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Abstract

The main purpose of this paper is to investigate the strong approximation of the integrated empirical process.

More precisely, we obtain the exact rate of the approximations by a sequence of weighted Brownian bridges

and a weighted Kiefer process. Our arguments are based in part on the Komlós et al. (1975)’s results. Appli-

cations include the two-sample testing procedures together with the change-point problems. We also consider

the strong approximation of the integrated empirical process when the parameters are estimated. Finally, we

study the behavior of the self-intersection local time of the partial sum process representation of the integrated

empirical process.
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1 Introduction

Let {Xi : i ∈ N
∗} be a sequence of independent, identically distributed [i.i.d.] random variables [r.v.’s] with

continuous distribution function [d.f.] F (t) = P{X1 ≤ t} for t ∈ R. For each n ∈ N
∗, let Fn be the empirical

d.f. based upon the sample X1, . . . ,Xn defined as

Fn(t) :=
1

n
#{i ∈ {1, . . . , n} : Xi ≤ t} =

1

n

n∑

i=1

1{Xi≤t} for t ∈ R, (1.1)

where # denotes cardinality. For each n ∈ N
∗, we introduce the empirical process αn defined by

αn(t) :=
√
n (Fn(t)− F (t)) for t ∈ R. (1.2)

We denote by Q(y) := inf{x ∈ R : F (x) ≥ y} for y ∈ (0, 1) the usual quantile function (generalized inverse)

pertaining to F , and extend its definition to [0, 1] by setting

Q(0) := lim
y↓0

Q(y) and Q(1) := lim
y↑1

Q(y).

∗e-mail: sergio.alvarez@utc.fr
†e-mail: salim.bouzebda@utc.fr
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Consider additionally a sequence of i.i.d. r.v.’s {Ui : i ∈ N
∗} uniformly distributed on [0, 1] such that Xi =

Q(Ui) (cf. Shorack and Wellner (1986), p. 3 and the references therein). For each n ∈ N
∗, let Un be the

empirical d.f. based upon the sample U1, . . . , Un:

Un(u) :=
1

n
#{i ∈ {1, . . . , n} : Ui ≤ u} =

1

n

n∑

i=1

1{Ui≤u} for u ∈ [0, 1].

We introduce the corresponding uniform empirical process βn defined, for each n ∈ N
∗, by

βn(u) :=
√
n (Un(u)− u) for u ∈ [0, 1]. (1.3)

We have the usual relation between the empirical process and uniform empirical process:

αn(t) = βn(F (t)) for t ∈ R, n ∈ N
∗.

In this paper, we consider the integrated empirical d.f. based upon the sample X1, . . . ,Xn

Fn(t) :=

∫ t

−∞
Fn(s) dFn(s) for t ∈ R, n ∈ N

∗ (1.4)

together with the corresponding integrated empirical process

αn(t) :=
√
n
(
Fn(t)− F (t)

)
for t ∈ R, n ∈ N

∗ (1.5)

where

F (t) :=

∫ t

−∞
F (s) dF (s) =

1

2
F (t)2.

From Theorem II.1 of Henze and Nikitin (2002) (see also the self-contained proof given in Section 7), we learn

that, almost surely,

Fn(t) =
1

2

(
Fn(t)

2 +
1

n
Fn(t)

)
for t ∈ R, n ∈ N

∗. (1.6)

Henze and Nikitin (2000, 2002) introduced and deeply investigated the goodness-of-fit testing procedures

based on the integrated empirical process. Indeed, the asymptotic properties of their procedures, Kolmogorov-

Smirnov, Cramér-von Mises and Watson-type statistics, can be derived from the limiting behavior of the in-

tegrated empirical process. Henze and Nikitin (2003) considered a two-sample testing procedure and focused

on the approximate local Bahadur efficiencies of their statistical tests. It is noteworthy to point out that tests

based on some integrated empirical processes turn out to be more efficient for certain distributions. In Lachal

(2001), another version of the integrated empirical process (actually a broader class of p-fold integrated em-

pirical process, p ∈ N
∗) was introduced. For the extension to the multivariate framework, we may refer to

Jing and Wang (2006) and Jing and Yang (2007) where some projected integrated empirical processes for testing

the equality of two multivariate distributions are considered. Inspired by the work of Henze and Nikitin (2003),

Bouzebda and El Faouzi (2012) developed multivariate two-sample testing procedures based on the integrated

empirical copula process that are extended to the K-sample problem in Bouzebda et al. (2011). Emphasis is

placed on the explanation of the strong approximation methodology. The asymptotic behavior of weighted mul-

tivariate Cramér-von Mises-type statistics under contiguous alternatives was characterized by Bouzebda and Zari

(2013).

The main purpose of this paper is to investigate the strong approximation of the integrated empirical process.

Next we study the asymptotic properties of statistical tests based on this process. We also study the behavior

of the self-intersection local time of the partial sum process representation of the integrated uniform empirical

process. To our best knowledge, the problem that we consider was open up to presently, and it gives the main

motivation to our study.
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Let us point out that the strong approximations are quite useful and have received considerable attention in

probability theory. Indeed, many well-known and important probability theorems can be considered as conse-

quences of results about strong approximation of sequences of sums by corresponding Gaussian sequences.

We will first obtain an upper bound in probability for the distance between the integrated empirical process

and a sequence of appropriate Brownian bridges (see Theorem 2.2). This is the key point of our study. From

this, we will deduce a strong approximation of the integrated empirical process by this sequence of Brownian

bridges (see Corollary 2.4). As an application, we will derive the rates of convergence for the distribution of

smooth functionals of the integrated empirical process (see Corollary 2.3). Moreover, we will deduce strong ap-

proximations for the Kolmogorov-Smirnov and Cramér-von Mises-type statistics associated with the integrated

empirical process (see Corollary 2.7).

Second, we will obtain a strong approximation of the integrated empirical process by a Kiefer processes (see

Theorem 2.5). This latter is of particular interest; indeed, for instance, any kind of law of the iterated logarithm

which holds for the partial sums of Gaussian processes may then be transferred to the integrated empirical process

(see Corollary 2.6). We may refer to DasGupta (2008) (Chapter 12), Csörgő and Horváth (1993) (Chapter 3),

Csörgő and Révész (1981) (Chapters 4-5) and Shorack and Wellner (1986) (Chapter 12) for expositions, details

and references about this problem.

We refer to Csörgő and Hall (1984), Csörgő (2007) and Mason and Zhou (2012) for a survey of some appli-

cations of the strong approximation and many references. There is a huge literature on the strong approximations

and their applications. It is not the purpose of this paper to survey this extensive literature.

The layout of the article is as follows. In Section 2, we first present some strong approximation results for the

integrated empirical process; our main tools are the results of Komlós et al. (1975). Sections 3 and 4 are devoted

to statistical applications, namely the two-sample and change-point problems respectively. In Section 5, we deal

with the strong approximation of the integrated empirical process when parameters are estimated. Section 6

is concerned with the behavior of the self-intersection local time of the partial sum process representation of

the integrated empirical process. To prevent from interrupting the flow of the presentation, all mathematical

developments are postponed to Section 7.

2 Strong approximation

First, we introduce some definitions and notations. Let W = {W(s) : s ≥ 0} and B = {B(u) : u ∈ [0, 1]}
be the standard Wiener process and Brownian bridge, that is, the centered Gaussian processes with continuous

sample paths, and covariance functions

E(W(s)W(t)) = s ∧ t for s, t ≥ 0

and

E(B(u)B(v)) = u ∧ v − uv for u, v ∈ [0, 1].

A Kiefer process K = {K(s, u) : s ≥ 0, u ∈ [0, 1]} is a two-parameters centered Gaussian process, with

continuous sample paths, and covariance function

E(K(s, u)K(t, v)) = (s ∧ t) (u ∧ v − uv) for s, t ≥ 0 and u, v ∈ [0, 1].

It satisfies the following distributional identities:

{K(s, u) : u ∈ [0, 1]} L
=
{√

sB(u) : u ∈ [0, 1]
}

for s ≥ 0

and

{K(s, u) : s ≥ 0} L
=
{√

u(1− u)W(s) : s ≥ 0
}

for u ∈ [0, 1],

where
L
= stands for the equality in distribution. The interested reader may refer to Csörgő and Révész (1981)

for details on the Gaussian processes mentioned above. It is well-known that the empirical uniform process
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{βn : n ∈ N
∗} converges to B in D[0, 1] (the space of all right-continuous real-valued functions defined on [0, 1]

which have left-hand limits, equipped with the Skorohod topology; see, for details, Billingsley (1968)). The

rate of convergence of this process to B is an important task in statistics as well as in probability that has been

investigated by several authors. We can and will assume without loss of generality that all r.v.’s and processes

introduced so far and later on in this paper can be defined on the same probability space (cf. Appendix 2 in

Csörgő and Horváth (1993)). Komlós, Major, and Tusnády [KMT] (Komlós et al. (1975), Theorem 3; refer also

to Komlós et al. (1976)) stated the following Brownian bridge approximation for {βn : n ∈ N
∗}, along with a

description of its proof with few details.

Theorem A On a suitable probability space, we can define the uniform empirical process {βn : n ∈ N
∗}, in

combination with a sequence of Brownian bridges {Bn : n ∈ N
∗}, such that, for all x > 0 and all n ∈ N

∗,

P

{
sup

u∈[0,1]
|βn(u)− Bn(u)| ≥

1√
n
(c1 log n+ x)

}
≤ c2 e

−c3x, (2.1)

where c1, c2 and c3 are positive universal constants.

In his manuscript, Major (2000) details the original proof of (2.1). Chatterjee (2012) provided a new alternative

approach for proving the famous KMT theorem.

