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Abstract 
In the context of coupled periodic waveguides, “couplon-
ics” refers to the rigorous equivalence between continuous 
wave coupling and localized interactions. We extend it here 
to a cyclic ternary system, looked upon as the simplest dis-
crete photonic crystal with actual periodic boundary condi-
tions. A linear decomposition on a supermode basis enables 
one to reduce the original six-wave problem to three inde-
pendent two-wave distributed Bragg reflectors (or 1D PC). 

1. Introduction 
Whatever the frequency range, a system made of coupled 
periodic waveguides (CPW) ensures simultaneously filter-
ing and addressing functions [1-2]. When dealing with 
CPW, “couplonics” [3-4] stems from the formal identifica-
tion between the continuous configuration, represented by 
an invariant evolution operator, and the discrete one, seen as 
multiple-port networks interconnected by segments of 
transmission lines [5]. In a symmetric system limited to 
only two CPW, a linear decomposition on the even/odd 
eigenbasis (that of the “supermodes”) enables one to ex-
press any scattering parameter as a linear superposition of 
S-parameters of the underlying even/odd two-port networks. 
On the other hand, for each supermode, the system can be 
thought of as an instance of Distributed Bragg Reflector 
(DBR), well described in terms of Coupled-Mode Theory 
(CMT) [6]. 
The ternary configuration is a bit more complicated. Even if 
the periodic waveguides are identical, the symmetries of the 
system depend on the distribution of the mutual coupling. In 
what follows, we consider first an ideal system made of 
three identical single-mode Λ-periodic waveguides, of aver-
age propagation constant β along the z-axis, symmetrically 
coupled in a cyclic way [Fig. 1]. Such a configuration could 
be achieved, for instance, in a three-core optical fibre with a 
photo-induced index grating. For the sake of clarity, the unit 
cell of each waveguide is assumed symmetrical and loss-
less. Time dependence is taken as exp(+i ω t). Physically 
speaking, co-directional coupling is related to the mutual 
overlap of the guided modes through their evanescent part, 
whereas contra-directional coupling comes from the period-
ic modulation of the effective index along the z-axis.  
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Figure 1: Cyclic ternary system made of single-mode Λ-
periodic waveguides: (a) schematic representation; (b) 
unit cell seen as a symmetrical six-port network. 

 

2. Evolution operator 

2.1. Supermodes of the non-periodic structure 

In the usual perturbative approach [7], when only co-
directional coupling occurs, with coupling constant χ (real 
and positive without loss of generality), slowly varying en-
velopes An of fields Fn = An exp(–i β z) should obey: 
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Note that the value of β itself takes also into account the 
influence of the neighbouring waveguides. 
Eigenvalues of operator [K] are λa = +2 χ, λb = λc = –χ. We 
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establish an orthogonal eigenmode basis such as: 
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In that basis, the evolution operator is obviously diago-
nal. Note that in this cyclic case, the degeneracy is not com-
pletely lifted (λb = λc). 

Matrix [P] is unitary. The inverse matrix reads: 
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2.2. Cyclic ternary periodic structure 

The (6×6) evolution operator [K] connecting the enve-
lopes (Cn

+, Cn
–) of co- and contra-propagating fields 

Fn
+ = Cn

+ exp(–i βB z) and Fn
– = Cn

– exp(+i βB z) reads: 
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with 
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where βB = π/Λ denotes the Bragg wavevector, δ = β – βB 
the detuning, κ and ξ the (real positive) constants for direct 
and crossed contra-directional coupling. The latter one is 
required for the sake of completeness. 

A straightforward calculation shows that, in the 
eigenmode basis: 
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for x ∈ {a, b, c}, with  

 δa = δ + 2 χ,     δb = δc = δ – χ, (4b) 

 κa = κ + 2 ξ,     κb = κc = κ – ξ. (4c) 

We recognize the typical equation for contra-directional 
mode coupling in a Distributed Bragg Reflector (DBR), 
each “eigen-DBR” being characterized by a forbidden band 
of bandwidth 2 κx, centred on δx = 0 [7]. This result can be 
thought of as a partial lift of degeneracy. Taken separately, 
each waveguide is characterised by a forbidden band of 
width 2 κ centred on δ = 0. In terms of supermodes, cou-
pling constant χ is responsible for a shift of the band cen-
tres, whereas coupling constant ξ affects both the rejection 
rate and the bandwidth. 
The transfer matrix [mx] for a unit cell is such as: 
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With γx = [ |κx|2 – δx
2 ]1/2, its elements are: 
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For a structure made of N unit cells, the reflectance and 
transmittance read: 
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with L = N Λ. 

2.3. Scattering parameters 

The system is therefore totally determined by four coeffi-
cients only:  

 ra,           rb = rc, (7a) 

 ta,           tb = tc. (7b) 

It is not difficult to establish that: 

 S11 = S22 = S33 = (ra + 2 rb)/3 = r//, (8a) 

 S41 = S52 = S63 = (ta + 2 tb)/3 = t//, (8b) 

 S21 = S32 = S13 = (ra – rb)/3 = r⊥, (8c) 

 S51 = S62 = S43 = (ta – tb)/3 = t⊥. (8d) 

The system is both symmetrical and reciprocal: ∀ (p, q), 
Spq = Sqp. The S-parameters can take only one out of 4 val-
ues: direct transmission t// (S41 and the like), direct reflection 
r// (Spp), crossed transmission t⊥ (S51 and the like), crossed 
reflection r⊥ (S21 and the like). 
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3. Discrete configuration 

3.1. Transmittance and reflectance 

Let us now consider the discrete configuration. The whole 
system is totally determined by four coefficients only: (r//, 
r⊥, t//, t⊥). Symmetries being the same as in the continuous 
case, eigenmodes of the former are also eigenmodes of the 
latter. We get: 

 ra = r// + 2 r⊥,           rb = rc = r// – r⊥, (9a) 

 ta = t// + 2 t⊥,             tb = tc = t// – t⊥. (9b) 

Once again, the six-port network can be decomposed as 
a linear superposition of two-port networks.  

