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Towards a generic power estimator

Leandro Fontoura Cupertino · Georges Da Costa ·

Jean-Marc Pierson

Abstract Data centers play an important role on world-

wide electrical energy consumption. Understanding their

power dissipation is a key aspect to achieve energy efficiency.

Some application specific models were proposed, while other

generic ones lack accuracy. The contributions of this paper

are threefold. First we expose the importance of modelling

alternating to direct current conversion losses. Second, a

weakness of CPU proportional models is evidenced. Finally,

a methodology to estimate the power consumed by applica-

tions with machine learning techniques is proposed. Since the

results of such techniques are deeply data dependent, a study

on devices’ power profiles was executed to generate a small

set of synthetic benchmarks able to emulate generic applica-

tions’ behaviour. Our approach is then compared with two

other models, showing that the percentage error of energy

estimation of an application can be less than 1 %.

Keywords Power estimation · Generic model ·

Data centers · Machine learning · Neural networks

1 Introduction

The number and size of data centers is continuously increas-

ing during the last years. The popularity of data centers turned

them into one of the most power demanding facilities. The
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use of data centers is divided into high performance com-

puting (HPC) and Internet services, or Clouds. Performance

is crucial in HPC environments, while on Cloud systems it

may vary according to their service-level agreements. Some

data centers even propose hybrid environments. All of them

are energy hungry, modelling their dissipated power is the

first step to achieve better monitoring, management, usage

policies and energy savings.

Energy efficiency can be enhanced either by hardware

replacement, where newer hardware will provide a better

performance, or by understanding their software usage. Pre-

vious works in power modelling of computing systems pro-

posed the use of system information to monitor the power

consumption of applications, but these models are either

too specific for a given kind of application or not accurate

enough.

This paper proposes a methodology to create a unified

power model based on standalone and parallel systems. The

contributions of this paper are threefold. First we show the

importance of using direct current power measurements to

generate a model, an aspect that has been neglected by some

authors [5,11]. Second a study on the limits of CPU propor-

tional models is done. Finally, we propose a methodology

to achieve generic models capable of addressing any kind of

applications and compare it with existing models.

This paper is organized as follows. Section 2 provides a

summary of the state of the art on computing system’s power

modelling. Some techniques to accurately measure power

are described in Sect. 3. Section 4 states the power estima-

tion technique and the limitation of current CPU proportional

models. Section 5 presents the results of the alternating (AC)

to direct current (DC) conversion power modelling, a com-

plete power profiling, along with the training, validation and

limits of the proposed methodology. Conclusions are given

in Sect. 6.



2 Related work

The most common approach to model system’s power con-

sumption is to use CPU capacitive models. These models

have a general formula P ∼ u(cv2 f ) to estimate the power

based on the processor’s frequency f , voltage v, usage u

and effective capacitance c. A linear combination of capac-

itive model of processor’s device for multi-core processors

including power saving techniques was proposed in [1]. The

model is validated using two synthetic benchmarks with

reported errors under 9 % (3W). Although the results show

an acceptable error, the use of synthetic benchmarks for

model validation may not be significant in real world appli-

cations. The drawback of such model is that one need to

have precise information regarding the capacitance of eight

processor’s components and processor’s frequency/voltage

table.

Another common technique is to use performance coun-

ters to automatically extract a model. Several linear regres-

sion power models for HPC applications were proposed

in [9]. The choice of which models to use is done at runtime

based on a decision tree. The models’ variables are selected

from a set of performance counters and CPU temperature

sensors which present the highest correlation with system’s

power. The reported error is of 5 % maximum.

The use of hardware specific sensors were explored in

[13]. The authors extended Performance API (PAPI) to

direct measure power consumption of Intel’s CPU via Run-

ning Average Power Limit (RAPL), and Nvidia’s GPU via

NVML. This approach does not try to model the power but

can be a good way to evaluate the power of HPC applica-

tions, gathering the dissipated power instead of modelling

it with system’s variables. The results should be more pre-

cise than using models, although this comparison was not

made.

The methodology to create power estimators presented in

this paper differ from the above mentioned works as follows:

(a) it provides a nonlinear model that takes into account not

only the CPU, but the entire system; (b) it proposes a generic

set of synthetic benchmark to model not only HPC appli-

cations but any application; and more importantly, (c) it is

not hardware dependent and does not require architecture

information of the hardware.