Remark 2.1 In the sequel, the precise meaning of “suitable probability space” is that an independent sequence

of Wiener processes, which is independent of the originally given sequence of i.i.d. r.v.’s, can be constructed on

the assumed probability space. This is a technical requirement which allows the construction of the Gaussian

processes displayed in our theorems, and which is not restrictive since one can expand the probability space to

make it rich enough (see, e.g., Appendix 2 in Csörgő and Horváth (1993), de Acosta (1982), Csörgő and Révész

(1981) and Lemma A1 in Berkes and Philipp (1979)). Throughout this paper, it will be assumed that the under-

lying probability spaces are suitable in this sense.

In the following theorem, we state the key point to access the strong approximation of the integrated empirical

process {αn, n ∈ N
∗}.

Theorem 2.2 On a suitable probability space, we may define the integrated empirical process {αn : n ∈ N
∗}, in

combination with a sequence of Brownian bridges {Bn : n ∈ N
∗}, such that, for large enough x and all n ∈ N

∗,

P

{
sup
t∈R

∣∣αn(t)− F (t)Bn(F (t))
∣∣ ≥ 1√

n
(A log n+ x)

}
≤ B e−Cx (2.2)

where A, B and C are positive universal constants.

An important consequence of Theorem 2.2 is an upper bound for the convergence of distributions of smooth

functionals of αn. Indeed, applying (2.2) with x = c log n for a suitable constant c yields the result below.

Corollary 2.3 If Φ(·) is a Lipschitz functional defined on D[0,+∞) such that the r.v. Φ(F (·)B(F (·))) admits

a bounded density function, then, as n→ ∞,

sup
x∈R

∣∣P
{
Φ
(
αn(·)

)
≤ x

}
− P

{
Φ
(
F (·)B(F (·))

)
≤ x

}∣∣ = O

(
log n√
n

)
. (2.3)

For more comments on this kind of results, we may refer to Csörgő et al. (2000), Corollary 1.1 and p. 2459.

By applying (2.2) to x = c′ log n for a suitable constant c′ and appealing to Borel-Cantelli lemma, one can

obtain the following almost sure approximation of the process {αn : n ∈ N
∗} based on a sequence of Brownian

bridges.
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Corollary 2.4 The following bound holds, with probability 1, as n→ ∞:

sup
t∈R

∣∣αn(t)− F (t)Bn(F (t))
∣∣ = O

(
log n√
n

)
. (2.4)

The next result yields an almost sure approximation for {αn : n ∈ N
∗} based on a Kiefer process.

Theorem 2.5 On a suitable probability space, we may define the integrated empirical process {αn : n ∈ N
∗},

in combination with a Kiefer process {K(s, u) : s ≥ 0, u ∈ [0, 1]}, such that, with probability 1, as n→ ∞,

max
1≤k≤n

sup
t∈R

∣∣∣
√
k αk(t)− F (t)K(k, F (t))

∣∣∣ = O
(
(log n)2

)
.

From Theorem 2.5 and by invoking the law of the iterated logarithm for Gaussian sequences, we have almost

surely

lim sup
n→∞

supt∈R
∣∣αn(t)

∣∣
√
log log n

= lim sup
n→∞

supt∈R
∣∣F (t)K(n, F (t))

∣∣
√
n log log n

= sup
t∈R

√
2Var

(
F (t)K(1, F (t))

)
= sup

u∈[0,1]

√
2Var

(
uK(1, u)

)
. (2.5)

Observing that Var(uK(1, u)) = u3(1 − u) and supu∈[0,1] u
3(1 − u) = 27/256, (2.5) readily implies the

following corollary (“a.s.” stands for “almost surely”).

Corollary 2.6 We have the following law of iterated logarithm for the integrated empirical process:

lim sup
n→∞

supt∈R
∣∣αn(t)

∣∣
√
log log n

=
3
√
3

8
√
2

a.s. (2.6)

As a direct application of (2.4) and (2.6) to the problem of goodness-of-fit, for testing the null hypothesis

H0 : F = F0,

we can use the following statistics: the integrated Kolmogorov-Smirnov statistic as well as the integrated Cramér-

von Mises statistic

Sn := sup
t∈R

∣∣√n
(
Fn(t)− F 0(t)

)∣∣ and Tn := n

∫

R

(
Fn(t)− F 0(t)

)2
dF0(t).

Corollary 2.7 We have, under H0, with probability 1, as n→ ∞,

∣∣∣∣Sn − sup
t∈R

∣∣F (t)Bn(F (t))
∣∣
∣∣∣∣ = O

(
log n√
n

)
, (2.7)

∣∣∣∣Tn −
∫

R

[
F (t)Bn(F (t))

]2
dF0(t)

∣∣∣∣ = O

(√
log log n

n
log n

)
. (2.8)
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3 The two-sample problem

For each m,n ∈ N
∗, let X1, . . . ,Xm and Y1, . . . , Yn be independent random samples from continuous d.f.’s

F and G, respectively, and let Fm and Gn denote their respective integrated empirical d.f.’s. Tests for the null

hypothesis

H′
0 : F = G,

can be based on the integrated two-sample empirical process defined, for each m,n ∈ N
∗, by

ξm,n(t) :=

√
mn

m+ n

(
Fn(t)−Gm(t)

)
for t ∈ R.

We can use the following statistics for testing H′
0: the integrated two-sample Kolmogorov-Smirnov statistic as

well as the integrated two-sample Cramér-von Mises statistic

Sm,n := sup
t∈R

∣∣ξm,n(t)
∣∣ and Tm,n :=

∫

R

ξm,n(t)
2 dF (t).

Set, for any m,n ∈ N
∗,

ϕ(m,n) := max

(
logm√
m
,
log n√
n

)
and φ(m,n) := max

(√
log logm

m
logm,

√
log log n

n
log n

)
.

The following results are consequences of Corollary 2.4.

Corollary 3.1 On a suitable probability space, it is possible to define
{
ξm,n : m,n ∈ N

∗}, jointly with a

sequence of Gaussian processes {B∗
m,n : m,n ∈ N

∗}, such that, under H′
0, with probability 1, as min(m,n) →

∞,

sup
t∈R

∣∣ξm,n(t)− B
∗
m,n(t)

∣∣ = O(ϕ(m,n)),

where

B
∗
m,n(t) = F (t)

(√
n

n+m
B
1
m(F (t)) −

√
m

n+m
B
2
n(F (t))

)
,

the processes {B1
m : m ∈ N

∗} and {B2
n : n ∈ N

∗} consisting of two sequences of Brownian bridges constructed

as in Theorem 2.2.

Corollary 3.2 We have, under H′
0, with probability 1, as min(m,n) → ∞,

∣∣∣∣Sm,n − sup
t∈R

|B∗
m,n(t)|

∣∣∣∣ = O(ϕ(m,n)) and

∣∣∣∣Tm,n −
∫

R

B
∗
m,n(t)

2 dF (t)

∣∣∣∣ = O(φ(m,n)).

As in Bouzebda and El Faouzi (2012), consider the following modified integrated two-sample empirical pro-

cess, for a fixed positive integer q,

ξ
(q)
m,n(t) :=

√
mn

m+ n

(
Fm(t)q −Gn(t)

q
)

for t ∈ R.

Reasonable statistics for testing H′
0 would be the modified integrated Kolmogorov-Smirnov statistic and the

modified integrated Cramér-von Mises statistic

S
(q)
m,n := sup

t∈R

∣∣∣ξ(q)m,n(t)
∣∣∣ and T

(q)
m,n :=

∫

R

ξ
(q)
m,n(t)

2 dF (t).

We extend Corollary 3.1 and 3.2 as follows.
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Corollary 3.3 On a suitable probability space, it is possible to define
{
ξ
(q)
m,n : m,n ∈ N

∗}, jointly with a

sequence of Gaussian processes
{
B
∗(q)
m,n : m,n ∈ N

∗}, such that, under H′
0, with probability 1, as min(m,n) →

∞,

sup
t∈R

∣∣∣ξ(q)m,n(t)− B
∗(q)
m,n(t)

∣∣∣ = O(ϕ(m,n)),

where

B
∗(q)
m,n(t) :=

q

2q−1
F (t)2q−1

(√
n

m+ n
B
1
m(F (t)) −

√
m

m+ n
B
2
n(F (t))

)
.

Corollary 3.4 Under H′
0, with probability 1, as min(m,n) → ∞, we have

∣∣∣∣S
(q)
m,n − sup

t∈R

∣∣B∗(q)
m,n(t)

∣∣
∣∣∣∣ = O(ϕ(m,n)) and

∣∣∣∣T
(q)
m,n −

∫

R

B
∗(q)
m,n(t)

2 dF (t)

∣∣∣∣ = O(φ(m,n)).

Remark 3.5 The family of statistics indexed by q may be used to maximize the power of the statistical test for a

specific alternative hypothesis as argued in Ahmad and Dorea (2001).

Now, we fix a positive integer K and we describe the more general K-sample problem. For each k ∈
{1, . . . ,K}, we consider a setting made of independent observations

{
Xk

i : i ∈ {1, . . . , nk}
}

of a real-valued

r.v. Xk . The d.f. of Xk is denoted by F k and is assumed to be continuous. We would like to test, F0 being a

fixed continuous d.f., the null hypothesis

HK
0 : F 1 = F 2 = · · · = FK = F0.

