
HAL Id: hal-01157074
https://hal.science/hal-01157074v1

Submitted on 27 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On architecture and formalisms for computer assisted
improvisation

Fivos Maniatakos, Gérard Assayag, Frédéric Bevilacqua, Carlos Agon

To cite this version:
Fivos Maniatakos, Gérard Assayag, Frédéric Bevilacqua, Carlos Agon. On architecture and formalisms
for computer assisted improvisation. Sound and Music Computing conference, Jul 2010, Barcelona,
Espagne. pp.1-1. �hal-01157074�

https://hal.science/hal-01157074v1
https://hal.archives-ouvertes.fr


ON ARCHITECTURE AND FORMALISMS FOR COMPUTER-ASSISTED
IMPROVISATION

Fivos Maniatakos * ** Gerard Assayag * Frederic Bevilacqua ** Carlos Agon*
* Music Representation group (RepMus)

** Real-Time Musical Interactions team (IMTR)
IRCAM, UMR-STMS 9912

Name.Surname@ircam.fr

ABSTRACT

Modeling of musical style and stylistic re-injection strate-
gies based on the recombination of learned material have
already been elaborated in music machine improvisation
systems. Case studies have shown that content-dependant
regeneration strategies have great potential for a broad and
innovative sound rendering. We are interested in the study
of the principles under which stylistic reinjection could be
sufficiently controlled, in other words, a framework that
would permit the person behind the computer to guide the
machine improvisation process under a certain logic. In
this paper we analyze this three party interaction scheme
among the isntrument player, the computer and the com-
puter user. We propose a modular architecture for Com-
puter Assisted Improvisation (CAO). We express stylistic
reinjection and music sequence scheduling concepts under
a formalism based on graph theory. With the help of these
formalisms we then study a number problems concerning
temporal and qualitative control of pattern generation by
stylistic re-injection.

1. INTRODUCTION

New computer technologies and enhanced computation ca-
pabilities have brought a new era in real-time computer
music systems. It is interesting to see how artificial in-
telligence (AI) technology has interacted with such sys-
tems, from the early beginning until now, and the effect
that these enhancements have had when setting the ex-
pectations for the future. In the 2002’s review paper [1],
computer music systems are organized in three major cate-
gories: (1) Compositional, (2) Improvisational and (3) Per-
formance systems. Concerning the limits between what we
call computer improvisation and computer performance,
the authors of [1] state the following:

“... Although it is true that the most fundamental char-
acteristic of improvisation is the spontaneous, real-time,
creation of a melody, it is also true that interactivity was not
intended in these approaches, but nevertheless, they could
generate very interesting improvisations.”

Copyright: c©2010 Maniatakos et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

According to [1], first improvisation systems did not
address directly interactivity issues. Algorithmic compo-
sition of melodies, adapatation in harmonic background,
stochastic processes, genetic co-evolution, dynamic sys-
tems, chaotic algorithms, machine learning and natural lan-
guage processing techniques constitute a part of approaches
that one can find in literature about machine improvisation.
However, most of these machine improvisation systems,
even with interesting sound results either in a pre-defined
music style or in the form of free-style computer synthesis,
did not address directly the part of interaction with human.

During the last years, achievements in Artificial Intelli-
gence and new computer technologies have brought a new
era in real-time computer improvisation music systems.
Since real-time systems for music have provided the frame-
work to host improvisation systems, new possibilities have
emerged concerning expressiveness of computer improvi-
sation, real-time control of improvisation parameters and
interaction with human. These have resulted to novel im-
provisation systems that establish a more sophisticated com-
munication between the machine and the instrument player.
Some systems have gone even further in terms of interac-
tivity by envisaging a small participation role for the com-
puter user.

However, as for the interaction design of many of these
systems, the role of the computer user in the overall in-
teraction scheme often seems to be neglected, sometimes
even ignored. What is the real degree of communication
that machines achieve to establish with the instrument play-
ers in a real-world improvisation environment? Is the study
of bipartite communication between instrument player -
computer sufficient enough to model real-world complex
improvisation schemes? More importantly, do modern com-
puter improvisation system really manage to exploit the
potential of this new form of interactivity, that is, between
the computer and its user? And what would be the theo-
retical framework for such an approach that would permit
a double form of interactivity between (1) computer and
instrument player (2) computer and its user?

In our research we are concerned with the aspects of en-
hanced interactivity that can exist in the instrument instru-
ment player - computer - user music improvisation frame-
work. We are interested particularly on the computer - user
communication channel and on the definition of a theoret-
ical as well as of a the computational framework that can
permit such a type of interaction to take place in real-time.
Such a framework differs from the conventional approach

http://creativecommons.org/licenses/by/3.0/


of other frameworks for machine improvisation in that the
computer user takes an active role in the improvisation pro-
cess. We call the context we study Computer Assisted Im-
provisation (CAI), due to the shift of the subject role from
the computer to the computer user.

