They are
positively charged at pH 5 and negatively charged at pH 8, with
an isoelectric point around pH 6.5 (Supporting Information
Figure S2). These characteristics are in good agreement with
the data measured by Loosli and Stoll19 for the same material.
The effect of increasing electrolyte concentration on the

surface charge of the SiO2 particles and the TiO2 NPs was
studied at pH 8 by varying the NaCl concentration between 1
and 500 mM (Supporting Information Figure S3) and the
CaCl2 concentration between 0.1 and 50 mM (Supporting
Information Figure S3). The EPM of the SiO2 remains negative
throughout most of the electrolyte range studied, decreasing
from −5.8 to −1.3 × 10−8 m2 V−1 s−1 between 1 and 500 mM
NaCl (and from −4.2 to +0.5 × 10−8 m2 V−1 s−1 for CaCl2
between 0.1 and 50 mM). The TiO2 NPs display a less negative
surface potential than the SiO2 particles in all cases and reach
close to neutral charge at 500 mM NaCl and 10 mM CaCl2.
The decrease of EPM with increasing electrolyte concentration
for both SiO2 and TiO2 is in accordance with the expected
electrical double layer compression because of the presence of
electrolytes.
Homoaggregation Kinetics at pH 5 and 8. Before

determining the heteroaggregation kinetics of the SiO2−TiO2
system it was required to determine the homoaggregation
attachment efficiency, αhomo, for both SiO2 and TiO2 at the
different solution conditions to later calculate αhetero from the
laser diffraction data with eq 1. The results of the
homoaggregation experiments are presented in more detail in
section S4 in the Supporting Information.
Heteroaggregation Kinetics at pH 5 (Attractive

Charges). The first set of heteroaggregation experiments was

performed at pH 5 (1 mM NaCl). At pH 5, the SiO2 particles
are negatively charged (EPM of −4.2 × 10−8 m2 V−1 s−1) and
the TiO2 NPs are positively charged (EPM of +2.5 × 10−8 m2

V−1 s−1). Accordingly, a strong attraction between the SiO2

particles and the TiO2 was expected. Under these conditions
both the SiO2 and TiO2 particles do not homoaggregate
(αhomo

SiO2/TiO2 < 0.001), therefore any observed aggregation is
expected to be only a result of heteroaggregation between SiO2

and TiO2.
The heteroaggregation experiments were performed in the

experimental setup illustrated in Figure 1b at an SiO2

concentration of 100 mg/L and a set of different TiO2 NP
concentrations (0.1, 0.5, 0.8, 1.0, 2.0 mg/L). Up to a
concentration of 0.5 mg/L TiO2 (which corresponds to a
surface coverage, f NP, of the SiO2 by the TiO2 NPs of 3%) no
heteroaggregation of the SiO2−TiO2 system is observed
(Figure 2), despite the expected αhetero of 1. However, upon
addition of 0.8 mg/L TiO2 fast heteroaggregation of the SiO2−
TiO2 system is induced (Figure 2). This TiO2 concentration
represents an f NP of approximately 5%, which appears to be the
critical dose of TiO2 NPs covering the SiO2 surface required to
induce secondary aggregation of the SiO2−TiO2 primary
heteroaggregates. It seems that the threshold f NP for secondary
heteroaggregation might be related to the overall surface charge
of the heteroaggregates. While at 0.5 mg/L TiO2 and 100 mg/L
SiO2 the effective EPM of the system is around −2.0 ± 0.5 ×
10−8 m2 V−1 s−1, resulting in strong repulsion of the primary
heteroaggregates, at 1 mg/L TiO2 the overall charge of the
particles is almost neutral (EPM of −0.1 ± 0.1 × 10−8 m2 V−1

s−1). This observation suggests a heteroaggregation mechanism,
where the NPs attached to the surface of the SiO2 particles
progressively screen the surface charge of the silica until the
primary heteroaggregates can come close enough to each other
to undergo attractive electrostatic interactions via NP bridges.
We assume that such bridges, where one NP connects two
neighboring silica surfaces, represent the main type of bond
enabling the secondary heteroaggregation process.
Interestingly, the overall heteroaggregation rate observed in

the presence of TiO2 NPs is higher than the maximum
homoaggregation rate of SiO2 achieved with the addition of
salt. This suggests that the secondary TiO2−SiO2 heteroag-
gregates have a different, more stable, structure than the SiO2

homoaggregates. This is due to the strong attractive electro-
static forces between the SiO2 and TiO2 particles due to their