3 Power metering

Power measurement is a key feature to understand power

consumption of systems and devices. A common technique

is to use a digital multimeter to measure the voltage drop

across a shunt resistor and to compute the power dissipated

on the wire. This technique monitors power usage on each

Power Supply Unit’s (PSU) power rails, providing a detailed

usage of system’s power [2]. However, the inclusion of a

resistor between the power rails may not be feasible in some

architectures.

Some vendors provide integrated monitoring solutions

on their hardware. For instance, Dell’s PowerEdge M1000e

enables real-time reporting for enclosure and blade power

consumption. Intel introduced a model specific register,

namely RAPL, to provide power and energy measurements

at different processor levels. RAPL is only available in recent

architectures [8].

Even though the above mentioned techniques measure

power in DC circuits, the most architecture independent and

less intrusive method is to measure AC power at the outlet.

General purpose solutions are widely available on the mar-

ket, like Plogg, Kill-A-Watt1 and Watts Up?.2 In addition,

AC power is used by energy providers to charge their clients.

Therefore, if the economical aspect of energy efficiency in

a data center will be evaluated, AC power needs to be esti-

mated. The disadvantage of this technique is that it can only

measure system-level power.

4 Power estimation

The estimation of power consumption of a system is based

on workload observations. The system is stressed into differ-

ent conditions, while a set of predefined Key Performance

Indicators (KPIs) along with its power consumption are pro-

filed [10]. To avoid modelling noise, it is important to decou-

ple the static from the dynamic power consumption.

4.1 Dynamic power decoupling

Dynamic power is the fraction of the dissipated power which

varies according to hardware usage. Most authors consider

the dynamic power as being the difference between the total

and idle power consumption.

However, when using an AC power meter, one should

consider the energy conversion losses as well. Although the

power suppliers usually provide an average efficiency rate,

like the 80 Plus label,3 their efficiencies are not constant,

which implies that their AC to DC conversion losses need

to be modelled. Our experiments show that the power con-

version losses can vary from 26 to 380 W per blade, which

will have a significant impact when using AC power data to

generate power models. More detailed results will be shown

in Sect. 5.

1 See http://www.p3international.com.

2 See http://www.wattsupmeters.com.

3 See http://www.80plus.org.
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Fig. 1 Average power dissipated by an Intel Core i7-3615QE Proces-

sor with four physical cores, when running different benchmarks at

different CPU loads

4.2 Limitations of CPU proportional models

The use of CPU proportional models to estimate proces-

sor’s power consumption is extensively done in the literature.

These models are based on the CPU’s percentage usage. The

accuracy of such models was evaluated by running four micro

benchmarks (µ-benchs) to analyse the impact of each proces-

sor’s main components: control unity (CU), arithmetic logic

unit (ALU) and floating-point unit (FPU). Given the impact

of the random number generation, a fourth benchmark was

developed to exploit it (Rand). Each µ-bench was executed

increasing the number of active cores of the system while

keeping their frequencies constant at 2.3 GHz in an Intel

Core i7-3615QE processor.

Figure 1 summarizes the results, where each data point

is the average of 1,000 power measurements. The results

show that, as the number of active cores increases, the power

dissipated by the processor’s package increases in a different

rate, i.e. in a multicore processor, power dissipation is not

linear to core’s usage. Furthermore, the power dissipated at

the same CPU load vary according to application’s behaviour.

This variation can reach up to 7 W when all four cores are

stressed, implying that the use of CPU proportional models

can provide an error of up to 15 % depending on the training

set used for calibration.

4.3 Key performance indicators

Performance indicators can be divided into two classes: hard-

ware and software sensors. Hardware sensors are strictly

related to system’s architecture and their availability and

implementation may change according to vendors. Some

common hardware sensors are CPU’s thermometer and per-

formance counters. The first measures the temperature, while

the latter contains a set of event counters to monitor different

aspects of an application, such as the number of cache misses

and cycles. Software sensors depend mainly on the operating

system’s capabilities. They can provide information such as

processor’s phase (P-states) and idle states (C-states), net-

work traffic and memory usage.

The inputs of an estimator need to be carefully selected.

Usually their selection is done based on a priori knowledge.

As we want to address any architecture and we do not know

which KPIs will be available the target hardware, we used the

biggest quantity of variables we could, providing a high num-

ber of degrees of freedom to create the estimator discussed

later on.

The monitored performance indicators were measured

through system information (SYS), performance counters

(PC) and model specific registers (MSR). Typically on Unix-

like systems, system information sensors come from the

/proc and /sys file systems. Performance counters were

collected using Linux perf tool. MSR registers provide

information of core’s frequency, temperature and time in

active state (C0). The complete list of explored variables

can be found in Table 1. Data acquisition was done using

ectools and extending its library [3] to include all listed

KPIs.