Later in this report, we propose a model for three-party
interaction in collective improvisation and present an ar-
chitecture for Computer Assisted Improvisation. We then
introduce a formalism based on graph theory in order to
express concepts within computer assisted improvisation.
This formalism succeeds in expressing unsupervised, content-
dependant learning methods as well as the concept of “stylis-
tic re-injection for the pattern regeneration, furthered en-
riched with new features for user control and expressivity.
Through a bottom-up approach we analyze real-world se-
quence scheduling problems within CAI and study their
resolvability in terms of space and time complexity. In
this scope we present a number of real world music im-
provisation problems and show how these problems can be
expressed and studied in terms of graph theory. Finally we
give notions about our implementation framework GrAIPE
(Graph assisted Interactive Performance Environment) in
the real-time system Max-MSP, as well as about future re-
search plans.

2. BACKGROUND

One of the first models for machine improvisation appeared
in 1992 under the name Flavors Band [4]. Flavors Band
a procedural language for specifying jazz and procedu-
ral music styles. Despite the off-line character of the ap-
proach, due to which one could easily classify the sys-
tem to the computer-assisted composition domain, the ad-
vanced options for musical content variation and phrase
generation combined with musically interesting results in-
spired later systems of machine improvisation. In the com-
puter assisted improvisation context, the interaction paradigm
proposed by Flavors Band could be regarded as a contribu-
tion of major importance, due to the fact that it assigns
the computer user with the role of the musician who takes
high-level offline improvisation decisions according to ma-
chine’s proposals. Adopting a different philosophy as for
the approach, GenJam [6] introduced the use of genetic
algorithms for machine improvisation, thus being the ‘fa-
ther’ of a whole family of improvisation systems in the
cadre of evolutionary computer music. Such systems make
use of evolutionary algorithms in order to create new solos,
melodies and chord successions. It was also one of the first
systems for music companion during performance. Evolu-
tionary algorithms in non supervised methods were intro-
duced by Papadopoulos and Wiggins in 1998 [9]. More
recent learning methods include reccurent neural networks
[5], reinforcement learning [11], or other learning tech-
niques such as ATNs (Augmented Transition Networks)
[7] and Variable order Markov Chains [12].

Thom with her BAND-OUT-OF-A-BOX(BOB) system
[2] addresses the problem of real-time interactive impro-
visation between BOB and a human player. Sever years
later, the LAM (Live Algorithms for Music) Network’s
manifesto underlines the importance of interactivity, un-

der the term autonomy which should substitute the one of
automation. In [14] the LAM manifesto authors describe
the Swarm Music/Granulator systems, which implements a
model of interactivity derived from the organization of so-
cial insects. They give the term ‘reflex systems’ to systems
where ‘incoming sound or data is analysed by software and
a resultant reaction (e.g. a new sound event) is determined
by pre-arranged processes.’ They further claim that this
kind of interaction is ‘weakly interactive because there is
only an illusion of integrated performer-machine interac-
tion, feigned by the designer’. With their work, inspired by
the animal interaction paradigm, they make an interesting
approach to what has prevailed to mean ‘human - computer
interaction’ and bring out the weak point inside real-time
music systems’ design. However, even if they provide the
computer user with a supervising role for the improvisation
of the computer, they don’t give more evidence about how
a three party interaction among real musician - machine -
computer user could take place. Merely due to the fact that
they consider their machine autonomous. But if the hu-
man factor is important for a performance, this should refer
not only to the instrument player but to the person behind
the computer as well. At this point, it seems necessary to
study thoroughly the emerging three party interaction con-
text where each of the participants has an independent and
at the same time collaborative role.

Computer - computer user interaction is studied instead
in the framework of live electronics and live coding, un-
der the ‘laptop-as-instrument’ paradigm. In [15], the au-
thor describes this new form expression in computer mu-
sic and the challenges of coding music on the fly within
some established language for computer music or within
a custom script language. The most widespread are prob-
ably the aforementioned SuperCollider [19], a Smalltalk
derived language with C-like syntax, and most recently
ChucK, a concurrent threading language specifically de-
vised to enable on-the-fly programming [20]. Live cod-
ing is a completely new discipline of study, not only for
music but also for computer science, phsycology and Hu-
man Computer Interaction as well. Thus, it seems -for the
moment- that live coding is constrained by the expressivity
limitations of the existing computer languages, and that it
finds it difficult to generalize to a more complicated inter-
action paradigm which could also involve musicians with
physical instruments.

