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Data centers play an important role on worldwide electrical energy consumption. Understanding their power dissipation is a key aspect to achieve energy efficiency. Some application specific models were proposed, while other generic ones lack accuracy. The contributions of this paper are threefold. First we expose the importance of modelling alternating to direct current conversion losses. Second, a weakness of CPU proportional models is evidenced. Finally, a methodology to estimate the power consumed by applications with machine learning techniques is proposed. Since the results of such techniques are deeply data dependent, a study on devices' power profiles was executed to generate a small set of synthetic benchmarks able to emulate generic applications' behaviour. Our approach is then compared with two other models, showing that the percentage error of energy estimation of an application can be less than 1 %.

Introduction

The number and size of data centers is continuously increasing during the last years. The popularity of data centers turned them into one of the most power demanding facilities. The The most common approach to model system's power consumption is to use CPU capacitive models. These models have a general formula P ∼ u(cv2 f ) to estimate the power based on the processor's frequency f , voltage v, usage u and effective capacitance c. A linear combination of capacitive model of processor's device for multi-core processors including power saving techniques was proposed in [START_REF] Basmadjian | Evaluating and modeling power consumption of multi-core processors[END_REF]. The model is validated using two synthetic benchmarks with reported errors under 9 % (3W). Although the results show an acceptable error, the use of synthetic benchmarks for model validation may not be significant in real world applications. The drawback of such model is that one need to have precise information regarding the capacitance of eight processor's components and processor's frequency/voltage table.

Another common technique is to use performance counters to automatically extract a model. Several linear regression power models for HPC applications were proposed in [START_REF] Jarus | Runtime power usage estimation of HPC servers for various classes of real-life applications[END_REF]. The choice of which models to use is done at runtime based on a decision tree. The models' variables are selected from a set of performance counters and CPU temperature sensors which present the highest correlation with system's power. The reported error is of 5 % maximum.

The use of hardware specific sensors were explored in [13]. The authors extended Performance API (PAPI) to direct measure power consumption of Intel's CPU via Running Average Power Limit (RAPL), and Nvidia's GPU via NVML. This approach does not try to model the power but can be a good way to evaluate the power of HPC applications, gathering the dissipated power instead of modelling it with system's variables. The results should be more precise than using models, although this comparison was not made.

The methodology to create power estimators presented in this paper differ from the above mentioned works as follows: (a) it provides a nonlinear model that takes into account not only the CPU, but the entire system; (b) it proposes a generic set of synthetic benchmark to model not only HPC applications but any application; and more importantly, (c) it is not hardware dependent and does not require architecture information of the hardware.

Power metering

Power measurement is a key feature to understand power consumption of systems and devices. A common technique is to use a digital multimeter to measure the voltage drop across a shunt resistor and to compute the power dissipated on the wire. This technique monitors power usage on each Power Supply Unit's (PSU) power rails, providing a detailed usage of system's power [START_REF] Bedard | Powermon: fine-grained and integrated power monitoring for commodity computer systems[END_REF]. However, the inclusion of a resistor between the power rails may not be feasible in some architectures.

Some vendors provide integrated monitoring solutions on their hardware. For instance, Dell's PowerEdge M1000e enables real-time reporting for enclosure and blade power consumption. Intel introduced a model specific register, namely RAPL, to provide power and energy measurements at different processor levels. RAPL is only available in recent architectures [START_REF]Intel 64 and IA-32 Architectures Software Developer's Manual: System Programming Guide[END_REF].

Even though the above mentioned techniques measure power in DC circuits, the most architecture independent and less intrusive method is to measure AC power at the outlet. General purpose solutions are widely available on the market, like Plogg, Kill-A-Watt1 and Watts Up?. 2 In addition, AC power is used by energy providers to charge their clients. Therefore, if the economical aspect of energy efficiency in a data center will be evaluated, AC power needs to be estimated. The disadvantage of this technique is that it can only measure system-level power.