4.4 Machine learning

Machine learning is a field of Computer Science which

intends to automatically extract knowledge from a set of

observed data. This section describes how the training set

(TS) must be created as well as two machine learning tech-

niques used in this paper: Linear Regression and Artificial

Neural Networks.

The training set is a matrix, where each row contains one

observation of the system, including inputs and targets. When

modelling the power consumption of a system, each row of

in the TS is a historical entry. The training set can be decom-

posed into a matrix X of KPIs and a target vector y of power

measurements. The accuracy and range of both are of great

importance when creating precise models, i.e. the data must

contain valid information and should enclose the entire range

of usage for each variable. A set of synthetic benchmarks

designed to stress specific devices of a system over time is

commonly used to generate a TS on any hardware.

Linear Regression (LR) is a statistical tool widely used

to define the parameters’ weights of a predefined function.

In the hardware power modelling perspective, it can be used

to calibrate existing models for usage in new hardware. This

technique is fast to be computed and provides adaptability

for existing models, however is not quite adequate to cre-

ate new ones since it does not handle nonlinear relationship

between the variables. A common technique is to linearize

some variables to calibrate nonlinear models.



Table 1 Monitored KPIs

Type Name Name

PC Cycles Instructions

Cache references Cache misses

Branch instructions Branch misses

Bus cycles Idle cycles frontend

Idle cycles frontend CPU clock

Task clock Page faults

Context switches CPU migrations

Minor faults Major faults

Alignment faults Emulation faults

L1d loads L1d load misses

L1d stores L1d store misses

L1d prefetch misses L1i load misses

LLC loads LLC load misses

LLC stores LLC stores misses

L1d prefetches LLC prefetch misses

dTLB Loads dTLB Load misses

dTLB Stores dTLB Store misses

iTLB Loads iTLB Load misses

Branch loads Branch load misses

Node loads Node load misses

Node stores Node store misses

Node prefetches Node prefetch misses

SYS CPU usage Resident set size

Received bytes Sent bytes

MSR CPU frequency CPU time in C0

CPU temperature

Artificial Neural Networks (ANN) is a branch of Compu-

tational Intelligence that mimics the behaviour of biological

neurons. It has been used in problems of series prediction,

pattern recognition and function approximation [6]. ANN can

be used as a non-linear mathematical model to find complex

relationships between inputs and targets of an unknown func-

tion. It also has a concept of weight matrices which provides

the parameterization of the model, although the quantity of

weights is larger than those used in LR. For regression prob-

lems a specific class of ANN, called multilayer perceptron

(MLP), is used. MLP is a feedforward ANN composed of

one or more hidden layers. Each layer computes its output as

follows:

a = ϕ(Wi + b) (1)

where W is the weight matrix, i is the input vector of the cur-

rent layer, b is the bias vector, ϕ(·) is the activation function

and a is the output vector. This means that in the input layer,

i is the row vector xi ∈ X; while for the final layer a is the

model’s estimation ŷ.

The learning of a MLP is done based on a backpropaga-

tion algorithm, which uses partial derivatives of the estimate

error to adjust W and b. This algorithm requires the acti-

vation function to be differentiable. It has been proved that

two-hidden-layer feedforward networks can learn any dis-

tinct samples with any arbitrarily small error using a sigmoid

activation function [7].

4.5 Accuracy evaluation

The evaluation of the quality of our proposed methodology

and consecutive results will be compared with two models.

As a reference value a constant model, representing the aver-

age power consumption of the TS will be used as a naive

implementation. The second is a capacitive model, the most

used model for DVFS systems. This model will consider

that the voltage is constant and can be approximated by

w0 + w1 ∗ %cpu ∗ f req. The weight calibration is done

through a linear regression of the training set. These models

will be further referred as const and capac, respectively.

Models’ comparison is realized based on the correlation

(R2) between estimated and measured values, as well as two

error metrics, mean absolute percentage error (MAPE) and

energy percentage error (EPE), defined as follows:

MAPE =
100

N
×

N
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

; (2)

EPE = 100 ×

∣

∣

∣

∣

∣

∑N
i=1 yi −

∑N
i=1 ŷi

∑N
i=1 yi

∣

∣

∣

∣

∣

, (3)

where y is the measured power (target), ŷ is the estimated

value and N is the total number of samples.