For any K-tuple of positive integers n = (n1, . . . , nK), set |n| =
∑K

k=1 nk and let

(Z1, . . . , Z|n|) :=
(
X1

1 , . . . ,X
1
n1
,X2

1 , . . . ,X
2
n2
, . . . ,XK

1 , . . . ,X
K
nK

)

be the pooled sample of total size |n|, DK,n be the integrated empirical d.f. based upon Z1, . . . , Z|n|, and, for

each k ∈ {1, . . . ,K}, F
k
nk

be the integrated empirical d.f. based upon Xk
1 , . . . ,X

k
nk

. Of course, we have the

following identity:

DK,n =
1

|n|

K∑

k=1

nk F
k
nk
. (3.1)

Next, we define the integrated K-sample empirical process in the following way: for any K-tuple n =
(n1, . . . , nK) ∈ (N∗)K ,

ξK,n(t) :=

K∑

k=1

nk
(
Fnk

(t)− DK,n(t)
)2

for t ∈ R.

Obvious candidates for testing Hypothesis HK
0 are the integrated K-sample Kolmogorov-Smirnov statistics and

the integrated K-sample Cramér-von Mises functional (the usual square being included in the definition of ξK,n)

SK,n := sup
t∈R

ξK,n(t) and TK,n :=

∫

R

ξK,n(t) dF0(t).

Set

φ∗K(n) := max
1≤k≤K

{√
log log nk

nk
log nk

}
.

The following result is a consequence of Corollary 2.4.
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Theorem 3.6 On a suitable probability space, it is possible to define
{
ξK,n : n ∈ (N∗)K

}
, jointly with a

sequence of processes
{
B
∗
K,n : n ∈ (N∗)K

}
, such that, under HK

0 , with probability 1, as min1≤k≤K nk → ∞,

sup
t∈R

∣∣ξK,n(t)− B
∗
K,n(t)

∣∣ = O
(
φ∗K(n)

)
,

where, for each n = (n1, . . . , nK) ∈ (N∗)K , B∗
K,n is the process defined by

B
∗
K,n(t) := F0(t)

2

[(
K∑

k=1

B
k
nk

(
F0(t)

)
)2

−
(

K∑

k=1

√
nk
|n| B

k
nk

(
F0(t)

)
)2 ]

for t ∈ R,

the processes
{
B
k
m : m ∈ N

∗}, k ∈ {1, . . . ,K}, consisting of K sequences of Brownian bridges constructed as

in Theorem 2.2.

The next result, which is an immediate consequence of the previous theorem (observe that SK,n and TK,n

are bounded linear functionals of the process ξK,n), gives the limit null distributions of the statistics under

consideration.

Corollary 3.7 We have, under HK
0 , with probability 1, for n = (n1, . . . , nK) such that min1≤k≤K nk → ∞,

∣∣∣∣SK,n − sup
t∈R

B
∗
K,n(t)

∣∣∣∣ = O
(
φ∗K(n)

)
and

∣∣∣∣TK,n −
∫

R

B
∗
K,n(t) dF0(t)

∣∣∣∣ = O
(
φ∗K(n)

)
.

4 The change-point problem

Here and elsewhere, ⌊t⌋ denotes the largest integer not exceeding t. In many practical applications, we as-

sume the structural stability of statistical models and this fundamental assumption needs to be tested before

it can be applied. This is called the analysis of structural breaks, or change-points, which has led to the de-

velopment of a variety of theoretical and practical results. For good sources of references to research liter-

ature in this area along with statistical applications, the reader may consult Brodsky and Darkhovsky (1993),

Csörgő and Horváth (1997) and Chen and Gupta (2000). For recent references on the subject we may refer,

among many others, to Bouzebda (2012), Aue and Horváth (2013), Chan et al. (2013), Horváth and Rice (2014),

Alvarez-Andrade and Bouzebda (2014) and Bouzebda (2014).

In this section, we deal with testing changes in d.f.’s for a sequence of independent real-valued r.v.’sX1, . . . ,Xn.

The corresponding null hypothesis that we want to test is

H′′
0 : X1, . . . ,Xn have d.f. F.

As frequently done, the behavior of the derived tests will be investigated under the alternative hypothesis of a

single change-point

H′′
1 : ∃ k∗ ∈ {1, . . . , n− 1} such that X1, . . . ,Xk∗ have d.f. F and Xk∗+1, . . . ,Xn have d.f. G.

The d.f.’s F and G are assumed to be continuous. The critical integer k∗ can be written as ⌊ns⌋ for a certain

s ∈ [0, 1). Then, testing the null hypothesis H′′
0 can be based on functionals of the following process: set, for

each n ∈ N
∗,

α̃n(s, t) :=
⌊ns⌋(n− ⌊ns⌋)

n3/2

(
F
−
⌊ns⌋(t)− F

+
n−⌊ns⌋(t)

)
for s ∈ [0, 1], t ∈ R, (4.1)

where F
−
k is the integrated empirical d.f. based upon the k first observations and F

+
n−k is that based upon

the (n − k) last ones. In (4.1) we extend the definition of F
−
k and F

+
k to the case where k = 0 by setting

F
−
0 = F

+
0 = 0, so that α̃n(s, t) = 0 if s ∈ (0, 1/n).
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We can define the r.v.’s X1, . . . ,X⌊ns⌋ and X⌊ns⌋+1, . . . ,Xn on a probability space on which we can simul-

taneously construct two Kiefer processes {K1(s, u) : s ∈ R, u ∈ [0, 1]} and {K2(s, u) : s ∈ R, u ∈ [0, 1]} such

that the “restricted” processes {K1(s, u) : s ∈ [1, n/2], u ∈ [0, 1]} and {K2(s, u) : s ∈ [n/2, n], u ∈ [0, 1]} are

independent. It turns out that a natural approximation of
{
α̃n : n ∈ N

∗} is given by the sequence of Gaussian

processes
{
Kn(s, F (t)) : s ∈ [0, 1], t ∈ R, n ∈ N

∗} defined by

Kn(s, u) :=





u√
n

[
K2(⌊ns⌋, u)− s(K1(⌊n/2⌋, u) +K2(⌊n/2⌋, u))

]
for s ∈

[
0, 12
]
, u ∈ [0, 1]

u√
n

[
−K1(⌊n(1− s)⌋, u) + (1− s)(K1(⌊n/2⌋, u) +K2(⌊n/2⌋, u))

]
for s ∈

[
1
2 , 1
]
, u ∈ [0, 1].

More precisely, we have the following result.

Theorem 4.1 On a suitable probability space, it is possible to define
{
α̃n : n ∈ N

∗}, jointly with a sequence of

Gaussian processes {Kn : n ∈ N
∗} as above, such that, under H′′

0 , with probability 1, as n→ ∞,

sup
s∈[0,1]

sup
t∈R

∣∣α̃n(s, t)−Kn(s, F (t))
∣∣ = O

(
(log n)2√

n

)
.

According to Csörgő et al. (1997), a way to test change-point is to use the following statistics:

τn := sup
s∈[0,1]

sup
t∈R

|α̃n(s, t)| . (4.2)

The corollary below is a consequence of Theorem 4.1.

Corollary 4.2 If H′′
0 holds true, then we have the convergence in distribution, as n→ ∞,

τn
L−→ sup

s,u∈[0,1]

∣∣K(s, u)
∣∣ ,

where K =
{
K(s, u) : s, u ∈ [0, 1]

}
is a Gaussian process with mean zero and covariance function

E
(
K(s, u)K(s′, u′)

)
= uu′(u ∧ u′ − uu′)(s ∧ s′ − ss′).

One has K(s, u) = u
o

K(s, u) where
o

K is a tied-down Kiefer process. We refer to Csörgő and Horváth (1997)

for more details on the process K.

Actually, according to Csörgő et al. (1997), the most appropriate way to test change-point is to use the

following weighted statistic:

τn,w := sup
s∈[0,1]

sup
t∈R

∣∣α̃n(s, t)
∣∣

w (⌊ns⌋/n) (4.3)

where w is a positive function defined on (0, 1), increasing in a neighborhood of zero and decreasing in a

neighborhood of one, satisfying the condition

I(w, ε) :=

∫ 1

0
exp

(
− εw2(s)

s(1− s)

)
ds

s(1− s)
<∞

for some constant ε > 0. For a history and further applications of I(w, ε), we refer to Csörgő and Horváth

(1993), Chapter 4. From Szyszkowicz (1992), an example of such function w is given by

w(t) :=

(
t(1− t) log log

1

t(1− t)

)1/2
for t ∈ (0, 1).

By using similar techniques to those which are developed in Csörgő and Horváth (1997), one may show that, as

n→ ∞,

τn,w
L−→ sup

s,u∈[0,1]

∣∣K(s, u)
∣∣

w(s)
.

For more details, we refer to Alvarez-Andrade and Bouzebda (2014).

9



Remark 4.3 As in Szyszkowicz (1994), we mention that the statistic given by (4.2) should be more powerful for

detecting changes that occur in the middle, i.e., near n/2, where k/n(1 − k/n) reaches its maximum, than for

the ones occurring near the end points. The advantage of using the weighted statistic defined in (4.3) is the

detection of changes that occur near the end points, while retaining the sensitivity to possible changes in the

middle as well.

We hope that the results presented in Sections 3 and 4 will be the prototypes of other various applications.

5 Strong approximation of the integrated empirical process when parameters

are estimated

In this section, we are interested in the strong approximation of the integrated empirical process when parameters

are estimated. Our approach is in the same spirit of Burke et al. (1979). Let us introduce, for each n ∈ N
∗, the

integrated estimated empirical process α̂n:

α̂n(t) :=
√
n
(
Fn(t)− F

(
t, θ̂n

))
for t ∈ R, (5.1)

where
{
θ̂n : n ∈ N

∗} is a sequence of estimators of a parameter θ from a family of d.f.’s {F (t,θ) : t ∈ R, θ ∈
Θ} (Θ being a subset of Rd and d a fixed positive integer) related to a sequence of i.i.d. r.v.’s {Xi : i ∈ N

∗}.