Power estimation

The estimation of power consumption of a system is based on workload observations. The system is stressed into different conditions, while a set of predefined Key Performance Indicators (KPIs) along with its power consumption are profiled [START_REF] Mair | Power modeling. In: Large-scale distributed systems and energy efficiency: a holistic view[END_REF]. To avoid modelling noise, it is important to decouple the static from the dynamic power consumption.

Dynamic power decoupling

Dynamic power is the fraction of the dissipated power which varies according to hardware usage. Most authors consider the dynamic power as being the difference between the total and idle power consumption.

However, when using an AC power meter, one should consider the energy conversion losses as well. Although the power suppliers usually provide an average efficiency rate, like the 80 Plus label,3 their efficiencies are not constant, which implies that their AC to DC conversion losses need to be modelled. Our experiments show that the power conversion losses can vary from 26 to 380 W per blade, which will have a significant impact when using AC power data to generate power models. More detailed results will be shown in Sect. 5. The use of CPU proportional models to estimate processor's power consumption is extensively done in the literature. These models are based on the CPU's percentage usage. The accuracy of such models was evaluated by running four micro benchmarks (µ-benchs) to analyse the impact of each processor's main components: control unity (CU), arithmetic logic unit (ALU) and floating-point unit (FPU). Given the impact of the random number generation, a fourth benchmark was developed to exploit it (Rand). Each µ-bench was executed increasing the number of active cores of the system while keeping their frequencies constant at 2.3 GHz in an Intel Core i7-3615QE processor. Figure 1 summarizes the results, where each data point is the average of 1,000 power measurements. The results show that, as the number of active cores increases, the power dissipated by the processor's package increases in a different rate, i.e. in a multicore processor, power dissipation is not linear to core's usage. Furthermore, the power dissipated at the same CPU load vary according to application's behaviour. This variation can reach up to 7 W when all four cores are stressed, implying that the use of CPU proportional models can provide an error of up to 15 % depending on the training set used for calibration.

Key performance indicators

Performance indicators can be divided into two classes: hardware and software sensors. Hardware sensors are strictly related to system's architecture and their availability and implementation may change according to vendors. Some common hardware sensors are CPU's thermometer and performance counters. The first measures the temperature, while the latter contains a set of event counters to monitor different aspects of an application, such as the number of cache misses and cycles. Software sensors depend mainly on the operating system's capabilities. They can provide information such as processor's phase (P-states) and idle states (C-states), network traffic and memory usage.

The inputs of an estimator need to be carefully selected. Usually their selection is done based on a priori knowledge. As we want to address any architecture and we do not know which KPIs will be available the target hardware, we used the biggest quantity of variables we could, providing a high number of degrees of freedom to create the estimator discussed later on.

The monitored performance indicators were measured through system information (SYS), performance counters (PC) and model specific registers (MSR). Typically on Unixlike systems, system information sensors come from the /proc and /sys file systems. Performance counters were collected using Linux perf tool. MSR registers provide information of core's frequency, temperature and time in active state (C0). The complete list of explored variables can be found in Table 1. Data acquisition was done using ectools and extending its library [START_REF] Cupertino | Energy efficiency in large scale distributed systems[END_REF] to include all listed KPIs.

Machine learning

Machine learning is a field of Computer Science which intends to automatically extract knowledge from a set of observed data. This section describes how the training set (TS) must be created as well as two machine learning techniques used in this paper: Linear Regression and Artificial Neural Networks.

The training set is a matrix, where each row contains one observation of the system, including inputs and targets. When modelling the power consumption of a system, each row of in the TS is a historical entry. The training set can be decomposed into a matrix X of KPIs and a target vector y of power measurements. The accuracy and range of both are of great importance when creating precise models, i.e. the data must contain valid information and should enclose the entire range of usage for each variable. A set of synthetic benchmarks designed to stress specific devices of a system over time is commonly used to generate a TS on any hardware.