2.1 OMax and stylistic reinjection

An interaction paradigm which is of major interest for our
research is this of the stylistic reinjection, employed by
the OMax system [3]. OMax is a real-time improvisa-
tion system which use on the fly stylistic learning meth-
ods in order to capture the playing style of the instrument
player. Omax is an unsupervised, context-dependant per-
forming environment, the last stating that it does not have
pre-accuired knowledge but builds its knowledge network
on the fly according to the special features of the player’s
performance. The capacity of OMax to adapt easily to dif-
ferent music styles without any preparation, together with
its ability to treat audio directly as an input through the



employment of efficient pitch tracking algorithms, make
OMax a very attractive environment for computer impro-
visation.

It is worth pointing out that style capturing is made with
the help of the Factor Oracle Incremental Algorithm, in-
truduced by Allauzen and al. in [13], which repeatedly
adds knowledge in an automaton called Factor Oracle (FO).
Concerning the generation process, this is based on FO and
is extensively described in [3]. With the help of forest of
Suffix Link Trees (SLTs) it is possible to estimate a Re-
ward Function in order to find interconnections between
repeated patterns, which is the key for the pattern gener-
ation. Through this method, one can construct a model
that continuously navigates within an FO. By balancing
linear navigation with pivots and adding a little of non-
determinism to the Selection Function decisions, the sys-
tem can navigate for ever by smoothly recombining exist-
ing patterns. Due to the short-term memory effect, this re-
combination is humanly perceived as a generation, which,
more importantly, preserves the stylistic properties of the
original sequence. The creators of the system call this
method stylistic reinjection: this method relies on recol-
lecting information from the past and re-injecting it to the
future under a form which is consistent to the style of the
original performance. Based on this principle and employ-
ing further heuristic and signal processing techniques to
refine accordingly selections and sound rendering, OMax
succeeds musically in a collective, real-world improvisa-
tion context.

Finally, OMax provides a role for the computer user as
well. During a performance, user can change on the fly a
number improvisation parameters, such as the proportion
between linear navigation and pivot transitions, the qual-
ity of transitions according to common context and rhythm
similarity, define the area of improvisation and cancel im-
mediately the system’s event scheduling tasks in order to
access directly a particular event of the performance and
reinitiate all navigation strategies.

2.2 The Continuator

An other system worth mentioning is The Continuator [12].
Based on variable-order Markov models, the system’s pur-
pose was to fill the gap between interactive music systems
and music imitation systems. The system, handling except
for pitch also polyphony and rhythm, provides content-
dependent pattern generation in real-time. Tests with jazz
players, as well with amateurs and children showed that it
was a system of major importance for the instrument player
- computer interaction scheme.

3. MOTIVATION

In this point, it is interesting to have a look over interaction
aspects between the musician and the machine. Maintain-
ing style properties assures that similar type of information
travels in both directions throughout the musician - ma-
chine communication channel, which is a very important
prerequisite for interaction. Moreover, diversity in musi-
cal language between machines and physical instrument

playing, is one of the main problems encountered by evo-
lutionary improvisation systems. OMax deals well with
this inconvenience, in the sense that the patterns being re-
generated and the articulation within time is based on the
music material played the performer. However, when for
interaction one should study not only information streams
but also design of modules responsible for the Interpreta-
tion of received information [14]. In the case of the in-
strument player, human improvisors can interpret informa-
tion according to their skills developed by practicing with
the instrument, previous improvisational encounters and
stylistic influences. These skills allow -or not- reacting to
surprise events, for instance a sudden change of context.
Concerning the machine, OMax disposes an interpretation
scheme that stores information in the form FO represen-
tation. The question that arises concerns the capability of
this scheme to handle surprise. This question can be gener-
alized as follows: Can stylistic reinjection approach adapt
its pre-declared generation strategies to short-time memory
events? The last implies the need for an specifically con-
figured autonomous agent capable of detecting short-time
memory features of a collective improvisation, understand-
ing their musical nuance and transmitting information to
the central module of strategy generation.

Concerning stylistic reinjection, this approach currently
permits a several amount of control of the overall process.
We described in previous section the computer user’s role
in the OMax improvisation scenario. However, It seems
intriguing to investigate further the role the computer user
can have in such a scenario. For instance, wouldn’t it
be interesting if the computer user could decide himself
the basic features of a pattern? Or if he could schedule
a smooth passage in order that the computer arrives in a
specific sound event within a certain time or exactly at a
time?

We believe that the study of three-party interaction among
can be beneficial for machine improvisation. In particular,
we are interested in the ‘forgotten’ part of computer - com-
puter user interaction, for which we are looking forward to
establishing a continuous dialog interaction scheme. Our
approach is inspired from the importance of the human fac-
tor in a collective performance between humans and ma-
chines, where humans are either implicitly (musicians) or
explicitly (computer users) interacting with the machines.
Though this three party interaction scheme, computer user
is regarded as an equal participant to improvisation.