5 Experimental results

In this section we describe the environment setup, the power

decoupling methodology, the hardware and training set pro-

filing. Later, we present the power estimation results and

limitations.

5.1 Environment setup

The experiments were run on a RECS compute box [12].

The RECS compute box is a high density server prototype

composed by 18 modules connected through a backplane

controller. Each module operates as an independent com-

puter composed by a processor, memory, network and fan.

In the experiments we exploited a module with Intel Core i7-

3615QE processor, 16 GB of RAM and Intel 82579LM Giga-

bit Ethernet. All nodes (modules) are diskless and boot the

same OS image (Scientific Linux release 6.4; kernel v2.6.32).
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Fig. 2 PSU’s AC to DC power conversion modelling

A Plogg power meter, with a sampling rate of 3 Hz and a

precision of 1 mW, were included to monitor the power dis-

sipated by the PSU.

The modules management and power monitoring is done

by a external server to not impact the measurements. For

similar reasons, KPIs and power synchronization was done

offline.

5.2 Power decoupling

Power decoupling is a methodology to reduce noise at the

power measurements. The vendor of our test bed’d PSU made

available a set of data points with PSU’s input and output

power [12]. These data were used to model the PSU’s alter-

nate (PAC ) to direct (PDC ) power conversion. The model was

done through a linear regression of the following equation:

PDC = w0 + w1 PAC + w2 P3
AC , where w0, w1 and w2 are

constants set to −30.00, 0.8611 and −6.55 ∗ 10−8, respec-

tively. Figure 2 plots measured and modelled data, the corre-

lation between them is 0.9999, which represents a very good

approximation. The remainder of the infrastructure power

(fans, driver controller) is considered to be constant and its

modelling is embedded into the estimators’ constants.

5.3 Hardware profiling

Hardware profiling requires the development of synthetic

benchmarks to measure the impact of each system’s device on

the total power consumption. Each benchmark was executed

for 1,000 s with a power sampling rate of 1 Hz. These large

samples enable us to estimate the confidence interval of the

measurements based on the central limit theorem to insure

that our results are statistically acceptable [14]. The analysis

of hardware profiles enables the generation of a small set of

synthetic benchmarks to reproduce several devices’ behav-

iour. This set of benchmarks will later be used to collect TS

data for our machine learning models.

Table 2 Summary of micro benchmarks used for hardware profiling

and training set generation

µ-bench Description

C0 Set processor’s active mode (C0-state)

CU Stress CPU’s Control Unit

ALU Stress CPU’s ALU

FPU Stress CPU’s FPU

Rand FPU using random number generation

L1 L1 data cache access (read/write)

L2 L2 cache access (read/write)

L3 L3 cache access (read/write)

RAM RAM memory access (read/write)

5.3.1 Micro benchmarks

Micro benchmarks (µ-benchs) are synthetic benchmarks

designed to stress specific system’s devices. Table 2 describes

nine µ-benchs designed to analyse different hardware’s

components. All µ-benchs are single threaded, allowing

cpulimit and taskset to define their processor’s core

maximum load and affinity, respectively. The µ-benchs

impact over the machine’s power consumption is discussed

in the following sections. Micro benchmarks’ source codes

are available online.4

5.3.2 Processor

The processor is claimed to be the most power consuming

device in the system. Figure 1 summarized the impact of each

processor’s component on the overall power consumption

while fully stressing each core. One can notice that the power

of ALU and FPU are quite close for all stressed levels.

Cache usage was evaluated by running the same code

but accessing different memory positions to force cache

misses. Synthetic benchmarks L1, L2, L3 and RAM guaran-

tee memory read/write accesses to their respective memory,

i.e.L1makes only L1-data cache accesses,L2 only L2 cache

accesses and so on. Processor’s frequency was set to oper-

ate at 2.3 GHz. In Fig. 3, one can notice that the memory

access pattern will impact, not only on the execution time

of an application, but also its power consumption, having

a substantial influence on the overall energy consumed by

an application. The difference between the L1d and RAM

memory is ≈2.55 W.

Dynamic Voltage and Frequency Scaling (DVFS) was

evaluated by running Rand benchmark in four cores and

modifying the operating frequency to all available frequen-

cies from 1.2 to 2.3 GHz and using Intel Boost Technology,

4 Available at https://github.com/cupertino/ENA-HPC14
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Fig. 4 DVFS impact during the execution of Rand µ-bench

which may operate at up to 3.3 and 3.1 GHz when stress-

ing one and four cores respectively. The impact of using the

Boost technology is very important and can represent a dif-

ference of 26 W when compared to the minimum allowed

frequency (Fig. 4).