Let us mention that a general study of the weak convergence of the estimated empirical process was carried out

by Durbin (1973). For a more recent reference, we may refer to Genz and Haeusler (2006) where the authors

investigated the empirical processes with estimated parameters under auxiliary information and provided some

results regarding the bootstrap in order to evaluate the limiting laws.

Let us introduce some notations.

(5.1) The transpose of a vector V of Rd will be denoted by V ⊤.

(5.2) The norm ‖ · ‖ on R
d is defined by

‖(y1, . . . , yd)‖ := max
1≤i≤d

|yi|.

(5.3) For a function (t,θ) 7→ g(t,θ) where θ = (θ1, . . . , θd) ∈ R
d, ∇θg(t,θ0) denotes the vector in R

d of

partial derivatives
(
(∂g/∂θ1)(t,θ), . . . , (∂g/∂θd)(t,θ))

)
evaluated at θ = θ0, and ∇2

θ
g(t,θ) denotes the

d× d matrix of second order partial derivatives
(
(∂2g/∂θi∂θj)(t,θ))

)
1≤i,j≤d

.

(5.4) For a vector V = (v1, . . . , vd) ∈ R
d,
∫
V denotes the vector

(∫
v1, . . . ,

∫
vd
)
.

Next, we write out the set of all conditions (those of Burke et al. (1979)) which will be used in the sequel.

(i) The estimator θ̂n admits the following form: for each n ∈ N
∗,

√
n
(
θ̂n − θ0

)
=

1√
n

n∑

i=1

l(Xi,θ0) + εn,

where θ0 is the theoretical true value of θ, l(·,θ0) is a measurable d-dimensional vector-valued function,

and εn converges to zero as n→ ∞ in a manner to be specified later on. Notice that

1√
n

n∑

i=1

l(Xi,θ0) =
√
n

∫ t

−∞
l(s,θ0) dFn(s).

10



(ii) The mean value of l(Xi,θ0) vanishes: E(l(Xi,θ0)) = 0.

(iii) The matrix M(θ0) := E
(
l(Xi,θ0)

⊤l(Xi,θ0)
)

is a finite nonnegative definite d× d matrix.

(iv) The vector-valued function (t,θ) 7→ ∇θF (t,θ) is uniformly continuous in t ∈ R and θ ∈ V, where V is

the closure of a given neighborhood of θ0.

(v) Each component of the vector-valued function t 7→ l(t,θ0) is of bounded variation in t on each finite

interval of R.

(vi) The vector-valued function t 7→ ∇θF (t,θ0) is uniformly bounded in t ∈ R, and the vector-valued function

(t,θ) 7→ ∇2
θ
F (t,θ) is uniformly bounded in t ∈ R and θ ∈ V.

(vii) Set

ℓ(s,θ0) := l
(
F−1(s,θ0),θ0

)
for s ∈ (0, 1)

where

F−1(s,θ0) = inf{t ∈ R : F (t,θ0) ≥ s}.
The limiting relations below hold:

lim
sց0

√
s log log(1/s) ‖ℓ(s,θ0)‖ = 0 and lim

sր1

√
(1− s) log log[1/(1 − s)] ‖ℓ(s,θ0)‖ = 0,

(viii) Set

ℓ′s(s,θ0) :=
∂ℓ

∂s
(s,θ0) for s ∈ (0, 1).

The partial derivative ℓ′s(s,θ0) exist for every s ∈ (0, 1) and the bounds below hold: there is a positive

constant C such that

s
∥∥ℓ′s(s,θ0)

∥∥ ≤ C for all s ∈
(
0, 12
)

and (1− s) ‖ℓ′s(s,θ0)‖ ≤ C for all s ∈
(
1
2 , 1
)
.

Now, we state an analogous result to Theorem 3.1 of Burke et al. (1979). For each n ∈ N
∗, let Gn =

{Gn(t) : t ∈ R} be the process defined by

Gn(t) :=
1√
n

(
K(n, F (t,θ0))−

(∫

R

l(s,θ0) dsK(n, F (s,θ0))

)
∇θF (t,θ0)

⊤
)

=
1√
n

(
K(n, F (t,θ0))−W(n)∇θF (t,θ0)

⊤
)

for t ∈ R,

where we set

W(τ) :=

∫

R

l(s,θ0) dsK(τ, F (s,θ0)) for τ ≥ 0.

The process {W(τ) : τ ≥ 0} is a d-dimensional Brownian motion with a covariance matrix of rank that of

M(θ0). The estimated empirical process given by α̂n defined by (5.1) will be approximated by the sequence of

processes Gn := {F (t,θ0)Gn(t) : t ∈ R}. Set

εn := sup
t∈R

∣∣α̂n(t)−Gn(t)
∣∣.

Theorem 5.1 Suppose that the sequence of estimators
{
θ̂n : n ∈ N

∗} satisfies Conditions (i), (ii) and (iii).

Then, as n→ ∞,

(a) εn
P−→ 0 if Conditions (iv), (v) hold and εn

P−→ 0;
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(b) εn
a.s.−→ 0 if Conditions (vi)–(viii) hold and εn

a.s.−→ 0;

(c) εn = O(max(h(n), n−ǫ)) for some ǫ > 0 if Conditions (vi)–(viii) hold and εn = O(h(n)) for some

function h satisfying h(n) > 0 and h(n) → 0.

The limiting Gaussian process Gn of Theorem 5.1 depends crucially on F and also on the true theoretical value

θ0. In general, Theorem 5.1 cannot be used to test the composite hypothesis :

F ∈ {F (t,θ) : t ∈ R,θ ∈ Θ}.

In order to circumvent this problem, Burke et al. (1979) proposed an approximate solution, they introduce an-

other process:

Ĝn(t) :=
1√
n

(
K
(
n, F

(
t, θ̂n

))
−W(n)∇θF

(
t, θ̂n

)⊤)
.

Under some regularity conditions, Burke et al. (1979) show that (see Theorem 3.2 therein), as n→ ∞,

sup
t∈R

∣∣∣Ĝn(t)−Gn(t)
∣∣∣ P−→ 0.

Setting Ĝn(t) = F (t, θ̂n) Ĝn(t), one can show that, as n→ ∞,

sup
t∈R

∣∣∣Ĝn(t)−Gn(t)
∣∣∣ P−→ 0. (5.2)

Consequently, we have, as n→ ∞,

sup
t∈R

∣∣∣α̂n(t)− Ĝn(t)
∣∣∣ P−→ 0.

6 Local time of the integrated empirical process

In this section, we are mainly concerned with the behavior of the local time of the integrated empirical pro-

cess. This characterization is possible by making use of a representation provided by Henze and Nikitin (2002)

that expresses the integrated empirical process in terms of a partial sums process, see (6.1) below. Recall the

definition of the process given in (1.4). Set

βn(u) :=

∫ u

0
βn(v) dv.

In this part, we focus on the particular r.v. An = βn(1). According to Henze and Nikitin (2002) p. 185, we have

the following representation for An:

An =
√
n

(
1

n

n∑

i=1

(1− Ui)−
1

2

)
=

Sn√
n

where {Sn : n ∈ N
∗} is the following partial sums process where the summands are i.i.d. r.v.’s with mean zero

and values in the interval I := [−1/2, 1/2]:

Sn :=

n∑

i=1

(
1

2
− Ui

)
. (6.1)

Notice that we are dealing with a sum of strongly non-lattice r.v.’s as, i.e., in p. 210 of Bass and Khoshnevisan

(1993a). Indeed, we easily check that the characteristic function χ of the (1/2 − Ui)’s, namely

χ(z) :=
sin(z/2)

z/2
,
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satisfies the conditions

∀z ∈ R
∗, |χ(z)| < 1 and lim sup

|z|→∞
|χ(z)| < 1.

Next, we define the local time

λ(x, n) :=

n∑

i=1

1I (Si − x) for x ∈ R, n ∈ N
∗. (6.2)

The local time λ(x, n) represents the number of visits of the random walk {Sn : n ∈ N
∗} in the neighborhood

x + I of x up to discrete time n. Révész (1981) proved that if the random walk is symmetric, then, on some

enlarged probability space supporting also a Brownian motion with local time l(x, t) defined as in (6.4) below,

we have, for any ε > 0, almost surely, as n→ ∞,

sup
x∈Z

|λ(x, n)− l(x, n)| = O
(
n1/4+ε

)
.

Actually, Bass and Khoshnevisan (1993a) obtained the more precise estimate (see Theorem 4.5 therein) below.

Theorem B We have, with probability 1, as n→ ∞,

sup
x∈R

sup
t∈[0,1]

|λ(x, ⌊nt⌋)− l(x, nt)| = O
(
n1/4(log n)1/2(log log n)1/4

)
. (6.3)

In the present context, our aim is to obtain the rate of the approximation of the self-intersection local time

Ln(t) :=
∑

1≤i<j≤⌊nt⌋

∫

R

1I (Si − x)1I (Sj − x) dx

by the integrated local time of some standard Wiener process. The quantity Ln(t) enumerates in a certain manner

the couples (i, j) of distinct and ordered indices up to time ⌊nt⌋ such that Si − Sj is less than the diameter of I .