Figure 2. (A) Example of analysis of aggregation data with the Smolu-Model for homoaggregation of 100 mg/L SiO2 and heteroaggregation of 100
mg/L SiO2 and TiO2 at pH 5. (B) Zoom into the initial aggregation stages.
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respective charges under these conditions providing additional
stability to the heteroaggregates.
To obtain the attachment efficiencies of the heteroaggrega-

tion at pH 5, the experimental data (Dv,50 vs time) were
compared to the Smolu-Model output. An example of the
assessment for the homo- and heteroaggregation experiments at
pH 5 is provided in Figure 2. The model parameters were
adjusted to represent the experimental conditions (Supporting
Information Table S2), the model was run with different α
values (representing the attachment efficiency between the
TiO2−SiO2 primary heteroaggregates (αglobal)) until the best
visual match was found with the experimental data. Here the
focus was on the initial stages of the aggregation, until the
aggregates reach approximately 5 μm in size (Figure 2B),
because at later stages of the aggregation the aggregates become
more polydisperse and their fractal dimension is expected to
differ compared to the smaller aggregates. This cannot be
reflected by the Smolu-Model, which assumes a constant Df
throughout one simulation. Therefore, at later stages of the
aggregation, the match between the experimental data and the
model is less satisfactory.
The aggregate structure strongly affects the collision

frequency because the porosity of an aggregate determines
the effect of fluid drag forces on the particle trajectories.22,25

The Smolu-Model accounts for this effect by allowing the
selection of different collision modes, namely a rectilinear, a
curvilinear or an intermediate collision mode,22 which can have
a strong effect on the predicted aggregation curves. For the
homoaggregation experiments an intermediate approximation
(between rectilinear and curvilinear collision) was assumed.22,25

To account for the additional electrostatic attraction between
the colliding particles at pH 5 a rectilinear collision mode was
chosen to represent the collision of the heteroaggregates in the
Smolu-Model.
The overall attachment efficiency of the binary system, αglobal,

at 0.8 mg/L TiO2 was estimated with the Smolu-Model to be
0.09 (the faster heteroaggregation rate of the system compared
to the homoaggregation rate of SiO2 with αhomo

SiO2 = 0.3 is
explained by the different collision mode despite the lower
overall α). From the attachment efficiencies for the
homoaggregation of both particle types at the same conditions
(αhomo

SiO2 and αhomo
TiO2 ) and the surface fraction of SiO2 covered by

TiO2 NPs, fNP, the heteroaggregation attachment efficiency
αhetero was calculated with eq 1. For the heteroaggregation

experiment at a TiO2 concentration of 0.8 mg/L (Figure 2) an
attachment efficiency for heteroaggregation, αhetero, of 0.9 was
obtained. When the same experiment was repeated at a higher
TiO2 concentration of 2 mg/L (corresponding to an fNP of
13%) a faster heteroaggregation rate was observed (Figure 2).
The αglobal obtained from this data with the Smolu-Model is
equal to 0.21. Following eq 1 we also obtain an αhetero of 0.9,
which shows that the method is independent of the respective
NP and NC concentrations. This αhetero value represents very
favorable heteroaggregation conditions as expected from the
favorable interaction between the oppositely charged SiO2 and
TiO2 particles at pH 5, which validates our initial assumptions.

Heteroaggregation Kinetics at pH 8 (Repulsive
Charges). After validating the new method for determining
attachment efficiencies for heteroaggregation at pH 5 and low
electrolyte conditions, a more extensive set of heteroaggrega-
tion experiments was performed at pH 8 and over a wider range
of hydrochemical conditions (varying NaCl, CaCl2, and SRHA
concentrations), which are more environmentally relevant. All
experiments were performed at an SiO2 concentration of 100
mg/L and a TiO2 concentration of 0.8 mg/L. Selected
heteroaggregation experiments at pH 8 are shown in Figure 3
for NaCl and Figure S8 in the Supporting Information for
CaCl2. The heteroaggregates reached much larger final sizes
(up to 100 μm) whereas the homoaggregates generally did not
reach sizes larger than 20 μm. Therefore, to facilitate the visual
comparison of the heteroaggregation experiments with the SiO2
homoaggregation experiments, aggregation measurements at
pH 8 are displayed in Figure 3 as the volume % of monomers
(NCs or primary heteroaggregates represented by sizes below
1.2 μm) versus time.
At pH 8 the SiO2 particles and the TiO2 NPs are both