Finally the impact of deepest idle state (CX) power savings

are measured by forcing the system to have no latency (C0)

when idle and comparing it with the system idle on CX for all

frequencies. The results show that the power in CX is barely

the same for all frequencies (≈35.47 W). In addition, by

comparing the idle power dissipated in C0 and CX, one can

see that power savings due to the idle states can reach from

9.62 to 16.51 W depending on its frequency. This evidences

the importance of using the time spent in idle states as a

variable when tackling a general power model.

5.3.3 Random access memory

The impact of size of the allocated memory on power con-

sumption was evaluated by gradually increasing the size of

the total allocated resident memory from 1 to 14 Gb. The

memory allocation was tested with three cases: read, write

and idle. All these cases kept one core of the system busy.

The results of Fig. 5 show that the average power is barely

the same as when the system has one core fully stressed

(≈43 W, see Fig. 1) for all memory accesses and resident

memory size, i.e. the amount of allocated RAM memory do
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an Intel 82579LM Gigabit Ethernet

not impact the system’s power consumption. However new

technologies intend to switch memory ranks on and off [4],

generating a new demand for power modelling.

5.3.4 Network interface card

The Network Interface Card (NIC) was evaluated executing

theiperf3 tool, which enables the user to stress the network

under predefined bandwidth. This way, we started a server

at the front-end side and a client at the module and stressed

the network in a 10 % increasing steps scenario. Figure 6

shows that the network usage can impact the total power

consumption of up to 6 W, i.e. the difference between fully

loaded (41.5 W) and idle (35.5 W) system. Its important to

notice that an evaluation of NIC’s power from an outlet meter,

will measure not only the NIC but also processor and memory

consumption. When running these setups, we observed that

the CPU usage was always below 5 %, thus its influence on

these experiments was neglected.

5.4 Training set profiling

The training set (TS) is a crucial aspect of supervised machine

learning. Based on the analysis of the hardware power profil-

ing in Sect. 5.3



execution of these configurations, system’s KPIs (Table 1)

and power are logged.

The synthetic benchmarks were set up to profile the three

main devices (processor, memory and NIC) independently

and the maximum (peak) power consumption. Disk IO is not

taken into account because we exploit a diskless environ-

ment. All µ-benchs were executed in three CPU frequencies:

minimum (1.2 GHz), maximum user defined (2.3 GHz) and

Boost enabled (up to 3.3 GHz). They also have the same

duration per configuration (10 s).

The processor profile was executed to extract most infor-

mation from it. Device’s components were stressed using

the C0, CU, ALU and Rand µ-benchs. Each µ-bench was

limited to use different amount of processor time using the

cpulimit command. The processor usage was increased

by 20 % steps for each of its four cores until all of them be

fully stressed, i.e. idle, 20, 40, 60 80 and 100 % of core 1,

then the first core is kept fully loaded while the second is

gradually stressed and so on.

Network and memory were also profiled. For the network-

ing, the iperf3 benchmark was used to upload and down-

load data at three bandwidths: 200, 400 and 1,000 Mbits/s.

While memory levels L2, L3 and RAM were stressed by

reading and writing on them for each processor’s core.

In addition, a setup composed of several µ-benchs running

concurrently was executed in order to stress the system at its

maximum level dissipating the highest power. The set of used

µ-benchs were: Rand, network download at 1,000 Mbits/s,

C0, L3 and RAM.

The power profile of the training set can be seen in Fig. 7

(measured power). One can notice that the power consump-

tion of this TS varies from 35.5 up to 75 W, and the use of

a nonlinear model is quite evident since the increase of the

power according to the resources usage is not linear. The time

spent on the training set data acquisition is less than 45 min,

which we consider fair for a data center manager to execute

on new machines during their installation phase.

5.5 Power estimation

Neural network was used to generate a nonlinear model from

scratch using all available sensors. The ANN used was a feed-

foward MLP network with two hidden layers with a sigmoid

activation function for the hidden neurons and a pure linear

function on the output layer. To avoid overfitting, the TS is

randomly divided into training, validation and test sets con-

taining 70, 15 and 15 % randomly selected data from TS,

respectively. The network size was chosen based on a cross-

validation of the TS. The number of neurons were increased

keeping the second layer smaller than the first. The maximum

number of neurons was limited to 35. The best configuration

have 20 neurons in the first hidden layer and 5 in the second

one. For comparing reasons, a linear regression was used to

calibrate the capacitive model.