To this aim, we recall that, if {W(t) : t ≥ 0} is the standard Wiener process with W(0) = 0, then its local

time process {l(x, t) : t ≥ 0, x ∈ R} is defined as

l(x, t) := lim
ε↓0

1

2ε

∫ t

0
1{x−ε≤W(s)≤x+ε} ds for x ∈ R, t ≥ 0. (6.4)

Let us introduce the corresponding normalized local time ln:

ln(x, t) :=
1√
n
l
(√
nx, ⌊nt⌋

)
for x ∈ R, t ≥ 0, n ∈ N

∗.

Theorem 6.1 We have, with probability 1, as n→ ∞,

sup
t∈[0,1]

∣∣∣∣Ln(t)−
1

2
n3/2

∫

R

ln(x, t)
2 dx

∣∣∣∣ = O
(
n5/4(log n)1/2(log log n)1/4

)
.

Lemma 2.2 of Hu and Khoshnevisan (2010) stipulates, almost surely, as n→ ∞,
∫

R

l(x, n)2 dx = n3/2+o(1).

Actually, when looking at the proof of this lemma, one can prove more precisely that, almost surely, there exist

two positive constants κ′1 and κ′2 such that, as n→ ∞,

κ′1
n3/2√
log log n

≤
∫

R

l(x, n)2 dx ≤ κ′2 n
3/2
√

log log n. (6.5)

we obtain the following result.

13



Corollary 6.2 We have, with probability 1, for any t ∈ (0, 1], there exist two positive constants κ1 and κ2 such

that, almost surely, for large enough n,

κ1
⌊nt⌋3/2√
log log n

≤ Ln(t) ≤ κ2 ⌊nt⌋3/2
√

log log n. (6.6)

In particular, for any t ∈ (0, 1], almost surely, as n→ ∞,

Ln(t) =
1

2
⌊nt⌋3/2+o(1).

7 Mathematical developments

This section is devoted to the detailed proofs of our results. The previously displayed notations continue to be

used in the sequel.

7.1 Proof of Formula (1.6)

For the completeness of the paper, we provide here a proof of (1.6) inspired by Henze and Nikitin (2002). The

function Fn can be computed as follows: for any n ∈ N
∗ and any t ∈ R,

Fn(t) =
1

n

n∑

j=1

∫ t

−∞
Fn(x) d1{Xj≤x} =

n∑

j=1

Fn(Xj)1{Xj≤t} =
1

n2

∑

1≤i,j≤n

1{Xi≤Xj≤t}.

Because of the hypothesis that the d.f. F is continuous, the sampled variables X1,X2, . . . ,Xn are almost surely

all different. Then, we can define with probability 1 the order statistics

X(1) < X(2) < · · · < X(n)

associated with X1,X2, . . . ,Xn. Notice that the inequality X(i) ≤ X(j) is equivalent to i ≤ j, and that the event

{X(j) ≤ t} is equal to {nFn(t) ≤ j}. Hence, we can write that, with probability 1, for any n ∈ N
∗ and any

t ∈ R,

Fn(t) =
1

n2

∑

1≤i,j≤n

1{Xi≤Xj≤t} =
1

n2

∑

1≤i,j≤n

1{X(i)≤X(j)≤t}

=
1

n2
#
{
(i, j) ∈ N

2 : 1 ≤ i ≤ j ≤ nFn(t)
}
.

Now, we see that the foregoing cardinality is nothing but the number of combinations with repetitions of two

integers lying between 1 and nFn(t), which coincides with the number of combinations without repetitions of

two integers lying between 1 and nFn(t) + 1, namely

(
nFn(t) + 1

2

)
.

This completes the proof of (1.6). �

14



7.2 Proof of Theorem 2.2

Making use of (1.6) together with the elementary identity a2 − b2 = 2b(a− b) + (a− b)2, we can write, a.s., for

any t ∈ R, n ∈ N
∗,

αn(t) =
1

2

√
n
(
Fn(t)

2 − F (t)2
)
+

1

2
√
n
Fn(t)

=
√
nF (t) (Fn(t)− F (t)) +

1

2

√
n (Fn(t)− F (t))2 +

1

2
√
n
Fn(t)

= F (t)αn(t) +
1

2
√
n
αn(t)

2 +
1

2
√
n
Fn(t). (7.1)

Since 0 ≤ Fn(t) ≤ 1, it is clear that, a.s., for any t ∈ R, n ∈ N
∗,

F (t)αn(t) +
1

2
√
n
αn(t)

2 ≤ αn(t) ≤ F (t)αn(t) +
1

2
√
n
αn(t)

2 +
1

2
√
n
.

Consequently, since 0 ≤ F (t) ≤ 1, we have (by roughly bounding 1/2 by 1), a.s., for any n ∈ N
∗,

sup
t∈R

∣∣αn(t)− F (t)Bn(F (t))
∣∣ ≤ sup

t∈R

∣∣αn(t)− Bn(F (t))
∣∣ + 1√

n
sup
t∈R

αn(t)
2 +

1√
n
,

from which we deduce

P

{
sup
t∈R

∣∣αn(t)− F (t)Bn(F (t))
∣∣ > 1√

n
(A log n+ x)

}

≤ P

{
sup
t∈R

∣∣αn(t)− Bn(F (t))
∣∣ + 1√

n
sup
t∈R

αn(t)
2 >

1√
n
(A log n+ x− 1)

}
.

Now, using the elementary inequality P{X + Y > a} ≤ P{X > b} + P{Y > a − b} which is valid for any

r.v.’s X,Y and any real numbers a, b, we obtain

P

{
sup
t∈R

∣∣αn(t)− F (t)Bn(F (t))
∣∣ > 1√

n
(A log n+ x)

}

≤ P

{
sup
t∈R

∣∣αn(t)− Bn(F (t))
∣∣ > 1√

n
(A log n+

x

2
− 1)

}
+ P

{
sup
t∈R

αn(t)
2 >

x

2

}
. (7.2)

The inequality of Dvoretzky et al. (1956) stipulates that there exists a positive constant c4 such that

P

{
sup
t∈R

|Fn(t)− F (t)| >
√
x

n

}
≤ c4 e

−2x (7.3)

for all x > 0 and all n ∈ N
∗. An application of (7.3) gives for any x > 1 and all n ∈ N

∗

P

{
sup
t∈R

αn(t)
2 >

x

2

}
≤ c4 e

−x. (7.4)

Now, by putting (2.1) and (7.4) into (7.2), we complete the proof of Theorem 2.2. �
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7.3 Proof of Corollary 2.3

The functional Φ being Lipschitz, there exists a positive constant L such that, for any functions u, v, |Φ(u) −
Φ(v)| ≤ L supt∈R |u(t)− v(t)|, inequality that we will use in the form

Φ(v)− L sup
t∈R

|u(t)− v(t)| ≤ Φ(u) ≤ Φ(v) + L sup
t∈R

|u(t)− v(t)|. (7.5)

Let us choose for u, v the processes Un := αn(·) and Vn := F (·)Bn(F (·)). Applying the elementary inequality

|P(A) − P(B)| ≤ P(A\B) + P(B\A) to the events A = {Φ(Un) ≤ x} and B = {Φ(Vn) ≤ x} provides, for

any x ∈ R and any n ∈ N
∗,

∣∣P{Φ(Un) ≤ x} − P{Φ(Vn) ≤ x}
∣∣ ≤ P{Φ(Un) ≤ x ≤ Φ(Vn)}+ P{Φ(Vn) ≤ x ≤ Φ(Un)}.

By (7.5), we see that

P{Φ(Un) ≤ x ≤ Φ(Vn)} ≤ P

{
Φ(Vn)− L sup

t∈R
|Un(t)− Vn(t)| ≤ x ≤ Φ(Vn)

}
,

P{Φ(Vn) ≤ x ≤ Φ(Un)} ≤ P

{
Φ(Vn) ≤ x ≤ Φ(Vn) + L sup

t∈R
|Un(t)− Vn(t)|

}
,

from which we deduce, by addition, that

∣∣P{Φ(Un) ≤ x} − P{Φ(Vn) ≤ x}
∣∣ ≤ P

{
|Φ(Vn)− x| ≤ L sup

t∈R
|Un(t)− Vn(t)|

}
. (7.6)

On the other hand, by choosing x = c log n for a suitable constant c in (2.2) that will be specified below and

putting ǫn := (A+ c) log n/
√
n, we obtain the estimate below valid for large enough n:

P

{
sup
t∈R

|Un(t)− Vn(t)| ≥ ǫn

}
≤ B

ncC
.

By choosing c > 1/(2C), we have

P

{
sup
t∈R

|Un(t)− Vn(t)| ≥ ǫn

}
= o

(
1√
n

)
. (7.7)

Now, by (7.6), we write

∣∣P{Φ(Un) ≤ x} − P{Φ(Vn) ≤ x}
∣∣ = P

{
sup
t∈R

|Un(t)− Vn(t)| < ǫn, |Φ(Vn)− x| ≤ L sup
t∈R

|Un(t)− Vn(t)|
}

+ P

{
sup
t∈R

|Un(t)− Vn(t)| ≥ ǫn, |Φ(Vn)− x| ≤ L sup
t∈R

|Un(t)− Vn(t)|
}

≤ P{|Φ(Vn)− x| ≤ Lǫn}+ P

{
sup
t∈R

|Un(t)− Vn(t)| ≥ ǫn

}
. (7.8)

Noticing that the distribution of Bn does not depend on n, which entails the equality P{|Φ(Vn)− x| ≤ Lǫn} =
P{|Φ(V )− x| ≤ Lǫn} where V := F (·)B(F (·)), and recalling the assumption that the r.v. Φ(V ) admits a

density function bounded by M say, we get that, for any x ∈ R and any n ∈ N
∗,

P{|Φ(Vn)− x| ≤ Lǫn} ≤ 2LMǫn. (7.9)

Finally, putting (7.7) and (7.9) into (7.8) leads to (2.3), which completes the proof of Corollary 2.3. �
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7.4 Proof of Corollary 2.4

Applying (2.2) to x = c′ log n for some positive constant c′ that will be specified below yields, for large

enough n,

πn := P

{
sup
t∈R

∣∣αn(t)− F (t)Bn(F (t))
∣∣ ≥ c5

log n√
n

}
≤ B

nc6

where we set c5 = A + c′ and c6 = c′C . Now, we choose c′ > 1/C so that the series (
∑
πn) is convergent.