With respect to existing systems, our interest is to en-
hance the role of the computer user from the one of su-
pervisor to the one of performer. In this scope, instead
of controlling only low level parameters of computer ’s
improvisation, the user is set responsible of providing the
computer with musical, expressive information concerning
the structure and evolution of the improvisation. Inversely,
the computer has a double role: first, the one of an aug-
mented instrument, which understands the language of the
performer and can regenerate patterns in a low level and ar-
ticulate phrases coherent to user’s expressive instructions,
and second, the one of an independent improvisor, able to
respond reflexively to specific changes of music context or
to conduct an improvisation process with respect to a pre-



specified plan.
Our work consists of setting the computational frame-

work that would permit such operations to take place. This
includes:1) the study of the interaction scheme, 2) the ar-
chitecture for such an interaction scheme 3) an universal
representation of information among the different partici-
pants and 4) a formalism to express and study specific mu-
sical problems, their complexity, and algorithms for their
solution.

4. ARCHITECTURE

In this section we analyze three-party interaction in CAI
and propose a computational architecture for this interac-
tion scheme.

4.1 Three party interaction scheme

In figure 1, one can see the basic concepts of three party in-
teraction in CAI. The participants in this scheme are three:
the musician, the machine (computer) and the performer.
Communication among the three is achieved either directly,
such as the one between the performer and the computer, or
indirectly through the common improvisation sound field.
The term sound field stands for the mixed sound prod-
uct of of all improvisers together. During an improvisa-
tion session, both the musician and the performer receive
a continuous stream of musical information, consisting of
a melange of sounds coming from all sources and thrown
in the shared sound field canvas. They manage to interpret
incoming information through human perception mecha-
nisms. This interpretation includes the separation of the
sound streams and the construction of an abstract internal
representation inside the human brain about the low and
high level parameters of each musical flux as well as the
dynamic features of the collective improvisation. During
session, the musician is in a constant loop with the ma-
chine. He listens to its progressions and responds accord-
ingly. The short-time memory human mechanisms pro-
vides her/him with the capacity to continuously adapt to
the improvisation decisions of the machine and the evolu-
tion of the musical event as a group, as well as with the
ability to react to a sudden change of context.

On the same time, the machine is listening to the mu-
sician and constructs a representation about what he has
played. This is one of the standard principles for human
machine improvisation. Furthermore, machine potentially
adapts to a mid-term memory properties of musician’s play-
ing, thus reinjecting stylistically coherent patterns. During
all these partial interaction schemes, the performer behind
the computer, as a human participant, is also capable of re-
ceiving and analyzing mixed-source musical information,
separating sources and observing the overall evolution.

The novelty of our architecture relies mainly on the con-
cept behind performer - machine’s communication. In-
stead of restricting the performer’s role to a set of deci-
sions to take, our approach aims to subject the performer
in a permanent dialog with the computer. In other words,
instead of taking decisions, the performer ‘discusses’ his
intentions with the computer. First, he expresses his inten-
tions to the system under the form of musical constraints.

These constraints concern time, dynamics, articulation and
other musical parameters and are set either statically or dy-
namically. As a response, the computer proposes certain
solutions to the user, often after accomplishing complex
calculi. The last evaluates the computer’s response and ei-
ther makes a decision or launches a new query to the ma-
chine. Then the machine has either to execute performer’s
decision or to respond to the new query. This procedure
runs permanently and controls the improvisation. An other
important concept in our architecture concerns the com-
puter’s understanding of the common improvisation sound
field. This necessity arises from the fact that despite for
computer’s ability to ‘learn’, in a certain degree, the stylis-
tic features of the musician’s playing, the last does not
stand for the understanding of the overall improvisation.
Thus, There has to be instead a dedicate mechanism that
assures interaction between the machine and the collective
music improvisation. Moreover, such a mechanism can be
beneficial for the performer - machine interaction as well,
as it can make the computer more ‘intelligent’ in his dialog
with the performer.

4.2 General architecture for Computer Assisted
Improvisation

However, for the conception of an architecture for CAI
that permits three party interaction, there are a couple of
important issues to take into account. First, the fact that
the proposed interaction scheme is gravely constrained in
time, due to the fact that all dialogs and decisions are to be
taken in real time ( though in the soft sense). Second, the
computer should be clever enough to provide high-level,
expressive information to the performer about the improvi-
sation, as well as high level decision making tools.

The internal architecture for the computer system is shown
in figure 2. This architecture consist mainly of six modules
which can act either concurrently or sequentially. On the
far left we consider the musician, who feeds information
to two modules: the pre-processing module and the short-
term memory module. The pre-processing module is re-
sponsible for the symbolic encoding of audio information
and stylistic learning. On the far right part of the figure we
see the renderer, the unit that sends audio information to
the collective sound field.