negatively charged and as expected at low electrolyte conditions
(10 mM NaCl) no heteroaggregation is observed (Figure 3A)
because of electrostatic repulsion. Upon addition of 50 mM
NaCl or 0.1 mM CaCl2 a slow heteroaggregation is observed;
the maximum heteroaggregation rate is achieved with 100 mM
NaCl or 1 mM CaCl2 (Figure 3, Supporting Information Figure
S8). Although the SiO2 and TiO2 are not of opposite charge at
pH 8, the maximum aggregation rate observed for the
heteroaggregation is again higher than the maximum
homoaggregation rate at pH 8. Analysis of the fractal dimension
of the aggregates revealed that the secondary SiO2−TiO2
heteroaggregates formed are less dense (Df between 2.0 and

Figure 3. Heteroaggregation of 100 mg/L SiO2 with TiO2 NPs under different solution conditions at pH 8: (A) NaCl and (B) NaCl + SRHA. SRHA
= Suwannee River Humic Acid. Note: The monomers for 100 mM NaCl, 0.8 mg/L TiO2 (green circles) start below 100% because of a few large
bubbles in the system; the model parametrization was adjusted accordingly to correctly represent the aggregation kinetics.

Environmental Science & Technology Article

dx.doi.org/10.1021/es501655v | Environ. Sci. Technol. 2014, 48, 10690−1069810695



2.1) than the SiO2 homoaggregates (Df between 2.2 and 2.4),
which indicates different aggregation mechanisms for both
cases. This can be explained by the TiO2 NPs forming bridges
between the SiO2 NCs, leading to the formation of looser
aggregate structures which in turn results in a more rectilinear
collision mechanism between such heteroaggregates. The SiO2
homoaggregates, on the other hand, form denser structures;
therefore their aggregation mode is better represented by a
curvilinear or intermediate collision mode.
Next, the heteroaggregation data were analyzed with the

Smolu-Model and eq 1 was used to estimate αhetero (Figure 3,
Supporting Information Figure S8, and Table 1). To represent

the different aggregation mechanisms for homo- versus
heteroaggregation, the Smolu-Model was parametrized with a
rectilinear collision mode for the SiO2−TiO2 heteroaggregation
and with an intermediate collision mode for the SiO2
homoaggregation.
At pH 8 the SiO2 particles are stable under all studied

conditions, so the increase in size measured by laser diffraction
in the heteroaggregation experiments is not affected by
homoaggregation of the SiO2 (αhomo

SiO2 < 0.001 in all cases).
The TiO2 NPs, on the other hand, exhibit αhomo

TiO2 > 0.1 under
some electrolyte conditions. Concurrent homoaggregation of
the TiO2 NPs could in principle affect the heteroaggregation
mechanism and induce errors in eq 1 by affecting fNP and the
assumption of uniform TiO2 distribution on the SiO2 surface.
However, because the TiO2 concentration is much lower than
the SiO2 concentration the collision frequency of the TiO2
particles is much lower than their collision frequency with the
SiO2 particles, so the actual homoaggregation rate of TiO2 is
very slow, even at αhomo

TiO2 values exceeding 0.1. Therefore, the
method presented here can be used to determine αhetero values
even under conditions where homoaggregation of the NPs
cannot be excluded.
The αhetero values displayed in Table 1 show that the

heteroaggregation behavior of SiO2 and TiO2 NPs at pH 8
follows the trends predicted by DLVO theory. At low

electrolyte conditions no heteroaggregation is observed (αhetero
< 0.001), which can be explained by the repulsive charges of the
particles stabilizing the system. αhetero increases with increasing
electrolyte concentration and the divalent electrolyte (CaCl2)
destabilizes the system at lower concentrations than the
monovalent electrolyte (NaCl) as predicted by the Schulze−
Hardy rule.26,27