Hence, by appealing to Borel-Cantelli lemma, we get that

P

(
lim sup
n∈N∗

{
sup
t∈R

∣∣αn(t)− F (t)Bn(F (t))
∣∣ ≥ c5

log n√
n

})
= 0

which clearly implies Corollary 2.4. �

7.5 Proof of Theorem 2.5

We write that, with probability 1, for any n ∈ N
∗,

max
1≤k≤n

sup
t∈R

∣∣∣
√
k αk(t)− F (t)K(k, F (t))

∣∣∣

≤ max
1≤k≤n

sup
t∈R

∣∣∣∣
√
k F (t)αk(t) +

1

2
α2
k(t) +

1

2
Fk(t)− F (t)K(k, F (t))

∣∣∣∣

≤ max
1≤k≤n

sup
t∈R

∣∣∣
√
k αk(t)−K(k, F (t))

∣∣∣ + max
1≤k≤n

sup
t∈R

α2
k(t) + 1. (7.10)

In the last inequality above, we have used the facts that 0 ≤ F (t) ≤ 1 and 0 ≤ Fn(t) ≤ 1 for all t ∈ R and

roughly bounded 1/2 by 1. Now, by Komlós et al. (1975), we have, almost surely, as n→ ∞,

max
1≤k≤n

sup
t∈R

∣∣∣
√
k αk(t)−K(k, F (t))

∣∣∣ = O
(
(log n)2

)
. (7.11)

On the other hand, by using Chung (1949)’s law of the iterated logarithm for the empirical process which

stipulates that

lim sup
n→∞

supt∈R |αn(t)|√
log log n

=
1√
2

a.s.,

we see that, almost surely, as n→ ∞,

sup
t∈R

|αn(t)| = O
(√

log log n
)
. (7.12)

By putting (7.11) and (7.12) into (7.10), we completes the proof of Theorem 2.5. �

7.6 Proof of Corollary 2.7

We work under Hypothesis H0. Let us introduce the integrated empirical process related to the d.f. F0:

α0,n(t) :=
√
n
(
Fn(t)− F 0(t)

)
for t ∈ R, n ∈ N

∗.

By the triangular inequality, we plainly have

∣∣∣∣Sn − sup
t∈R

∣∣F0(t)Bn(F0(t))
∣∣
∣∣∣∣ ≤ sup

t∈R

∣∣α0,n(t)− F0(t)Bn(F0(t))
∣∣
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from which together with (2.4) we deduce (2.7). Similarly,
∣∣∣∣Tn −

∫

R

[
F0(t)Bn(F0(t))

]2
dF0(t)

∣∣∣∣ ≤
∫

R

∣∣∣α0,n(t)
2 −

[
F0(t)Bn(F0(t))

]2∣∣∣ dF0(t)

≤ sup
t∈R

∣∣α0,n(t)− F0(t)Bn(F0(t))
∣∣

×
(
sup
t∈R

|α0,n(t)|+ sup
t∈R

∣∣F0(t)Bn(F0(t))
∣∣
)
. (7.13)

In the last inequality above appears the supremum

sup
t∈R

∣∣F0(t)Bn(F0(t))
∣∣ ≤ sup

u∈[0,1]

∣∣Bn(u)
∣∣.

On the other hand, by Komlós et al. (1975), on a suitable probability space, we can define the empirical pro-

cess {βn : n ∈ N
∗}, in combination with the sequence of Brownian bridges {Bn : n ∈ N

∗}, such that, with

probability 1, as n→ ∞,

sup
u∈[0,1]

|βn(u)− Bn(u)| = O

(
log n√
n

)
. (7.14)

Actually, this is a consequence of (2.1). In view of (7.12) and (7.14), one derives the following bound: with

probability 1, as n→ ∞,

sup
u∈[0,1]

|Bn(u)| = O
(√

log log n
)
. (7.15)

Finally, by putting (2.4), (2.6) and (7.15) into (7.13), we immediately deduce (2.8). The proof of Corollary 2.7

is finished. �

7.7 Proof of Corollary 3.3

For each m,n ∈ N
∗, let α1

m and α2
n denote the empirical processes respectively associated with the samples

X1, . . . ,Xm and Y1, . . . , Yn. By replacing Fm(t) by α1
m(t)/

√
m+F (t) and Gn(t) by α2

n(t)/
√
n+G(t), using

the binomial theorem and recalling that, under H′
0, F = G, we write

ξ
(q)
m,n(t) =

√
mn

m+ n

[(
α1
m(t)√
m

+ F (t)

)q
−
(
α2
n(t)√
n

+ F (t)

)q]

=

√
mn

m+ n

q∑

k=1

(
q

k

)
F (t)q−k

[(
α1
m(t)√
m

)k
−
(
α2
n(t)√
n

)k]

= q F (t)q−1

(√
n

m+ n
α1
m(t)−

√
m

m+ n
α2
n(t)

)
+∆m,n(t)

where we set

∆m,n(t) =

√
mn

m+ n

q∑

k=2

(
q

k

)
F (t)q−k

[(
α1
m(t)√
m

)k
−
(
α2
n(t)√
n

)k]
.

By (2.6) and the fact that 0 ≤ F (t) ≤ 1 for any t ∈ R, it is easily seen that, with probability 1, as m,n → ∞,

sup
t∈R

|∆m,n(t)| = O

(
(log logm)q/2√

m

)
+O

(
(log log n)q/2√

n

)
. (7.16)

On the other hand, by Corollary 2.4, we can construct two sequences of Brownian bridges
{
B
1
m : m ∈ N

∗} and{
B
2
n : n ∈ N

∗} such that, with probability 1, as m,n→ ∞,

sup
t∈R

∣∣α1
m(t)− F (t)B1

m(F (t))
∣∣ = O

(
logm√
m

)
, sup

t∈R

∣∣α2
n(t)− F (t)B2

n(F (t))
∣∣ = O

(
log n√
n

)
. (7.17)
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Setting B
∗(q)
m,n as in Corollary 3.3, we have

ξ
(q)
m,n(t)− B

∗(q)
m,n(t) =

q

2q−1
F (t)2(q−1)

[√
n

m+ n

(
α1
m(t)− F (t)B1

m(F (t))
)

−
√

m

m+ n

(
α2
n(t)− F (t)B2

n(F (t))
)]

+∆m,n(t). (7.18)

By putting (7.16) and (7.17) into (7.18), we deduce the result announced in Corollary 3.3. �

7.8 Proof of Theorem 3.6

Let us introduce, for each k ∈ {1, . . . ,K}, the integrated empirical process associated with the d.f. F k

αk
n(t) :=

√
n
(
F
k
n(t)− F

k
(t)
)

for t ∈ R, n ∈ N
∗.

By recalling (3.1) and making use of the most well-known variance formula

K∑

k=1

nk(xk − x̄)2 =
K∑

k=1

nk(xk − x0)
2 − |n| (x̄− x0)

2

where we have denoted |n| =
∑K

k=1 nk and x̄ = 1
|n|

∑K
k=1 nkxk for n = (n1, . . . , nK), we rewrite ξK,n(t)

under Hypothesis HK
0 as

ξK,n(t) =

K∑

k=1

nk

(
F
k
nk
(t)− F 0(t)

)2
− 1

|n|

(
K∑

k=1

nk

(
F
k
nk
(t)− F 0(t)

))2

=
K∑

k=1

αk
nk
(t)2 −

(
K∑

k=1

√
nk
|n|

αk
nk
(t)

)2
.

Next, setting B
∗
K,n as in Theorem 3.6, we have

ξK,n(t)− B
∗
K,n(t) = ∆1,n(t)−∆2,n(t) (7.19)

where we put, for any t ∈ R and any n = (n1, . . . , nK) ∈ N
∗,

∆1,n(t) =

K∑

k=1

(
αk
nk
(t)2 − F0(t)

2
B
k
nk

(
F0(t)

)2)
,

∆2,n(t) =

(
K∑

k=1

√
nk
|n|

αk
nk
(t)

)2
−
(
F0(t)

K∑

k=1

√
nk
|n|

B
k
nk

(
F0(t)

)
)2
.

By setting, for any k ∈ {1, . . . ,K}, any t ∈ R and any n = (n1, . . . , nK) ∈ N
∗,

δk,n(t) = αk
nk
(t)− F0(t)B

k
nk

(
F0(t)

)
and ǫk,n(t) = αk

nk
(t) + F0(t)B

k
nk

(
F0(t)

)

and writing ∆1,n(t) and ∆2,n(t) as

∆1,n(t) =

K∑

k=1

δk,n(t) ǫk,n(t) and ∆2,n(t) =

K∑

k=1

√
nk
|n|

δk,n(t)

K∑

k=1

√
nk
|n|

ǫk,n(t),
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we derive the following inequalities:

sup
t∈R

|∆1,n(t)| ≤
K∑

k=1

(
sup
t∈R

|δk,n(t)|
)(

sup
t∈R

|ǫk,n(t)|
)
,

(7.20)

sup
t∈R

∣∣∆2,n(t)
∣∣ ≤

(
K∑

k=1

sup
t∈R

|δk,n(t)|
)(

K∑

k=1

sup
t∈R

|ǫk,n(t)|
)
.