Figure 7 contains the results of the capacitive and the

neural network models. For each model, three subfigures

summarize its results. At the top, the estimated (output) and

measured (target) powers are plotted side by side, to verify

that the model is really capable of predicting the data. At the

bottom left, a histogram of the difference between the mea-

sured and estimated power (y− ŷ) provides the distribution of

the magnitude of the error along with its MAPE. At the bot-

tom right, the correlation between estimated and measured

values is shown. It contains the scatterplot of the data and
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Fig. 7 Summary of the learning process of the TS for a the neural network training and b the capacitive model calibration



two reference lines. The dashed line represents the perfect

data fit, while the continuous one is the linear regression of

the data; the closer they are, the better.

One can see from Fig. 7a that ANN estimation and the

measured values almost overlap, presenting a high preci-

sion for the TS’s prediction. The histogram shows that the

errors are concentrated near 0 W and the MAPE is low

(1.83 %). The correlation of 0.95 means that the ANN is

capable of explaining the behaviour of the measured val-

ues. In Fig. 7b, the results from the capacitive model after

calibration clearly show that the lack of information regard-

ing the use of the processor’s components makes the capac-

itive model unable to estimate the power changes between

the different µ-benchs (CU, FPU and Rand), reproducing

always the same curve. The results show a MAPE and R2 of

5.42 % and 0.71, respectively. The comparison between the

two models shows that ANN can provide an estimator more

than two times better than the capacitive model.

5.6 Estimation limits

The use of neural networks need that all variables, including

the target, used during the training phase covers the entire

spectrum of variables’ values; otherwise the estimation will

not be accurate. For instance, if the TS’s power range varies

from 35 to 75 W, one cannot expect a good prediction of a

100 W configuration set.

A set of use cases were executed to provide real world

application profiles to test our estimator. This set encom-

passes several benchmarks: HPC Challenge (HPCC), NAS

Parallel Benchmark (NPB), Gromacs, C-Ray and Pybench.

HPCC is a set of benchmarks intended to explore the whole

spectrum of HPC applications. NPB is a set of linear algebra

benchmarks, problem sizes A and B were executed using 4

cores. Gromacs is a molecular dynamics simulator, in this

use case, the simulation of DPPC in water was run. C-Ray

is a ray tracing benchmark. Pybench is a test set to measure

performance of Python programs.

When comparing our synthetic benchmarks with HPC use

cases, we noticed that almost every use cases’ samples were

out of the bounds of the training set. Table 3 presents some

characteristics of the test data, along with the comparison

between three models based on the EPE (Eq. 3). One can see

that from the total number of samples of each case, only the

PyB has some samples in the bound of the training set, all

the other are out of bounds (OoB). This shows that the set of

synthetic benchmarks used to generate the TS do not properly

represent our HPC use cases. The only use case which the

samples were in the same range of the TS (PyB) presented

an estimation error of only 0.61 %, for all the other, the ANN

had a bad estimation. This shows the importance of the TS

for modelling with machine learning. Adaptative learning

techniques can enhance the quality of the TS [3], however

Table 3 Models’ comparison based on several use cases, their total

number of samples and the number of samples that are out of the bounds

(OoB) of the training set

Use case # Samples EPE

Total OoB const capac ANN

HPCC 87 87 38.41 15.57 26.60

NPBA4 75 75 36.37 16.26 24.61

NPBB4 329 329 41.11 19.53 29.88

Gromacs 964 964 40.03 17.19 28.70

C-Ray 17 17 36.16 12.66 8.13

PyBench 34 1 8.07 9.13 0.61

The bold values correspond the lowest EPE (Energy Percentage Error)

among the 3 models (const, capac and ANN)

it requires the power meter to be continuously available to

collect more data.

6 Conclusions

In this paper we introduced the issues of using AC power

to create new models, which can generate prediction errors

of up to 380 W. Then we pointed out a limitation of CPU

proportional estimators. Finally a new methodology for esti-

mating the power consumption of computing systems was

proposed. While promising, this approach deeply depends

on the training set’s quality.

As future work, we intend to generate a broader range of

micro benchmarks capable to reproduce HPC application’s

profile. Preliminarily results show that the addition of some

HPC benchmarks into the training set significantly improves

ANN’s estimation. We are also working on the portability

of our ANN model to estimate the power dissipated at the

process level and distributed systems.
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