Influence of SRHA on Heteroaggregation Kinetics. To
reflect more realistic environmental conditions the hetero-
aggregation experiments were repeated in the presence of
Suwanee River Humic Acid (SRHA) at 0.1, 1.0, and 10 mg/L at
pH 8 (Figure 3, Supporting Information Figure S8, Table 1).
The addition of SRHA results in a more negative charge on the
SiO2 surface (Figure S9 in the Supporting Information), with
the lowest EPM reached with 1.0 mg/L SRHA. Increase to 10
mg/L SRHA only leads to a negligible further decrease of the
EPM, suggesting that at 1 mg/L SRHA the maximum adsorbed
humid acid mass is reached. This is reflected by the
heteroaggregation behavior of the SiO2−TiO2 system in the
presence of SRHA. Both at 100 mM NaCl and at 5 mM CaCl2
the heteroaggregation rate is only slightly reduced in the
presence of 0.1 mg/L SRHA (αhetero = 0.5 and 1.1 for 100 mM
NaCl and 5 mM CaCl2, respectively), whereas 1.0 mg/L SRHA
strongly stabilizes the system (αhetero = 0.02 and 0.3) and an
increase to 10 mg/L SRHA causes little additional stabilization
(αhetero < 0.001 and αhetero = 0.2). The experiments show that
SRHA has a similarly stabilizing effect toward heteroaggrega-
tion as has been repeatedly demonstrated for homoaggregation
of NPs,28−36 probably through a combination of electrostatic
and steric stabilization mechanisms.

■ LIMITATIONS AND OUTLOOK
We use a combination of time-resolved laser diffraction
measurements and a Smoluchowski-based aggregation model
to determine concentration-independent attachment efficien-
cies for heteroaggregation, αhetero, between nanoparticles (NPs)
and natural colloids (NCs). Our new method is flexible and can
be applied to a wide range of different NPs and NCs and is not
limited to specific solution chemistries.
The current version of the Smolu-Model is only able to

model a simplified representation of the actual heteroaggrega-
tion processes as it only explicitly models the secondary
heteroaggregation process (aggregation of the primary
heteroaggregates). The uncertainty resulting from backcalculat-
ing αhetero from αglobal using eq 1 cannot be assessed
quantitatively. Therefore, the αhetero values displayed in Table
1 represent first estimates of the attachment efficiencies for
heteroaggregation under the given conditions but cannot yet be
taken as definite αhetero values. For this reason, we prefer to
group the derived αhetero values into three major classes of
“high”, “intermediate”, and “low” attachment (Table 1).
Because of the inherent complexity of the natural environ-
mental and the scarcity of data on ENP emissions and behavior,
environmental fate models for ENP are not highly sensitive to
small changes in αhetero and therefore the distinction between
three different classes for αhetero will be sufficient in most cases.
In the future, the Smolu-Model will be further developed,

using experiments characterizing the specific interactions
between NCs, NPs and NOM within the aquatic medium.
This will make it possible to specifically model the primary
heteroaggregation step, similarly to the model presented by
Therezien et al.,37 and thereby refine our method and enable
the derivation of more accurate αhetero values. Additionally, the

Table 1. Overview of αhetero Values at Different Solution
Conditionsa

pH
[NaCl]
(mM)

[CaCl2]
(mM)

[SRHA]
(mg/L)

αhetero (model
estimate)

αhetero
(classesb)

5 1 0.9 high
8 1 <0.001 low
8 10 <0.001 low
8 25 <0.001 low
8 50 0.3 intermediate
8 100 0.8 high
8 0.05 <0.001 low
8 0.1 0.3 intermediate
8 1 1.1 high
8 100 0.1 0.5 high
8 100 1.0 0.02 low
8 100 10 <0.001 low
8 5 0.1 1.1 high
8 5 1.0 0.3 intermediate
8 5 10 0.2 intermediate

aBoth the explicit αhetero values estimated with the Smolu-Model and
the assigned classes (high, intermediate and low) into which the αhetero
values fall are displayed. bHigh: αhetero ≥ 0.5. Intermediate: 0.1 ≤ αhetero
< 0.5. Low: αhetero < 0.1.
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method presented here will be extended to be applicable to
more realistic systems. Preliminary results of a heteroaggrega-
tion study with TiO2 NPs and natural suspended matter
sampled from the Rhône river (France) are presented in
section S5 of the Supporting Information. Two strategies may
be employed to derive αhetero for such complex systems. One
option would be to further develop the Smolu-Model to
represent different types of NC with varying size distributions.
This is in theory feasible but will require large computational
efforts. Alternatively, after identifying and characterizing the
different NCs in the natural samples, individual heteroag-
gregation experiments with the dominant NC types could be
performed to derive αhetero for the different NCs.
The new method presented here is a step toward the

systematic determination of accurate αhetero values for the
heteroaggregation between NPs and NCs, which are crucially
needed as input parameters into environmental fate models for
ENPs. This study therefore represents an important contribu-
tion to improving ENP fate and, ultimately, risk assessment.
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