By (2.4), (2.6) and (7.15), we get the bounds, a.s., for each k ∈ {1, . . . ,K}, as nk → ∞,

sup
t∈R

|δk,n(t)| = O

(
log nk√
nk

)
and sup

t∈R
|ǫk,n(t)| = O

(√
log log nk

)
. (7.21)

Finally, by putting (7.21) into (7.20), and next into (7.19), we finish the proof of Theorem 3.6. �

7.9 Proof of Theorem 4.1

In the computations below, the superscript “−” in the quantities F, F, U and α refers to the first k observations

while the superscript “+” refers to the last n − k observations. By (1.6), we have the following representation

for α̃n(s, t): with probability 1, for n ∈ N
∗, t ∈ R and s ∈ (0, 1),

α̃n(s, t) =
⌊ns⌋(n− ⌊ns⌋)

n3/2

[(
F
−
⌊ns⌋(t)− F (t)

)
−
(
F
+
n−⌊ns⌋(t)− F (t)

)]

=
⌊ns⌋(n− ⌊ns⌋)

2n3/2

[(
F
−
⌊ns⌋(t)

2 − F (t)2
)
−
(
F
+
n−⌊ns⌋(t)

2 − F (t)2
)]

+
⌊ns⌋(n− ⌊ns⌋)

2n3/2

(
1

⌊ns⌋ F
−
⌊ns⌋(t)−

1

n− ⌊ns⌋ F
+
n−⌊ns⌋(t)

)
.

By using again the elementary identity a2 − b2 = 2b(a− b) + (a− b)2, we can write α̃n(s, t), a.s., for n ∈ N
∗,

t ∈ R and s ∈ (0, 1), in the form

α̃n(s, t) = In(s, t)− IIn(s, t) + IIIn(s, t) + IVn(s, t) (7.22)

where

In(s, t) =
⌊ns⌋(n− ⌊ns⌋)

n3/2
F (t)

(
F
−
⌊ns⌋(t)− F (t)

)
=

√
⌊ns⌋ (n− ⌊ns⌋)

n3/2
F (t)α−

⌊ns⌋(t),

IIn(s, t) =
⌊ns⌋(n− ⌊ns⌋)

n3/2
F (t)

(
F
+
n−⌊ns⌋(t)− F (t)

)
=

⌊ns⌋
√
n− ⌊ns⌋
n3/2

F (t)α+
n−⌊ns⌋(t),

IIIn(s, t) =
⌊ns⌋(n− ⌊ns⌋)

2n3/2

[(
F
−
⌊ns⌋(t)− F (t)

)2
−
(
F
+
n−⌊ns⌋(t)− F (t)

)2]

=
1

2n3/2

(
(n − ⌊ns⌋)α−

⌊ns⌋(t)
2 − ⌊ns⌋α+

n−⌊ns⌋(t)
2
)
,

IVn(s, t) =
1

2n3/2

(
(n − ⌊ns⌋)F−

⌊ns⌋(t)− ⌊ns⌋F+
n−⌊ns⌋(t)

)
.

By (7.12) and by using the fact that Fn is bounded, we get that, with probability 1, as n → ∞, uniformly in s
and t,

IIIn(s, t) = O

(
log log n√

n

)
and IVn(s, t) = O

(
1√
n

)
.
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which, inserted in (7.22), provides, with probability 1, as n→ ∞, uniformly in s and t,

α̃n(s, t) = In(s, t)− IIn(s, t) +O

(
log log n√

n

)
. (7.23)

Let us introduce, for n ∈ N
∗ and s, u ∈ (0, 1),

I′n(s, u) =
⌊ns⌋(n− ⌊ns⌋)

n3/2
u
(
U
−
⌊ns⌋(u)− u

)
=
n− ⌊ns⌋
n3/2

u

( ⌊ns⌋∑

i=1

(1{Ui≤u} − u
)
)
,

II′n(s, u) =
⌊ns⌋(n− ⌊ns⌋)

n3/2
u
(
U
+
n−⌊ns⌋(u)− u

)
=

⌊ns⌋
n3/2

u

(
n∑

i=⌊ns⌋+1

(1{Ui≤u} − u
)
)
,

and

δn(s, u) = I′n(s, u)− II′n(s, u).

Then, we have the following equalities

I′n(s, F (t)) = In(s, t), II′n(s, F (t)) = IIn(s, t),

and (7.23) becomes, with probability 1, as n→ ∞, uniformly in s and t,

α̃n(s, t) = δn(s, F (t)) +O

(
log log n√

n

)
. (7.24)

Now, observe that

δn(s, u) =
u√
n

( ⌊ns⌋∑

i=1

(1{Ui≤u} − u
)
− ⌊ns⌋

n

n∑

i=1

(1{Ui≤u} − u
)
)

(7.25)

=
u√
n

(
n− ⌊ns⌋

n

n∑

i=1

(1{Ui≤u} − u
)
−

n∑

i=⌊ns⌋+1

(1{Ui≤u} − u
)
)
. (7.26)

We know from Komlós et al. (1975) and Csörgő and Horváth (1997) that, almost surely, as n→ ∞,

sup
s∈[0,1/2]

sup
u∈[0,1]

∣∣∣∣∣

⌊ns⌋∑

i=1

(1{Ui≤u} − u
)
−K2(⌊ns⌋, u)

∣∣∣∣∣ = O
(
(log n)2

)
, (7.27)

sup
s∈[1/2,1]

sup
u∈[0,1]

∣∣∣∣∣

n∑

i=⌊ns⌋+1

(1{Ui≤u} − u
)
−K1(⌊ns⌋, u)

∣∣∣∣∣ = O
(
(log n)2

)
. (7.28)

Notice that we have the following decomposition

n∑

i=1

(1{Ui≤u} − u
)
=

⌊n/2⌋∑

i=1

(1{Ui≤u} − u
)
+

n∑

i=⌊n/2⌋+1

(1{Ui≤u} − u
)
.

Hence, by adding (7.27) and (7.28), we readily infer that, almost surely, as n→ ∞,

sup
u∈[0,1]

∣∣∣∣∣

n∑

i=1

(1{Ui≤u} − u
)
−
(
K1(⌊n/2⌋, u) +K2(⌊n/2⌋, u)

)
∣∣∣∣∣ = O

(
(log n)2

)
. (7.29)
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As a byproduct, from (7.25)–(7.29) and recalling the definition of Kn given just before Theorem 4.1, we deduce

that, almost surely, as n→ ∞,

sup
s∈[0,1]

sup
u∈[0,1]

∣∣δn(s, u)−Kn(s, u)
∣∣ = O

(
(log n)2√

n

)
. (7.30)

We finally conclude from (7.24) and (7.30) by using the triangle inequality: almost surely, as n→ ∞,

sup
s∈[0,1]

sup
t∈R

∣∣α̃n(s, t)−Kn(s, F (t))
∣∣ ≤ sup

s∈[0,1]
sup
t∈R

∣∣α̃n(s, t)− δn(s, F (t))
∣∣ + sup

s∈[0,1]
sup

u∈[0,1]

∣∣δn(s, u)−Kn(s, u)
∣∣

= O

(
(log n)2√

n

)
+O

(
log log n√

n

)
= O

(
(log n)2√

n

)
.

This completes the proof of Theorem 4.1. �

7.10 Proof of Corollary 4.2

Straightforward algebra yields, for any s, t, u, v ∈ [0, 1],

E

( o

Kn(s, u)
o

Kn(t, v)
)
=

1

n
(u ∧ v − uv)ψn(s, t)

with

ψn(s, t) =





⌊n(s ∧ t)⌋ − s⌊nt⌋ − t⌊ns⌋+ 2⌊n/2⌋st for s, t ∈ [0, 1/2],

⌊n(1− s ∨ t)⌋ − (1− s)⌊n(1− t)⌋
−(1− t)⌊n(1− s)⌋+ 2⌊n/2⌋(1 − s)(1− t) for s, t ∈ [1/2, 1],

s⌊n(1− t)⌋+ (1− t)⌊ns⌋ − 2⌊n/2⌋s(1 − t) for s ∈ [0, 1/2], t ∈ [1/2, 1],

(1− s)⌊nt⌋+ t⌊n(1− s)⌋ − 2⌊n/2⌋(1 − s)t for s ∈ [1/2, 1], t ∈ [0, 1/2].

We immediately see that

lim
n→∞

1

n
ψn(s, t) = s ∧ t− st

and then

lim
n→∞

E

( o

Kn(t, v)
o

Kn(s, u)
)
= (s ∧ t− st) (u ∧ v − uv) = E

( o

K(t, v)
o

K(s, u)
)

where
o

K is the tied-down Kiefer process on [0, 1]×[0, 1]. This proves the convergence of Gaussian processes in

distribution, as n→ ∞,
o

Kn
L−→

o

K,

which in turn, together with Theorem 4.1, entails Corollary 4.2.