The short-memory processing module serves the under-
standing of the short-term memory features of collective
improvisation. In order to reconstruct internally a com-
plete image for the improvisation’s momentum, this mod-
ules gathers information both from the representation mod-
ule and the scheduler; the first in order to know what is be-
ing played by the musician and the second for monitoring
computer’s playing in short-term. It is possible that in the
future it will be needed that the short-term memory pro-
cessing module will also include an independent audio and
pitch tracking pre-processor in order to reduce the portion
of time required for the detection of surprise events.

In the low-center part of figure 2 one can find the in-
teraction core module. This core consists of a part that is
responsible for interfacing with the performer and a solver
that responds to his questions. The performer lances queries



Figure 1. Three-party interaction scheme in Computer Assisted Improvisation. In frames (yellow) the new concepts introduced by the proposed
architecture with respect to conventional interaction schemes for machine improvisation.

under the form of constraints. In order to respond, the
solver attires information from the representation module.
The time the performer takes a decision, information is
transmitted to the scheduler. Scheduler is an intelligent
module that accommodates commands arriving from dif-
ferent sources. For instance, a change-of-strategy com-
mand by the performer arrives via to the interaction core
module to the scheduler.

The scheduler is responsible for examining what was
supposed to schedule according to the previous strategy
and organizes a smooth transition between the former and
the current strategy. Sometimes, when contradictory deci-
sions nest inside the scheduler, the last may commit a call
to core’s solver unit in order to take a final decision. It is
worth mentioning that the dotted-line arrow from the short-
term memory processing module towards the scheduler in-
troduces the aspect of reactivity of the system in emer-
gency situations: when the first detects a surprise event,
instead of transmitting information via the representation
module -and thus not make it accessible unless informa-
tion reaches the interaction core-, it reflects information
directly to the scheduler with the form of a ‘scheduling
alarm’. Hence, via this configuration, we leave open in
our architecture the option that the system takes over au-
tonomous action under certain criteria. The last, in com-
bination with those mentioned before in this section estab-
lishes full three party interaction in a CAI context.

5. FORMALISMS FOR COMPUTER ASSISTED
IMPROVISATION WITH THE HELP OF GRAPH

THEORY

Further in this section, we address music sequence schedul-
ing and sequence matching and alignment, two major prob-

lems for CAI. After a short introduction, we give formalisms
for such problems with the help of graph theory.

5.1 Music sequence scheduling

Concerning the notion of music scheduling is usually found
in literature as the problem of assigning music events to a
particular time in the future, commonly within a real-time
system [16]. Scheduling of musical events is one of the
main functionalities in a real-time system [17] where the
user is given the opportunity to plan the execution of a set
of calculi or DSP events, in a relative or absolute man-
ner, sporadically or sequentially. In a parallel study of the
process of scheduling in music computing and other do-
mains of research such as computer science and produc-
tion planning, we could reason that for the general case
described above, musical scheduling refers to the single
machine scheduling and not the job-shop case.

We define Music Sequence Scheduling as the special
task of building a sequence of musical tasks and assign-
ing their execution to consecutive temporal moments.

In our study, we are interested to music sequence schedul-
ing in order to reconstruct new musical phrases based on
symbolically represented music material. Our objective
is to conceptualize methods which will help the user de-
fine some key elements for these phrases, as well as a set
of general or specific rules, and to leave the building and
scheduling of the musical phrase to the computer. In an
improvisation context, the last allows the performer tak-
ing crucial decisions in a high level; on the same time, the
computer takes into account performer’s intentions, sets
up the low-level details of the phrase generation coher-
ently to the user choices and outputs the relevant musical
stream. For instance, a simple sequence scheduling prob-



Figure 2. Overal Computer Architecture for CAI

lem would consist of navigating throughout a FO with the
same heuristic such as the one used by OMax system, un-
der the additional constraint that we would like to reach a
particular state x in a particular moment t.

5.2 Music sequence matching and alignement

Music sequence matching concerns the capacity of the sys-
tem to recognize if sequence is within its known material.
Music sequence alignment is the problem of finding se-
quences within its corpus which are ‘close’ to a sequence
of reference. The last pre-assumes the definition of a dis-
tance function according to certain criteria. Both are not
in the scope of this paper, but are mentioned for reasons of
clarity.

5.3 Formalisms

The structures used for learning in existing improvisation
systems, even if effective for navigation under certain heuris-
tics, are too specialized to express complex problem of
navigation under constraints. For instance, a FO automa-
ton is sufficient when for agnostic navigation under certain
heuristics among its states, but fails to answer to problems
of scheduling a specific path in time. In order to be able
to express diverge problems of music sequence schedul-
ing, alignment or more complex problems, we are obliged
to use more general graph structures than the ones used in
content-dependent improvisation systems. The advantage
of this approach is that our research then can be then gen-
eralized to include other graph-like structures. Our method
focuses on regenerating material by navigating throughout
graph structures representing the corpus. Due to the rea-
sons mentioned before we will express all stylistic reinjec-
tion related problems under the graph theory formalism.