3.2. Couplonic identification 

For any eigenmode, the corresponding two-port network 
can always be expressed in terms of coupled-mode theory. 
This stems from the symmetry properties of the unitary 
transfer matrix of one unit cell, as elegantly established in 
1997 by Matuschek et al. in the case of an arbitrary multi-
layer Distributed Bragg Reflector [8]. For a long time, it has 
been believed that CMT holds only in a perturbative way 
(for small index modulations), and only if the interaction 
length L is much greater than period Λ, but we would like to 
emphasise that, as shown in [8], the equivalence remains 
mathematically exact at the scale of Λ only, whatever the 
precise content of the unit cell. 

This enables one to define without ambiguity, for any 
eigenmode x ∈ {a, b, c}, an equivalent coupling constant κx 
and an equivalent detuning δx.  

Or, to be more specific, since we work at the scale of 
one unit cell, we can establish dimensionless parameters 
(κaΛ, δaΛ) and (κbΛ, δbΛ), which in turn lead to four di-
mensionless parameters (δΛ, κΛ, χΛ, ξΛ) that completely 
describe the whole system: 
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We call couplons these parameters, which should be in-
terpreted as elementary quanta of detuning or coupling that 
take place at the scale of one unit cell. As a matter of fact, 
as can be seen from Eqns.(5-6), the responses of the system 
made of N cells involves only multiple quantities such as 
δL = N δΛ, κL = N κΛ, χL = N χΛ, ξL = N ξΛ. 

3.3. Normalised spectral responses 

Whatever the configuration – continuous or discrete –, the 
spectral responses take the same form. For instance, we 

draw in Figure 2 the spectral transmittance of a cyclic ter-
nary CPW system for κL = 2, χL = 1, ξL = 0.25, as compared 
to the spectral response of a single (uncoupled) periodic 
waveguide. The coupling is obviously responsible for a 
partial lift of degeneracy: taken separately, each periodic 
waveguide is characterised by a forbidden band centred on 
δL = 0, of bandwidth 2 |κL|. In terms of supermodes, codi-
rectional coupling constant χ is responsible for a shift of the 
stop-band, whereas crossed contradirectional coupling con-
stant ξ modifies both its rejection rate and bandwidth. 
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Figure 2: Normalised spectral transmittance Ta and Tb of 
the supermodes (Tx = |tx|2), as compared to transmittance 
T of a single (uncoupled) periodic waveguide (κL = 2, 
χL = 1, ξL = 0.25) 

 
As a matter of fact, the maximum reflectance and mini-

mum transmittance are given by [7]: 

 ( )2
max tanh | |x xR Lκ= , (11a) 

 ( )2
min 1 tanh | |x xT Lκ= − . (11b) 

The reflectance is reported in Figure 3 for the same set 
of reduced parameters: 
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Figure 3: Normalised spectral reflectance Ra and Rb of 
the supermodes (Rx = |rx|2), as compared to transmit-
tance R of a single (uncoupled) periodic waveguide 
(κL = 2, χL = 1, ξL = 0.25) 
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3.4. Universal Bragg reflector 

The spectral response of a standard DBR is the key to that 
of the whole system, whatever the precise values of the 
“couplonic” parameters. Moreover, any actual lossless DBR 
can be reduced to one instance of a “universal” lossless 
Bragg reflector, as schematically depicted in Figure 4. As a 
matter of fact, only two parameters (κL, δL) govern its be-
haviour. 
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Figure 4: Normalised reflectance R = |M21/M11|2 of a 
“universal” DBR. 

Each spectrum of Figure 3 can be recovered by follow-
ing a specific path over the universal relief of Figure 4. By 
an obvious topographic analogy [9], we can speak of “cou-
plonic alpinism”. 

 

4. Conclusions 
We have established analytically, in terms of reduced di-
mensionless parameters, the spectral responses of a cyclic 
ternary system made of symmetrically coupled periodic 
waveguides. In the supermode basis, the method stems from 
a rigorous mathematical identification between the continu-
ous and discrete configurations.  

As paradoxical as that may seem, any discrete ternary 
systems with the right symmetries can be described, without 
any approximation, by a continuous evolution operator: Ini-
tially looked upon as resulting from a mere approximation, 
couplonic parameters (κΛ, δΛ, χΛ, ξΛ) prove much more 
rigorous than expected. The usual distinction between local-
ised and distributed interactions is therefore blurred. 

Taking losses into account would not cause any special 
difficulty: it would be enough to add two new reduced pa-
rameters, corresponding respectively to average losses and 
to loss-modulation (loss coupling). Optical amplification 
would appear just as straightforward, the structure becoming 
a cyclic array of coupled Distributed Feedback (DFB) emit-
ters [10]. 

The so-called “couplonic” approach is an elegant as well 
as powerful theoretical tool, not only for studying spectrally 
selective splitters, but also for the analysis or synthesis of 
discrete electromagnetic crystals of finite size [5]. Moreover, 

it comes well within the framework of current research on 
discrete photonics based on coupled waveguides [11-12]. 
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