Linear Regression (LR) is a statistical tool widely used to define the parameters' weights of a predefined function. In the hardware power modelling perspective, it can be used to calibrate existing models for usage in new hardware. This technique is fast to be computed and provides adaptability for existing models, however is not quite adequate to create new ones since it does not handle nonlinear relationship between the variables. A common technique is to linearize some variables to calibrate nonlinear models. Artificial Neural Networks (ANN) is a branch of Computational Intelligence that mimics the behaviour of biological neurons. It has been used in problems of series prediction, pattern recognition and function approximation [START_REF] Haykin | Neural networks: a comprehensive foundation[END_REF]. ANN can be used as a non-linear mathematical model to find complex relationships between inputs and targets of an unknown function. It also has a concept of weight matrices which provides the parameterization of the model, although the quantity of weights is larger than those used in LR. For regression problems a specific class of ANN, called multilayer perceptron (MLP), is used. MLP is a feedforward ANN composed of one or more hidden layers. Each layer computes its output as follows:

a = ϕ(Wi + b) (1)
where W is the weight matrix, i is the input vector of the current layer, b is the bias vector, ϕ(•) is the activation function and a is the output vector. This means that in the input layer, i is the row vector x i ∈ X; while for the final layer a is the model's estimation ŷ.

The learning of a MLP is done based on a backpropagation algorithm, which uses partial derivatives of the estimate error to adjust W and b. This algorithm requires the activation function to be differentiable. It has been proved that two-hidden-layer feedforward networks can learn any distinct samples with any arbitrarily small error using a sigmoid activation function [START_REF] Huang | Learning capability and storage capacity of two-hidden-layer feedforward networks[END_REF].

Accuracy evaluation

The evaluation of the quality of our proposed methodology and consecutive results will be compared with two models. As a reference value a constant model, representing the average power consumption of the TS will be used as a naive implementation. The second is a capacitive model, the most used model for DVFS systems. This model will consider that the voltage is constant and can be approximated by w 0 + w 1 * %cpu * f r eq. The weight calibration is done through a linear regression of the training set. These models will be further referred as const and capac, respectively. Models' comparison is realized based on the correlation (R 2 ) between estimated and measured values, as well as two error metrics, mean absolute percentage error (MAPE) and energy percentage error (EPE), defined as follows:

MAPE = 100 N × N i=1 y i -ŷi y i ; (2) 
EPE = 100 × N i=1 y i -N i=1 ŷi N i=1 y i , ( 3 
)
where y is the measured power (target), ŷ is the estimated value and N is the total number of samples.

Experimental results

In this section we describe the environment setup, the power decoupling methodology, the hardware and training set profiling. Later, we present the power estimation results and limitations.

Environment setup

The experiments were run on a RECS compute box [START_REF] Volk | Update on definition of the hardware and software models[END_REF].

The RECS compute box is a high density server prototype composed by 18 modules connected through a backplane controller. Each module operates as an independent computer composed by a processor, memory, network and fan.

In the experiments we exploited a module with Intel Core i7-3615QE processor, 16 GB of RAM and Intel 82579LM Gigabit Ethernet. All nodes (modules) are diskless and boot the same OS image (Scientific Linux release 6.4; kernel v2.6.32). A Plogg power meter, with a sampling rate of 3 Hz and a precision of 1 mW, were included to monitor the power dissipated by the PSU. The modules management and power monitoring is done by a external server to not impact the measurements. For similar reasons, KPIs and power synchronization was done offline.

Power decoupling

Power decoupling is a methodology to reduce noise at the power measurements. The vendor of our test bed'd PSU made available a set of data points with PSU's input and output power [START_REF] Volk | Update on definition of the hardware and software models[END_REF]. These data were used to model the PSU's alternate (P AC ) to direct (P DC ) power conversion. The model was done through a linear regression of the following equation: P DC = w 0 + w 1 P AC + w 2 P 3 AC , where w 0 , w 1 and w 2 are constants set to -30.00, 0.8611 and -6.55 * 10 -8 , respectively. Figure 2 plots measured and modelled data, the correlation between them is 0.9999, which represents a very good approximation. The remainder of the infrastructure power (fans, driver controller) is considered to be constant and its modelling is embedded into the estimators' constants.