7.11 Proof of Theorem 5.1

Let us write α̂n(t) as follows: with probability 1, for any t ∈ R, n ∈ N
∗,

α̂n(t) =
√
n
(
Fn(t)− F

(
t, θ̂n

))
=

√
n

2

(
Fn(t)

2 − F
(
t, θ̂n

)2)
+

1

2
√
n
Fn(t)

=
√
nF
(
t, θ̂n

)(
Fn(t)− F

(
t, θ̂n

))
+

√
n

2

(
Fn(t)− F

(
t, θ̂n

))2
+

1

2
√
n
Fn(t)

= F
(
t, θ̂n

)
α̂n(t) +

1

2
√
n
α̂n(t)

2 +
1

2
√
n
Fn(t).
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Straightforward algebra yields, a.s., for any t ∈ R, n ∈ N
∗,

α̂n(t)−Gn(t) =

(
F
(
t, θ̂n

)
+

1√
n
Gn(t)

)(
α̂n(t)−Gn(t)

)
+

1

2
√
n

(
α̂n(t)−Gn(t)

)2

+
(
F
(
t, θ̂n

)
− F (t,θ0)

)
Gn(t) +

1

2
√
n
Gn(t)

2 +
1

2
√
n
Fn(t). (7.31)

Recall the definition of εn given just before Theorem 5.1 and set

ηn := sup
t∈R

|α̂n(t)−Gn(t)|.

Using again the inequalities 0 ≤ F (t) ≤ 1 and 0 ≤ Fn(t) ≤ 1 and roughly bounding 1/2 by 1, we extract from

(7.31) that, a.s., for any t ∈ R, n ∈ N
∗,

εn ≤
(
1 +

1√
n
sup
t∈R

|Gn(t)|
)
ηn +

1√
n
η2
n +

1√
n

(
1 + sup

t∈R
Gn(t)

2

)

+ sup
t∈R

∣∣∣F
(
t, θ̂n

)
− F (t,θ0)

∣∣∣ sup
t∈R

|Gn(t)|. (7.32)

We know from Theorem 3.1 of Burke et al. (1979) that ηn satisfies the same limiting results that those displayed

in Theorem 5.1 for εn. Next, we need to derive some bounds for supt∈R |Gn(t)| and supt∈R
∣∣F
(
t, θ̂n

)
−

F (t,θ0)
∣∣ as n→ ∞. First, by (7.11), we have, almost surely, as n→ ∞,

sup
t∈R

∣∣∣∣αn(t)−
1√
n
K(n, F (t))

∣∣∣∣ = O

(
(log n)2√

n

)

from which we deduce, due to (7.12), almost surely, as n→ ∞,

sup
u∈[0,1]

|K(n, u)| = O
(√

n log log n
)
.

Notice that the same bound holds for the Brownian motion {W(n) : n ∈ N
∗} introduce before Theorem 5.1.

Hence, by Condition (iv) and the definition of Gn(t), with probability 1, as n→ ∞,

sup
t∈R

|Gn(t)| = O
(√

n log log n
)
. (7.33)

On the other hand, using the one-term Taylor expansion of F (·,θ) with respect to θ0, there exists θ∗
n lying in

the segment
[
θ0, θ̂n

]
such that

F
(
t, θ̂n

)
− F (t,θ0) =

(
θ̂n − θ0

)
∇θF (t,θ

∗
n)

⊤. (7.34)

In case (a) of Theorem 5.1,
√
n
(
θ̂n− θ0

)
is asymptotically normal and then n1/4

(
θ̂n− θ0

)
tends to zero as

n→ ∞ in probability. Therefore, by (7.33) and (7.34), supt∈R
∣∣F
(
t, θ̂n

)
− F (t,θ0)

∣∣ supt∈R |Gn(t)| also tends

to zero as n → ∞ in probability. Putting this into (7.32), we easily complete the proof of Theorem 5.1 in this

case. In cases (b) and (c) of Theorem 5.1, referring to Burke et al. (1979) p. 779, we have the following bound

for θ̂n − θ0: almost surely, as n→ ∞,

θ̂n − θ0 = O

(√
log log n

n

)
.

By putting this into (7.34) and next in (7.32) with the aid of (7.33), we complete the proof of Theorem 5.1 in

these two cases.
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Finally, concerning Ĝn(t), we have

Ĝn(t)−Gn(t) = F
(
t, θ̂n

) (
Ĝn(t)−Gn(t)

)
+
(
F
(
t, θ̂n

)
− F (t,θ0)

)
Gn(t),

from which we deduce

sup
t∈R

∣∣∣Ĝn(t)−Gn(t)
∣∣∣ ≤ sup

t∈R

∣∣∣Ĝn(t)−Gn(t)
∣∣∣+ sup

t∈R

∣∣∣F
(
t, θ̂n

)
− F (t,θ0)

∣∣∣ sup
t∈R

|Gn(t)|.

Using the same bounds than previously, we immediately derive (5.2). �

7.12 Proof of Theorem 6.1

In a similar way as in Bass and Khoshnevisan (1993a) (refer also to Bass and Khoshnevisan (1993b)), we con-

sider the following normalized local time

Λn(x, t) :=
1√
n
λ
(√
nx, ⌊nt⌋

)
for x ∈ R, t ∈ [0, 1], n ∈ N

∗, (7.35)

where the local time λ is defined by (6.2). We first decompose Λn(x, t)
2 into the sum of two components, by

writing

Λn(x, t)
2 =

1

n

⌊nt⌋∑

i=1

⌊nt⌋∑

j=1

1I(Si −√
nx
) 1I (Sj −√

nx
)

=
1

n

⌊nt⌋∑

i=1

1I(Si −√
nx
)
+

2

n

∑

1≤i<j≤⌊nt⌋
1I(Si −√

nx
) 1I (Sj −√

nx
)
.

This, in turn, implies that

∫

R

Λn(x, t)
2 dx =

1

n

∫

R

⌊nt⌋∑

i=1

1I (Si −√
nx
)
dx+

2

n

∑

1≤i<j≤⌊nt⌋

∫

R

1I(Si −√
nx
) 1I (Sj −√

nx
)
dx.

from which, by observing that
∫
R
1I (Si −√

nx) dx = 1/
√
n and that

∑

1≤i<j≤⌊nt⌋

∫

R

1I(Si −√
nx
) 1I(Sj −√

nx
)
dx =

1√
n
Ln(t),

we readily infer that

Ln(t) =
1

2
n3/2

∫

R

Λn(x, t)
2 dx− 1

2
⌊nt⌋. (7.36)

In order to evaluate the right hand-side of (7.36), first, remark that

∣∣∣∣
∫

R

Λn(x, t)
2 dx−

∫

R

ln(x, t)
2 dx

∣∣∣∣ ≤ sup
x∈R

|Λn(x, t)− ln(x, t)|
∫

R

(Λn(x, t) + ln(x, t)) dx. (7.37)

By combining (7.35) with (6.3), we obtain, with probability 1, as n→ ∞,

sup
x∈R

sup
t∈[0,1]

|Λn(x, t)− ln(x, t)| = O
(
n−1/4(log n)1/2(log log n)1/4

)
. (7.38)
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Moreover, using the following relations satisfied by the normalized local times:
∫

R

Λn(x, t) dx =

∫

R

ln(x, t) dx = ⌊nt⌋/n,

we get, for any t ∈ [0, 1] and any n ∈ N
∗,
∫

R

(Λn(x, t) + ln(x, t)) dx ≤ 2. (7.39)

Then, putting (7.38) and (7.39) into (7.37) yields, with probability 1, as n→ ∞,

sup
t∈[0,1]

∣∣∣∣
∫

R

Λn(x, t)
2 dx−

∫

R

ln(x, t)
2 dx

∣∣∣∣ = O
(
n−1/4(log n)1/2(log log n)1/4

)
. (7.40)

Finally, from (7.36) and (7.40), we infer, with probability 1, as n→ ∞, uniformly in t,

Ln(t) =
1

2
n3/2

∫

R

ln(x, t)
2 dx+O

(
n5/4(log n)1/2(log log n)1/4

)
.

This completes the proof of Theorem 6.1. �

7.13 Proof of Corollary 6.2

We imitate the proof of Lemma 2.2 of Hu and Khoshnevisan (2010) yielding
∫
R
l(x, n)2 dx = n3/2+o(1). For

this, let us observe that ∫

R

l(x, n)2 dx =

∫

In

l(x, n)2 dx

where In is the range of the Brownian motion over the time interval [0, n], i.e.,

In =
[

inf
s∈[0,n]

W(s), sup
s∈[0,n]

W(s)
]

and let us introduce the corresponding oscillation

Zn := sup
s∈[0,n]

W(s)− inf
s∈[0,n]

W(s).

By using Cauchy-Schwarz inequality, we write the inequalities

1

Zn

(∫

R

l(x, n) dx

)2
≤
∫

R

l(x, n)2 dx ≤
∫

R

l(x, n) dx× sup
x∈R

l(x, n)

which can be rewritten, since
∫
R
l(x, n) dx = n, as

n2

Zn
≤
∫

R

l(x, n)2 dx ≤ n sup
x∈R

l(x, n). (7.41)

Now, by invoking Paul Lévy’s (Csörgő and Révész (1981) p. 36) and Kesten (1965)’s laws of the iterated loga-

rithm which respectively state that

lim sup
τ→∞

sups∈[0,τ ] |W(s)|
√
τ log log τ

=
√
2 and lim sup

τ→∞

l(x, τ)√
τ log log τ

=
√
2 a.s.,

we obtain that, with probability 1, there exist two positive constants κ′1 and κ′2 such that, for large enough n,

Zn ≤ 1

κ′1

√
n log log n and sup

x∈R
l(x, n) ≤ κ′2

√
n log log n. (7.42)

By putting (7.42) into (7.41), we deduce (6.5). Finally, by observing that
∫
R
ln(x, t)

2 dx = n−3/2
∫
R
l(x, ⌊nt⌋)2 dx

and appealing to Theorem 6.1, we get (6.6). The proof of Corollary 6.2 is completed.
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Csörgő, M. (2007). A glimpse of the KMT (1975) approximation of empirical processes by Brownian bridges

via quantiles. Acta Sci. Math. (Szeged), 73(1-2), 349–366.
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