Formally we describe the process of music sequence
scheduling in the context of stylistic reinjection as follows:

Consider now a continuous sound sequence S. Suppose
that for this sequence it is possible to use an adaptive seg-
mentation method to segment S in n chunks according to
content and a metric m = f (d), d ∈ D, where D a set of
descriptors for S. Each m causes different segmentation
properties i.e different time analysis tm. A symbolic repre-
sentation of S would then be Sm(tm), 1≤m≤M, where M
the number of metrics and tm = 0,1, ..,nm ∀m ∈M.

Axiom 1 The musical style of a continuous sound se-
quence S can be represented by a countably infinite set P
with |P| 6= 0 of connected graphs.

Definition 1
We define stylistic learning as a countably infinite set

F = {Sl1,Sl2, ..,Sln}, |F | 6= 0 of mapping functions Sli :
Sm→Gi(Vi,Ei), where Sm = Smtm∀tm ∈ [0,nm] of sequence
S for a metric m, 1≤ m≤M, Gi a connected graph with a
finite set of vertices Vi and edges Ei as a binary relation on
Vi.

Definition 2 We define as stylistic representation the
countably infinite set P = {Gi(Vi,Ei) : i 6= 0} of digraphs.

Definition 3 We define as sequence reinjection a selec-
tion function
Rseq : (Gi,q)→ Sm with Rseq(Gi,q) = S′m and S′mtm = Smt ′m ,
q a number of constraints q = h(m), m ∈ (1,M).

Definition 4 We define as musical sequence scheduling
as a scheduling function Rsch : (Rseq,Ts(Rseq))→ Sm, with
Ts the setup time for the sequence reinjection Rseq.

With these formalisms we can now begin to study stylis-
tic representation, learning and sequence reinjection with
the help of graphs. These issues now reduce to problems
of constructing graphs, refining arc weights and navigating
along the graphs under certain constraints.

In section 4.2 we underlined the importance of the short-
term memory processing module. Even while the standard
functionality, it should be employed with the mechanism
to quickly decode information that has lately been added



to the representation, make comparisons with earlier added
performance events and find similarities.

Definition 5 We define Music Sequence Matching (MSM)
as a matching function M : (Sm,S′m)→ [0,1] , where Sm,
S′m symbolic representations of sequences S and S′ for the
same metric m.

Definition 6 We define Music Sequence Alignment (MSA)
the alignment function A : (Sm,S′m,q)→ R where

A(Sm,S′m,q) = min{∑
q

cqxq}, (1)

Sm,S′m symbolic representations of sequences S and S′ re-
spectively for the same metric m, q a number of string op-
erations, cq ∈R a coefficient for an operation q and xq ∈ Z
the number of occurrences of operation q.

With the help of the previous definitions we are ready
to cope with specific musical problems.

6. A SIMPLE PROBLEM ON STYLISTIC
REINJECTION IN CAI

Problem
Let a musical sequence S symbolically represented as

Sn, n ∈ [0,N], and s, t ∈ [0,N] a starting and target point
somewhere within this sequence. Starting from point s,
navigate the quickest possible until the target t, while re-
specting sequence’s stylistic properties.

Definition 7 With the help of axiom 1 and definitions
1, 2, we apply stylistic learning and create a stylistic rep-
resentation digraph G(V,E) for Sn with set of vertices V =
{0,1, ..N} and E the set of edges of G.

We define as Music Transition Graph (MTG) the di-
graph G with the additional following properties:

1. G is connected with no self loops and |V |−1≤ |E| ≤
(|V |−1)2 + |V |−1

2. every ei, j ∈ E represents a possible transition from
vertex i to j during navigation with cost function
wτ(i, j)

3. for every i∈ [0,N−1] there is at least one edge leav-
ing vertex i ei,i+1.

4. let d(i) the duration of a musical event Si ∈ S, d0 = 0.
The cost function of an edge ei, j ∈ E is defined as:

• wτ(i, j) = d( j), if j = i+1, ∀i, j ∈ (0,N)

• wτ(i, j) = 0, if j 6= i+1, ∀i, j ∈ [0,N]

• wτ(0,1) = 0.

Solution to problem
Let a path p =< i0, i1, .., ik > in a graph G′ and the

weight of path p the sum of the weights of its constituent
edges:

w(p) =
k

∑
j=1

w(i j−1, i j). (2)

We define the shortest-path weight from s to t by:

0 A_10 D_8B_21.5 A_4

0

A_6

0

C_3 1 B_7

0

 4 D_5 2

0

0

 3  4 1

Figure 3. A Music Transition Graph for melody ABCADABD. Arc
weights correspond to the note duration of the source. Bidirectional arcs
above and below nodes connect patterns with common context.