Hardware profiling

Hardware profiling requires the development of synthetic benchmarks to measure the impact of each system's device on the total power consumption. Each benchmark was executed for 1,000 s with a power sampling rate of 1 Hz. These large samples enable us to estimate the confidence interval of the measurements based on the central limit theorem to insure that our results are statistically acceptable [START_REF] Willink | Measurement uncertainty and probability 1st ed[END_REF]. The analysis of hardware profiles enables the generation of a small set of synthetic benchmarks to reproduce several devices' behaviour. This set of benchmarks will later be used to collect TS data for our machine learning models. 

Micro benchmarks

Micro benchmarks (µ-benchs) are synthetic benchmarks designed to stress specific system's devices. Table 2 describes nine µ-benchs designed to analyse different hardware's components. All µ-benchs are single threaded, allowing cpulimit and taskset to define their processor's core maximum load and affinity, respectively. The µ-benchs impact over the machine's power consumption is discussed in the following sections. Micro benchmarks' source codes are available online. 4

Processor

The processor is claimed to be the most power consuming device in the system. Figure 1 summarized the impact of each processor's component on the overall power consumption while fully stressing each core. One can notice that the power of ALU and FPU are quite close for all stressed levels. Cache usage was evaluated by running the same code but accessing different memory positions to force cache misses. Synthetic benchmarks L1, L2, L3 and RAM guarantee memory read/write accesses to their respective memory, i.e. L1 makes only L1-data cache accesses, L2 only L2 cache accesses and so on. Processor's frequency was set to operate at 2.3 GHz. In Fig. 3, one can notice that the memory access pattern will impact, not only on the execution time of an application, but also its power consumption, having a substantial influence on the overall energy consumed by an application. The difference between the L1d and RAM memory is ≈2.55 W.

Dynamic Voltage and Frequency Scaling (DVFS) was evaluated by running Rand benchmark in four cores and modifying the operating frequency to all available frequencies from 1.2 to 2.3 GHz and using Intel Boost Technology, which may operate at up to 3.3 and 3.1 GHz when stressing one and four cores respectively. The impact of using the Boost technology is very important and can represent a difference of 26 W when compared to the minimum allowed frequency (Fig. 4).

Finally the impact of deepest idle state (CX) power savings are measured by forcing the system to have no latency (C0) when idle and comparing it with the system idle on CX for all frequencies. The results show that the power in CX is barely the same for all frequencies (≈35.47 W). In addition, by comparing the idle power dissipated in C0 and CX, one can see that power savings due to the idle states can reach from 9.62 to 16.51 W depending on its frequency. This evidences the importance of using the time spent in idle states as a variable when tackling a general power model.

Random access memory

The impact of size of the allocated memory on power consumption was evaluated by gradually increasing the size of the total allocated resident memory from 1 to 14 Gb. The memory allocation was tested with three cases: read, write and idle. All these cases kept one core of the system busy. The results of Fig. 5 show that the average power is barely the same as when the system has one core fully stressed (≈43 W, see Fig. 1) for all memory accesses and resident memory size, i.e. the amount of allocated RAM memory do Network usage impact the overall power consumption for an Intel 82579LM Gigabit Ethernet not impact the system's power consumption. However new technologies intend to switch memory ranks on and off [START_REF] Diniz | Limiting the power consumption of main memory[END_REF], generating a new demand for power modelling.

Network interface card

The Network Interface Card (NIC) was evaluated executing the iperf3 tool, which enables the user to stress the network under predefined bandwidth. This way, we started a server at the front-end side and a client at the module and stressed the network in a 10 % increasing steps scenario. Figure 6 shows that the network usage can impact the total power consumption of up to 6 W, i.e. the difference between fully loaded (41.5 W) and idle (35.5 W) system. Its important to notice that an evaluation of NIC's power from an outlet meter, will measure not only the NIC but also processor and memory consumption. When running these setups, we observed that the CPU usage was always below 5 %, thus its influence on these experiments was neglected.

Training set profiling

The training set (TS) is a crucial aspect of supervised machine learning. Based on the analysis of the hardware power profiling in Sect. 5.3 execution of these configurations, system's KPIs (Table 1) and power are logged.

The synthetic benchmarks were set up to profile the three main devices (processor, memory and NIC) independently and the maximum (peak) power consumption. Disk IO is not taken into account because we exploit a diskless environment. All µ-benchs were executed in three CPU frequencies: minimum (1.2 GHz), maximum user defined (2.3 GHz) and Boost enabled (up to 3.3 GHz). They also have the same duration per configuration (10 s).

The processor profile was executed to extract most information from it. Device's components were stressed using the C0, CU, ALU and Rand µ-benchs. Each µ-bench was limited to use different amount of processor time using the cpulimit command. The processor usage was increased by 20 % steps for each of its four cores until all of them be fully stressed, i.e. idle, 20, 40, 60 80 and 100 % of core 1, then the first core is kept fully loaded while the second is gradually stressed and so on.

Network and memory were also profiled. For the networking, the iperf3 benchmark was used to upload and download data at three bandwidths: 200, 400 and 1,000 Mbits/s. While memory levels L2, L3 and RAM were stressed by reading and writing on them for each processor's core.

In addition, a setup composed of several µ-benchs running concurrently was executed in order to stress the system at its maximum level dissipating the highest power. The set of used µ-benchs were: Rand, network download at 1,000 Mbits/s, C0, L3 and RAM.

The power profile of the training set can be seen in Fig. 7 (measured power). One can notice that the power consumption of this TS varies from 35.5 up to 75 W, and the use of a nonlinear model is quite evident since the increase of the power according to the resources usage is not linear. The time spent on the training set data acquisition is less than 45 min, which we consider fair for a data center manager to execute on new machines during their installation phase.

Power estimation

Neural network was used to generate a nonlinear model from scratch using all available sensors. The ANN used was a feedfoward MLP network with two hidden layers with a sigmoid activation function for the hidden neurons and a pure linear function on the output layer. To avoid overfitting, the TS is randomly divided into training, validation and test sets containing 70, 15 and 15 % randomly selected data from TS, respectively. The network size was chosen based on a crossvalidation of the TS. The number of neurons were increased keeping the second layer smaller than the first. The maximum number of neurons was limited to 35. The best configuration have 20 neurons in the first hidden layer and 5 in the second one. For comparing reasons, a linear regression was used to calibrate the capacitive model.

Figure 7 contains the results of the capacitive and the neural network models. For each model, three subfigures summarize its results. At the top, the estimated (output) and measured (target) powers are plotted side by side, to verify that the model is really capable of predicting the data. At the bottom left, a histogram of the difference between the measured and estimated power (y-ŷ) provides the distribution of the magnitude of the error along with its MAPE. At the bottom right, the correlation between estimated and measured values is shown. It contains the scatterplot of the data and One can see from Fig. 7a that ANN estimation and the measured values almost overlap, presenting a high precision for the TS's prediction. The histogram shows that the errors are concentrated near 0 W and the MAPE is low (1.83 %). The correlation of 0.95 means that the ANN is capable of explaining the behaviour of the measured values. In Fig. 7b, the results from the capacitive model after calibration clearly show that the lack of information regarding the use of the processor's components makes the capacitive model unable to estimate the power changes between the different µ-benchs (CU, FPU and Rand), reproducing always the same curve. The results show a MAPE and R 2 of 5.42 % and 0.71, respectively. The comparison between the two models shows that ANN can provide an estimator more than two times better than the capacitive model.

Estimation limits

The use of neural networks need that all variables, including the target, used during the training phase covers the entire spectrum of variables' values; otherwise the estimation will not be accurate. For instance, if the TS's power range varies from 35 to 75 W, one cannot expect a good prediction of a 100 W configuration set.