δ (s, t) = min{w(p) : s p t}. (3)

Let a MTG G to stylistically represent the sequence Sn.
This graph is connected, with no self loops and no negative
weights. Given that, from definition 7, wτ(i, j) is strictly
by the duration d(i, j) of graph events, our problem con-
sists of finding a MTG’s shortest path problem. The so-
lution for the MTG shortest path exists and can be found
in polynomial time. One of the most known solutions to
this problem can be found with the help of Dijkstra’s al-
gorithm, with complexity O(logV ). Dijkstra’s algorithm
does not solve the single pair shortest-path problem dire-
cly, it solves instead the single-source shortest path prob-
lem, however no algorithms for the single pair shortest path
problem are known that run asymptotically faster than the
best single-source algorithms in the worst case.

Corollary from solution
Given a music sequence, the MTG representation per-

mits solving the problem of accessing from a musical event
s a musical event t within a music sequence S in the less
possible time. Thus, by recombining musical events within
S, we can reproduce a novel sequence from s to t. On the
same time, this sequence respects the network of the MTG
graph, hence the stylistic properties of the original music
sequence.

Application 1
Suppose a music melody S{A,B,C,A,D,A,B,D}, with

durations dS{1.5,1,4,2,3,4,1,2.5}.
We construct a MTG G(V,E) with edges e(i, j) ∈ E

with for e(i, j) : j 6= i+1 the arc connect common context
according to the metric m = PITCH (figure 3).

Suppose that our problem is to find the quickest possi-
ble transition from vertex s = 2 (note B ) to vertex t = 8
(note D). To solve our problem, we can apply Dijkstra’s
algorithm.

We apply the algorithm for our sequence S and state D.
When the algorithm terminates we have the shortest paths
for all graph vertices. We can resume that for our problem
the solution is the path p =< B2,B7,D8 >. For the navi-
gation along a path, we ignore one of two interconnected
components. Hence, the final path is p′ =< B2,D8 >.

We presented the formalisms and the solution to the
simplest sequence scheduling problem. In our research,
we focus on a number of problems that we are treating
with the same methodology. These problems are combi-
nation of problems in sequence scheduling and sequence
alignment domain. A list of the more important ones that
we are dealing with is as follows:



1)Find the shortest path in time from a state s to a state
t (examined).

2) The same with problem 1 with the constraint on the
length of common context during recombinations.

3) Find the shortest path in time from a state s to a given
sequence .

4) Find the continuation relatively to given sequence
(Continuator).

5)The same with problem 1 with the additional con-
straint on the total number of recombinations.

6)Find a path from a state s to a state t with a given
duration t, with t1 ≤ t ≤ t2.

7)Find a path from a state s to a state t with a given du-
ration t, with t1 ≤ t ≤ t2 and with the additional constraint
on the total number of recombinations (problem 5 + 6)

7. GRAIPE FOR COMPUTER ASSISTED
IMPROVISATION

Our algorithms and architecture, are integrated in an under
development software under the name GrAIPE. GrAIPE
stands for Graph Assisted Interactive Performance Envi-
ronment. It is an ensemble of modular objects for max-msp
implementing the architecture presented in section 4.2. Con-
cerning GrAIPE’s design and implementation, our basic
priorities are intelligent interfacing to the performer and
efficient well-implemented algorithms for concurrency, in-
teraction and the system’s core main functions. Whether
the software is under development, an instantiation of GrAIL
has already taken place under the name PolyMax for ma-
chine improvisation, simulating with success 10 concur-
rent omax-like improvisers.

8. CONCLUSIONS - FUTURE RESEARCH

In this report we tried to set the basis for a novel, three-
party interaction scheme and proposed a corresponding ar-
chitecture for Computer Assisted Improvisation. Employ-
ing the approach of stylistic learning and stylistic interac-
tion, we operated to formalize this interaction scheme un-
der formalisms inspired from graph theory. We then dis-
cussed a simple music sequence scheduling problem.

Graph approach to CAI appears to be promising for
modeling three-party interaction in a real-time non super-
vised improvisation environment that includes a ‘silicon’
participant. Not only does it permit a formalization of CAI
problems in relation with space and time complexity, but
it also approaches timing and capacity issues with widely
accepted time-space units (for instance, milliseconds) that
can make explicit the connection of our theoretical results
with real-time system own formalism. This can be proved
extremely practical for the future when integrating our the-
oretical results to real-time environment, in contrast with
other formalisms such as in [18] that despite of penetrat-
ing complex interactivity issues, their temporal analysis in
abstract time units makes this connection more implicit.
Furthermore, graph formalization allows transversal bibli-
ography research in all domains where graphs have been
employed (production scheduling, routing and QoS etc.),
and thus permit the generalization of music problems to

universal problems and their confrontation with algorithms
that have been studied in this vast both theoretic and ap-
plicative domain of graph theory.

In the recent future we are focusing on presenting for-
mal solutions for the problems list in the previous section.
Of particular interest are approximate solutions to prob-
lems 5, 6, 7, which are NP-hard for the general case.

Concerning development, GrAIPE has still a lot way
to run until it fits with the requirements set in section 4.2.
Even though already with a scheduler, a basic visualization
module and a scripting module, these modules are being
re-designed to adapt to the new research challenges. Other
modules are a constraint-based user interface and its com-
munication with a solver which is under development.

9. REFERENCES

[1] De Mantaras, R., Arcos, J., ”AI and Music. From Composition to Expressive
Performance” , AI Magazine, Vol. 23 No.3, 2002.

[2] Thom, B., “Articial Intelligence and Real-Time Interactive Improvisation”, Pro-
ceedings from the AAAI-2000 Music and AI Workshop, AAAI Press, 2000.

[3] Assayag, G. , Bloch, G., “Navigating the Oracle: a Heuristic Approach”, Proc.
ICMC’07, The In. Comp. Music Association, Copenhagen 2007.

[4] Fry, C., “FLAVORS BAND: A language for Specifying Musical Style”, Ma-
chine Models of Music, p. 427-451, Cambridge, MIT Press, 1993.

[5] Franklin, J. A. Multi-Phase Learning for Jazz Improvisation and Interaction.
Paper presented at the Eighth Biennial Symposium on Art and Technology, 13
March, New London, Connecticut, 2001.

[6] Biles, A. GENJAM: A Genetic Algorithm for Generating Jazz Solos. In Pro-
ceedings of the 1994 International Computer Music Conference, 131137. San
Francisco, Calif.: International Computer Music Association, J. A. 1994.

[7] Miranda, E., “Brain-Computer music interface for composition and perfor-
mance”, in International Journal on Disability and Human Development,
5(2):119-125, 2006.

[8] Graves, S.,“A Review of Production Scheduling”, Operations Research, Vol.
29, No. 4, Operations Management (Jul. - Aug., 1981), pp. 646-675, 1981.

[9] Papadopoulos, G., and Wiggins, G. 1998. “A Genetic Algorithm for the Gener-
ation of Jazz Melodies”. Paper presented at the Finnish Conference on Artificial
Intelligence (SteP98), 79 September, Jyvaskyla, Finland, 1998.

[10] Giffler, B., Thompson, L., “Algorithms for Solving Production-Scheduling
Problems”, Operations Research, Vol. 8, No. 4, pp. 487-503, 1960.

[11] M., Cont, A., Dubnov, S.,Assayag, G., “Anticipatory Model of Musical Style
Imitation Using Collaborative and Competitive Reinforcement Learning”, Lec-
ture Notes in Computer Science,2007.

[12] Pachet,F., “The continuator: Musical interaction with style”. In proceedings of
International Computer music Conference, Gotheborg (Sweden), ICMA,2002.

[13] Allauzen C., Crochemore M., Raffinot M., “Factor oracle: a new structure for
pattern matching, Proceedings of SOFSEM’99, Theory and Practice of Infor-
matics, J. Pavelka, G. Tel and M. Bartosek ed., Milovy, Lecture Notes in Com-
puter Science 1725, pp 291-306, Berlin, 1999.

[14] Blackwell, T., Young, M. ”Self-Organised Music”. In Organised Sound 9(2):
123136, 2004.

[15] Collins, N., McLean, A., Rohrhuber, J., Ward, A., “Live coding in laptop per-
formance”, Organized Sound, 8:3:321-330, 2003.

[16] Dannenberg, R., “Real-TIme Scheduling And Computer Accompaniment Cur-
rent Directions in Computer Music Research”, Cambridge, MA: MIT Press,
1989.

[17] Puckette, M., “Combining Event and Signal Processing in the MAX Graphical
Programming Environment”, Computer Music Journal, Vol. 15, No. 3, pp. 68-
77, MIT Press, 1991.

[18] Rueda, C., Valencia, F., “A Temporal concurrent constraint calculus as an audi
processing framework”, Sound and Music Computing Conference, 2005.

[19] http://www.audiosynth.com/

[20] http://chuck.cs.princeton.edu/


	 1. Introduction
	 2. Background
	2.1 OMax and stylistic reinjection
	2.2 The Continuator

	 3. Motivation
	 4. Architecture
	4.1 Three party interaction scheme
	4.2 General architecture for Computer Assisted Improvisation

	 5. Formalisms for Computer Assisted Improvisation with the help of graph theory
	5.1 Music sequence scheduling
	5.2 Music sequence matching and alignement
	5.3 Formalisms

	 6. A simple problem on stylistic reinjection in CAI
	 7. GrAiPE for Computer Assisted Improvisation
	 8. Conclusions - Future Research
	 9. References