A set of use cases were executed to provide real world application profiles to test our estimator. This set encompasses several benchmarks: HPC Challenge (HPCC), NAS Parallel Benchmark (NPB), Gromacs, C-Ray and Pybench. HPCC is a set of benchmarks intended to explore the whole spectrum of HPC applications. NPB is a set of linear algebra benchmarks, problem sizes A and B were executed using 4 cores. Gromacs is a molecular dynamics simulator, in this use case, the simulation of DPPC in water was run. C-Ray is a ray tracing benchmark. Pybench is a test set to measure performance of Python programs.

When comparing our synthetic benchmarks with HPC use cases, we noticed that almost every use cases' samples were out of the bounds of the training set. Table 3 presents some characteristics of the test data, along with the comparison between three models based on the EPE (Eq. 3). One can see that from the total number of samples of each case, only the PyB has some samples in the bound of the training set, all the other are out of bounds (OoB). This shows that the set of synthetic benchmarks used to generate the TS do not properly represent our HPC use cases. The only use case which the samples were in the same range of the TS (PyB) presented an estimation error of only 0.61 %, for all the other, the ANN had a bad estimation. This shows the importance of the TS for modelling with machine learning. Adaptative learning techniques can enhance the quality of the TS [START_REF] Cupertino | Energy efficiency in large scale distributed systems[END_REF], however it requires the power meter to be continuously available to collect more data.

Conclusions

In this paper we introduced the issues of using AC power to create new models, which can generate prediction errors of up to 380 W. Then we pointed out a limitation of CPU proportional estimators. Finally a new methodology for estimating the power consumption of computing systems was proposed. While promising, this approach deeply depends on the training set's quality.

As future work, we intend to generate a broader range of micro benchmarks capable to reproduce HPC application's profile. Preliminarily results show that the addition of some HPC benchmarks into the training set significantly improves ANN's estimation. We are also working on the portability of our ANN model to estimate the power dissipated at the process level and distributed systems.
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Table 1

 1 Monitored KPIs

	Type	Name	Name
	PC	Cycles	Instructions
		Cache references	Cache misses
		Branch instructions	Branch misses
		Bus cycles	Idle cycles frontend
		Idle cycles frontend	CPU clock
		Task clock	Page faults
		Context switches	CPU migrations
		Minor faults	Major faults
		Alignment faults	Emulation faults
		L1d loads	L1d load misses
		L1d stores	L1d store misses
		L1d prefetch misses	L1i load misses
		LLC loads	LLC load misses
		LLC stores	LLC stores misses
		L1d prefetches	LLC prefetch misses
		dTLB Loads	dTLB Load misses
		dTLB Stores	dTLB Store misses
		iTLB Loads	iTLB Load misses
		Branch loads	Branch load misses
		Node loads	Node load misses
		Node stores	Node store misses
		Node prefetches	Node prefetch misses
	SYS	CPU usage	Resident set size
		Received bytes	Sent bytes
	MSR	CPU frequency	CPU time in C0
		CPU temperature	

Table 2

 2 Summary of micro benchmarks used for hardware profiling and training set generation

	µ-bench	Description
	C0	Set processor's active mode (C0-state)
	CU	Stress CPU's Control Unit
	ALU	Stress CPU's ALU
	FPU	Stress CPU's FPU
	Rand	FPU using random number generation
	L1	L1 data cache access (read/write)
	L2	L2 cache access (read/write)
	L3	L3 cache access (read/write)
	RAM	RAM memory access (read/write)

Table 3

 3 Models' comparison based on several use cases, their total number of samples and the number of samples that are out of the bounds (OoB) of the training set The bold values correspond the lowest EPE (Energy Percentage Error) among the 3 models (const, capac and ANN)

	Use case	# Samples		EPE		
		Total	OoB	const	capac	ANN
	HPCC	87	87	38.41	15.57	26.60
	NPBA4	75	75	36.37	16.26	24.61
	NPBB4	329	329	41.11	19.53	29.88
	Gromacs	964	964	40.03	17.19	28.70
	C-Ray	17	17	36.16	12.66	8.13
	PyBench	34	1	8.07	9.13	0.61

See http://www.p3international.com.
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Available at https://github.com/cupertino/ENA-HPC14
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